
Journal of Computational Science 61 (2022) 101644

A
1
n

Contents lists available at ScienceDirect

Journal of Computational Science

journal homepage: www.elsevier.com/locate/jocs

Toward informed partitioning for load balancing: A proof-of-concept
Anthony Boulmier a,∗, Nabil Abdennadher b, Bastien Chopard a

a University of Geneva, Department of Computer Science, Route de Drize 7, 1227 Carouge, Switzerland
b University of Applied Sciences and Arts, Western Switzerland (HES-SO), Rue de la Prairie 4, 1202 Geneva, Switzerland

A R T I C L E I N F O

Keywords:
High performance computing
Partitioning
Dynamic load balancing
Performance optimization

A B S T R A C T

Most parallel applications suffer from load imbalance, a crucial performance degradation factor. In particle
simulations, this is mainly due to the migration of particles between processing elements, which eventually
gather unevenly and create workload imbalance. Dynamic load balancing is used at various iterations to
mitigate load imbalance, employing a partitioning method to divide the computational space evenly while
minimizing communications. In this paper, we propose a novel partitioning methodology called ‘‘informed
partitioning’’. It uses information based on the evolution of the computation to reduce the load balancing
growth and the number of load balancing calls. In this paper, we illustrate informed partitioning by proposing
a new geometric partitioning technique for particles simulations. This technique is derived from the well-
known recursive coordinate bisection and employs the velocity of the particles to guide the bisection axis.
To properly compare the performance of our new method with existing partitioning techniques during
application execution, we introduce an effort metric based on a theoretical model of load balanced parallel
application time. We propose a proof-of-concept of informed partitioning, through a numerical study, on three
N-Body simulations with various particle dynamics, and we discuss its performance against popular geometric
partitioning techniques. Moreover, we show that our effort metric can be used to rank partitioning techniques
by their efficiency at any time point during the simulation. Eventually, this could be used to choose the best
partitioning on the fly. In the numerical study, we report that our novel concept increases the performance
of two experiments out of three by up to 76% and 15%, while being marginally slower by only 3% in one
experiment. Also, we discuss the limitations of our implementation of informed partitioning and our effort
metric.
1. Introduction

In most parallel applications, performance is crucial to solving
large and complex problems. One of the most critical performance
degradation factors is load imbalance. Usually, load imbalance is miti-
gated through dynamic load balancing mechanisms. These mechanisms
divide the computational elements into several pieces (partitioning
algorithm) and distribute them to processing elements (mapping algo-
rithm), such that the workload is evenly distributed and the communi-
cations are minimized. Essentially, load balancing consists of finding
an approximate solution to a balanced graph partitioning problem,
which is known to be NP-Complete [1]. Moreover, this raises two
challenging questions: how to load balance? (i.e., which partitioning
technique should I use?) and when to load balance? (i.e., at which
iteration should I trigger the load balancing mechanism?) [2] to obtain
the maximal performance.

Over time, many partitioning algorithms that provide good solutions
to the load balancing problem have been developed. Among them, the

∗ Corresponding author.
E-mail address: anthony.boulmier@unige.ch (A. Boulmier).

most famous are recursive coordinate bisection (RCB) [3], space-filling
curves (SFC) [4], recursive spectral bisection [5], and METIS (mul-
tilevel k-way) [6]. More recently, novel geometric partitioning tech-
niques have been proposed. Zhakhovskii et al. [7], Fattebert et al. [8],
and later Egorova et al. [9] introduced partitioning methods based
on Voronoï tessellations for molecular dynamic applications (particle
simulations). In particular, Zhakhovskii et al. [7] load balances at
regular intervals by replacing the Voronoi site according to the local
mass center combined with that of the Voronoï neighbors that move,
while Fattebert et al. [8] employ a gradient method and an estimation
of the work per volume to adjust the processing elements’ workload by
moving Voronoï sites. Note that Fattebert et al. [8] were the first to
propose such a partitioning method in 3D. Finally, Egorova et al. [9]
consider Voronoï sites as weighted bodies, where the weight depends
on the processing element’s load. They compute the displacement re-
quired by a Voronoï site to be balanced with respect to the neighboring
domains using multi-body terms. Note that their algorithm requires
vailable online 12 March 2022
877-7503/© 2022 The Authors. Published by Elsevier B.V. This is an open access art
c-nd/4.0/).

https://doi.org/10.1016/j.jocs.2022.101644
Received 25 August 2021; Received in revised form 21 January 2022; Accepted 27
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

February 2022

http://www.elsevier.com/locate/jocs
http://www.elsevier.com/locate/jocs
mailto:anthony.boulmier@unige.ch
https://doi.org/10.1016/j.jocs.2022.101644
https://doi.org/10.1016/j.jocs.2022.101644
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2022.101644&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Journal of Computational Science 61 (2022) 101644A. Boulmier et al.
many iterations to converge to a balanced state. Begau et al. [10]
proposed to divide the computational domain into cubical subdomains
of equal volume. Each subdomain is assigned to one processing element
that computes the particles spatially located in their cube. The load
is balanced using a diffusion process that moves each vertex of every
subdomain independently to achieve load balancing. All processing
elements that share the current vertex (i.e., 8 vertices per cuboid,
each of them is shared by 8 neighboring processing elements in 3D
and 4 in 2D) cooperate to move it in the direction of the center of
mass of the particles belonging to the subdomains of the neighboring
processing elements. In 2D, the process remains the same, but the
subdomains are squares. Deveci et al. [11] developed an improved
version of the RCB algorithm (available in Zoltan2 [12]) that performs
recursive multisection along the axis of the largest dimension. More-
over, data are migrated while partitioning. These two improvements
allow the minimization of data movement compared to the classical
implementation of RCB.

Recently, Hirschmann et al. [13] studied the behavior of standard
partitioning techniques in particle simulation using a load dynamic
metric. This metric uses the norm of the difference between the load
distribution at two iterations and shows that load balancing techniques
are not equal with respect to the load dynamic (i.e., load imbalance
growth). They define the iteration’s load distribution as the empirical
probability density function that estimates the probability to observe a
processing element with a given load at a particular iteration. Further-
more, in a previous work [14], we confirmed the observations about
the load dynamic made by Hirschmann et al. These works indicate
that load balancing algorithms induce an ‘‘effort’’ on the application.
This effort comprises the load balancing cost, the imbalance correcting
capability, and the load imbalance growth between two consecutive
load balancing calls. Hence, a good partitioning should not only balance
the load at the time it is applied, but it should also have a long lifetime
that is resilient to the growth of a new imbalance and have a small CPU
time cost. Unfortunately, we identified that state-of-the-art partitioning
techniques, such as the ones above, lack considering the imbalance
growth and, in particular, adapting to it using the data at disposal
within each ‘‘snapshot’’. By doing so, those techniques could last longer
and, hence, improve the performance of parallel applications.

We observed that no metric could rank load balancing techniques
by their efficiency at a given iteration for a given problem. In the
literature, load balancing techniques are compared using their cost,
capability to correct the imbalance, and the resulting wall time of a
target application on which the algorithm is applied. However, these
metrics do not explain why and when a given partitioning algorithm
performs well or not. For instance, Lieber et al. [15] employed COSMO-
SPECS+FD4 (an atmospheric simulation model) to compare their SFC-
based load balancing to the Zoltan geometric partitioning methods with
respect to the balancing cost, the parallel application time, and the
communication cost. Deveci et al. [11] compared their multi-jagged
RCB against the classical RCB available in Zoltan with respect to their
cost to balance a high number of points and their capability to produce
high-quality partitions.

Finally, finding when the load balancing mechanism should be used
is challenging work that has been targeted heavily over time. This
challenge is usually solved using load balancing criteria that condition-
ally trigger the load balancing mechanism based on application data
or user-defined parameters. Roughly, load balancing criteria can be
divided into two categories: automatic and non-automatic. Automatic
load balancing criteria, such as the one proposed by Menon et al. [16]
or the one we proposed in a previous work [14], do not require any
user interventions and are backed up by theoretical models and a
mathematical formulation of the criterion. In contrast, non-automatic
criteria require user-defined parameters such as a desired performance
improvement post-balancing [17], an evaluation phase [18] during
2

which several metrics are measured, or a processing element’s workload
threshold [19]. For a thorough review of load balancing criteria, we
suggest the reader to refer to [14].

In the present paper, we propose a first step toward what we
call ‘‘informed partitioning’’ techniques. To be more specific, informed
partitioning consists of using application information to drive the par-
titioning method to create long-lasting partitions. Herein, we illustrate
informed partitioning by introducing a novel partitioning algorithm for
particle simulations based on the well-known recursive coordinate bi-
section algorithm. In particular, we demonstrate that using the particle
velocities to guide the space division improves the partition lifetime
and increases the application performance. This algorithm recursively
bisects the particles by their position. However, unlike the classical
RCB, it bisects the domain parallel to the average velocity axis. As
a result, it reduces the transfer of particles among subdomains due
to their movement during the following iterations. Hence, it increases
the time during which the partitioning is relevant because it reduces
the load imbalance increase rate, and therefore, decreases the num-
ber of times the load balancer needs to be invoked. Ultimately, this
increases the application performance. We implement a 2D version of
this algorithm, and we discuss its 3D generalization while keeping its
development as future work. Besides, we highlight the implementation
challenges and discuss the limitations of the proposed algorithm. In a
second step, we introduce a load balancing effort metric that considers
both the partitioning method’s ability to correct the imbalance, the
cost of the load balancing operation, and the load imbalance growth.
Rather than providing information about the global efficiency of the
load balancing algorithm, this metric provides information about its
efficiency between two consecutive load balancing calls. We show,
using a numerical study on a 2D Lennard-Jones particle simulation,
that our informed partitioning algorithm improves the execution of
two complex examples of N-Body problems compared to the geometric
partitioning techniques available in the Zoltan library [12]. We also
demonstrate that our metric can highlight which partitioning method
is the most efficient and when. Finally, we discuss the potential of
informed partitioning, and we encourage researchers to try to develop
new techniques that employ the idea of using application data to
increase the partition lifetime.

Section 2 introduces our novel algorithm that implements the con-
cept of ‘‘informed’’ partitioning. Section 3 presents our effort metric
that combines all aspects of the load balancing algorithm. Section 4
assesses the performance of informed partitioning through the compar-
ison of our novel algorithm with respect to the geometric partitioning
algorithm available in the Zoltan library. In parallel, we study the
behavior of the various geometric partitioning algorithm through our
effort metric. Section 6 concludes this work, discusses the potential of
the concept of informed partitioning, and draws some connections with
previous works. Finally, we give insight for future works.

2. Informed partitioning

Geometric partitioning techniques are algorithms that divide the
computational domain into sub-domains using geometric shapes and
by considering the spatial coordinates of the computational elements.
In contrast, Graph partitioning techniques focus on dividing the graph
formed by the computational elements (vertices) and their interactions
(edges) while minimizing the edge cuts. Herein, we introduce the
concept of informed partitioning via a geometric partitioning proof-of-
concept for N-Body simulations.

In classical geometric partitioning techniques, the algorithm typi-
cally considers a snapshot of the positions of the computational ele-
ments. Then, using geometric constructions, the algorithm divides the
space into subdomains, focusing on providing a high load imbalance
correction capability at a low CPU time cost. For instance, some re-
searchers proposed to use Voronoï tessellations [7–9], some divided
the space into cuboids [10], or improved classical algorithms such as

RCB [3] by allowing multisections instead of bisections [11]. However,

Journal of Computational Science 61 (2022) 101644A. Boulmier et al.

o
c
t
p
a
t
o
r
t
w
c

2
a
m
p
a

i
z
s
t
s

T
a
a
t
v
(
c
o

Fig. 1. 25 particles randomly arranged in a square. The arrow indicates the direction
in which each body moves.

it remains unclear why a given way of dividing the space is better
than others, provided that they have the same cost and load imbal-
ance correction capability. Note that graph partitioning techniques like
METIS [6] are also popular load balancing techniques but are less used
in particles simulations due to their complexity. In this paper, we focus
on geometric partitioning techniques.

We remarked in a previous paper that besides their cost and their
capability to correct the imbalance, partitioning methods change the
load imbalance growth because they modify the shape/size of subdo-
mains [14]. Hence, to improve partitioning techniques, one must focus
on reducing these three aspects altogether: (i) cost of load balancing,
(ii) capability to correct imbalance, and (iii) load imbalance growth. In
particular, we remarked that the last aspect is not much considered in
the literature even though we will see in the numerical study that this
aspect can significantly impact the performance.

To reduce the load imbalance growth, one needs to reduce the
number of computational elements that migrate between processing
elements at each iteration. Note that this is a problem only if the com-
putational elements ultimately gather into a subset of the processing
elements, thus creating load imbalance. In particles simulations, the
reason for this migration lies in the particle movement according to
their velocity. Indeed, each subdomain possesses an (+) ingoing and
(−) outgoing particles flow (depending on how many particles move in
or out of their own space), if the sum of these flows is positive then the
processing element is currently loading. The problem of load imbalance
arises when some subdomains have a positive particle flow while being
balanced (i.e., the particle converges to a few subdomains). Therefore,
by reducing the number of migrating computational elements, we
reduce the outgoing flows and also the load imbalance increase rate.
Note that not every particles simulation suffers from load imbalance
created by the particle migration. For example, as suggested by [13],
in Brownian motions, the migration of particles does not create load
imbalance over time because there are no preferred direction for the
particles. Hence, there is no particular gathering of particles in a subset
of processing elements.

To reduce particles migration, one could use the velocity of the
bodies to predict where they will move and change the partitioning
accordingly (e.g., by lengthening the subdomain in the direction of the
trajectory of the bodies). Likewise, one could analyze the forces applied
to the bodies to drive the creation of the partitions. We illustrate this
using a simple example in Fig. 1. Therein, 25 particles are randomly
placed in a square. Now, let imagine that we want to partition this
domain into four load balanced subdomains. A straightforward way
would be to divide the space into four vertical stripes containing a
quarter of the particles. However, it is clear that this does not take
into account how the bodies move, and eventually, this partitioning
will require frequent load balancing calls. Instead, using information
from physics, we could roughly predict that the particles are going
into the upper right corner. Hence, we could partition according to this
3

information to lower the migration of elements. We call the process of
using application data to drive the domain partitioning to increase the
partition lifetime: ‘‘informed partitioning’’. In Fig. 2, we give a concrete
example of a partitioning that takes into account the movement of the
bodies and one that does not.

2.1. Non-orthogonal recursive bisection

Herein, we propose to implement the idea of informed partition-
ing using a bisection of the computational space in the axis formed
by the average velocity at the median workload point, producing
non-orthogonal bisections. We call this algorithm the Non-orthogonal
Recursive Coordinate Bisection (NoRCB). In contrast, the traditional
recursive coordinate bisection applies orthogonal cuts at the median
workload points. NoRCB repeats the bisection process recursively until
𝑃 subdomains have been produced. By using the particle velocities to
guide the bisection axis, we reduce the load imbalance that arises from
the migration of the particles across processing elements. In Fig. 2, we
illustrate the differences and the motivation for our algorithm and, in
particular, the benefits of informed partitioning. This figure shows two
identical sets of particles with similar velocities on which informed
partitioning (NoRCB) and RCB are applied. On the left figure, we
observe that because the bisections follow the average velocity, the par-
ticles within the domain are less prone to cross the processing element
boundaries. Therefore, in addition to correcting the load imbalance,
we reduce its growth over the forthcoming iteration. This contrasts
with the traditional RCB partitioning, in which we observe that many
particles will migrate between subdomains after few iterations. To
further demonstrate the partitioning produced by our algorithm, we
show in Fig. 3 the result of NoRCB partitioning with 32 processing
elements on two gas disks that contracts.

The first step in our novel algorithm consists of computing the
average velocity vector 𝜇𝑣 of the particles belonging to the current
domain 𝐷. This vector will be used as the cutting axis. Then, we
btain the angle 𝛼 between 𝜇𝑣 and the 𝑌 -axis. Next, we rotate the
omputational elements by 𝛼 degrees such that the average velocity of
he rotated elements is pointing upward. It allows us to find the median
article on the 𝑋-axis using a classical parallel selection algorithm, such
s the Quickselect [20]. Afterward, the median element 𝑚 is employed
o produce two sub-domains 𝑠≤ and 𝑠> containing the elements below
r equal and greater than 𝑚, respectively. Finally, we apply the inverse
otation (i.e., −𝛼). At this point, the initial domain 𝐷 is divided into
wo equally sized subdomains. The bisection can continue recursively
ith 𝐷 = 𝑠≤ and 𝐷 = 𝑠>, until 𝑃 equally sized subdomains have been

reated. The algorithm pseudocode is presented in Algorithm 1.

D implementation. In 2 dimensions, the domains are planar and thus
re bisected by a line. Hence, only the average velocity vector and the
edian point are required to apply our bisection algorithm. Therefore,
articular attention must be given to the average velocity computation
nd the median finding algorithm.

First, one may want to avoid using a null average velocity vector
n the NoRCB algorithm as it will raise errors due to division by
ero. A null average velocity vector can be found in Brownian motion
imulations, and it indicates that there is no preferred directions for
he particles. Therefore, the average velocity computation must handle
uch a situation properly.

The average velocity computation can be done in multiple ways.
he most straightforward way is, of course, to average the velocity
mong all particles. However, one could also sample the particles
nd compute the average velocity among the samples to speed up
he computation. Another trick could be to consider each velocity
ector’s supporting line without considering each particle’s ‘‘direction’’
i.e., velocity sign). Each of these methods seems to provide pros and
ons and could improve the partitioning lifetime. However, this is out
f the scope of this paper and will be targeted in future works. Herein,

Journal of Computational Science 61 (2022) 101644A. Boulmier et al.
Fig. 2. Toy example with 25 particles and their associated velocity (arrow) comparing the non-orthogonal recursive coordinate bisection (NoRCB) and the classical recursive
coordinate bisection (RCB) with respect to their resulting partitioning. The red dashed line corresponds to the first bisection, whereas the blue dashed lines correspond to the
second and third bisection. In the right figure, RCB bisects the domain along the longest axis at the median point. NoRCB bisects the computational domain recursively along
the axis formed by the average velocity vector at the median point in the left figure. The load imbalance growth is expected to be smaller on the left figure due to less particle
migration over time. Note that NoRCB will naturally produce a stripe partitioning the particles go approximately in the same direction.
Fig. 3. Partitioning of two gas disks attracted toward their center using ‘‘informed
partitioning’’ (NoRCB) on 32 processing elements. The particle color corresponds to
the rank of their attributed processing element.

Algorithm 1: Pseudo-code of the Non-Orthogonal Coordinate
Bisection algorithm.

Data: 𝐷: the domain to bisect
N: the number of elements in 𝐷 (i.e., ∣ 𝐷 ∣)
P: the number of processing elements
Result: 𝑆∗: The subdomains such that ⋃

𝑠∈𝑆∗
𝑠 = 𝐷 and ∣ 𝑠 ∣≈ 𝑁

𝑃
∀𝑠 ∈ 𝑆∗

1 𝑆∗ ← {𝐷};
2 while ∣ 𝑆∗ ∣< 𝑃 do
3 𝑆 = ∅;
4 foreach subdomain 𝑠 ∈ 𝑆∗ do
5 𝜇𝑣 ← average velocity in 𝑠;
6 𝛼 ← angle between 𝜇𝑣 and the Y-axis;
7 rotate the elements in 𝑠 by 𝛼 degrees;
8 𝑚 ← median element in 𝑠;
9 split 𝑠 into 𝑠<= and 𝑠> containing elements respectively below

or equal and greater than 𝑚;
10 split the 2D or 3D domain into two sub-domains;
11 rotate back the elements in 𝑠<=;
12 rotate back the elements in 𝑠>;
13 push back 𝑠<= and 𝑠> into 𝑆;

14 𝑆∗ = 𝑆;

15 return 𝑆∗

we used the most straightforward method that consists of averaging the

velocity of all particles, and we discuss its limitations in Section 2.2.
4

The median finding algorithm is a crucial part. It defines the bal-
ancing capability of our algorithm. In other words, the load balancing
capability is directly related to the ability of the median finding algo-
rithm to determine the median point. For instance, if it yields a point
that splits the points into 30% below and 70% above, not only the cur-
rent partitioning is terrible, but this imbalance will be propagated due
to the recursive nature of the coordinate bisection. In our algorithm,
we used a parallel version of the quickselect [20] algorithm to find
the median point. We differ from the Zoltan [21] RCB implementation
that uses a binary search approach. Therein, they divide the space
recursively using multiple cuts until they find an approximation of the
median that satisfies a tolerance criterion.

In contrast, our approach finds a pivot among the data. Then, it
removes the data above or below the pivot if the median does not
lie in the subset. Finally, the operation is repeated until the pivot is
the median. Nevertheless, we observe that our parallel implementation
needs to be optimized, which we will in future work. This future
paper will focus on proposing an optimized implementation of this
novel algorithm and integrating it within the Zoltan2 [12] framework.
At this stage, the current paper focuses on introducing the idea of
informed partitioning (i.e., using the physics data to drive the parti-
tioning algorithm) and showing a proof-of-concept of this new idea.
The 2D version of the NoRCB code is available on GitHub: https://
github.com/xetqL/NoRCB. In addition, the repository of the framework
YALBB that we use in our benchmarks in Section 4 is also available on:
https://github.com/xetqL/yalbb.

3D implementation. In 3 dimensions, the domains are bisected by plans,
which has one more degree of freedom than a line. The general pro-
cedure remains the same: finding the average velocity vector and
computing the median point. However, the third dimension provides
an extra freedom point to define the bisecting plan properly. We call
this point the rotation point because it defines the rotation of the
plan around the line supported by the velocity vector and the median
point. It is unclear if every point is equivalent with respect to the
partition lifetime. A priori, the partition quality is not affected by the
choice of the rotation point because it does not alter the quality of
the median finding algorithm. However, the rotation point may be
necessary, lifetime and communication-wise. For instance, setting the
rotation point in the middle of a particle cluster may create much
communication between processing elements, or it may increase the
probability that particles migrate from a processing element to another.
It is why further research efforts are required before implementing this
algorithm in 3D. Hence, we left this task for future work.

https://github.com/xetqL/NoRCB
https://github.com/xetqL/NoRCB
https://github.com/xetqL/NoRCB
https://github.com/xetqL/yalbb

Journal of Computational Science 61 (2022) 101644A. Boulmier et al.

S
T
r
h
t
i
t

𝑇

U
a
𝑘
𝜏
t

𝑇

t
w
i
t
g
g
b
e
t

2.2. Limitations

The first caveat of the proposed algorithm is that the number of
neighbors of each subdomain is unbounded like the classical RCB
algorithm. Also, because the algorithm cuts the space non-orthogonally,
it may create slender subdomains with more neighboring processing
elements. Unfortunately, this limitation is inherent to the tessellation
produced by the algorithm and cannot be improved without restricting
the bisection freedom (e.g., rounding the average velocity).

The second limitation is related to the average velocity vector com-
putation. Indeed, one may want to avoid summing opposing velocities
as it may result in a null velocity vector (in the case of uniformly
distributed velocities with zero mean, for instance). In such cases, when
averaging these velocities, the resulting vector may be null or very
small. It indicates that there is no preferred cutting direction and, as
such, the bisection should be orthogonal to the longest axis (X or Y) to
minimize the surface of communication between processing elements.
In our algorithm, we verify that the norm of the average velocity vector
is at least greater than a given small threshold; otherwise, we set the
average velocity vector such that it is orthogonal to the longest axis.
Currently, the threshold value must be user-defined and, herein, we
used the value 1𝑒–3, which we empirically found to work well in our
experiments. Moreover, one of our hypotheses is that this threshold
should depend on the cut-off radius. Indeed, if we know that the
average velocity is less than the speed required by a particle to travel
X percent of the cut-off radius (for instance), then there is only a small
amount of particles that may migrate in the forthcoming iterations.
Nevertheless, the study of this threshold and how to find a proper value
for it is left for future work.

Finally, our implementation of QuickSelect can be optimized, es-
pecially in the case of data already partitioned but imbalanced into
processing elements. However, we plan to implement a more scalable
and efficient parallel selection algorithm such as the one proposed by
Siebert [22] as well as optimizing the parallel implementation of our
algorithm. Note that this does not affect the message we are trying to
give throughout this paper: informed partitioning is a way to increase
the partition lifetime to improve application performance. Moreover,
as we will see in the numerical study, our non-optimized implementa-
tion is capable of being more efficient than the RCB, RIB, and HSFC
implementation of the Zoltan [21] library on two experiments with up
to 128 processing elements.

3. An effort metric for load balancing techniques

In this section, we are interested in ranking load balancing al-
gorithms by the effort they cause on the application at an arbitrary
iteration without executing the whole application. The effort is mea-
sured by the amount of work done between two load balancing calls.
It is essential to understand that this is different from looking for the
algorithm that corrects the most imbalance or is the cheapest to correct
the imbalance. Indeed, two algorithms may have the same cost, but
one may produce way more load imbalance over time or need more
frequent load balancing. Herein, we want to combine all various aspects
of load balancing techniques that affect the application performance
into one metric.

In a previous work [14], we studied the time for a load-balanced
parallel application with a recurring load imbalance pattern. Therein,
we proposed an equation inspired by the work of Menon et al. [16]
that computes the parallel application time after 𝛾 iterations and load
balanced every 𝜏 iterations. This equation reads

𝑇par =
𝑛−1
∑

𝑖=0

(

∫

𝜏

0
𝑢(𝑥)d𝑥 + 𝐶

)

+ ∫

𝛾

0
𝜇(𝑥) d𝑥. (1)

where 𝑛 is the number of times the load balancing algorithm is used,
𝑢(⋅) is the load imbalance given by the imbalance time metric [23],
5

𝐶 is the load balancing cost, and 𝜇(𝑡) is the average workload. The
imbalance time metric measures the difference in time between the
slowest processing element and the average iteration time, and it reads

𝑢(𝑡) = max(𝑡) − 𝜇(𝑡), (2)

where 𝑡 is an iteration and max(𝑡) is the time of the slowest processing
element at iteration 𝑡. Also, we remarked that this equation is strongly
dependent on the chosen load balancing algorithm, which affects 𝐶, 𝜏
(provided that an automatic and theoretically optimal load balancing
criteria is used), 𝑢, and therefore 𝑇par itself. To recall, 𝑢 and 𝜏 depends
on how well the partitioning technique fits with the problem to solve,
while 𝐶 is directly related to the complexity of the partitioning method
and the migration time of the computational elements. Hence, let be
the set of the 𝑛 available load balancing algorithms 𝑎1, 𝑎2,… , 𝑎𝑛, and
𝑇 𝑎

par be the parallel time of the current application, load balanced using
algorithm 𝑎. Surely, the optimal algorithm 𝑎∗ is

𝑎∗ = argmin
𝑎∈

𝑇 𝑎
par. (3)

However, this is of no use during application execution as it requires
the application to be fully executed. Furthermore, it does not give any
information on when the particular algorithm is efficient or not. For
that purpose, we propose to measure the average time-per-iteration
during load balancing intervals. Note that this does not guarantee
that the algorithm is globally optimal, but it gives local information
about the algorithm efficiency. Moreover, assuming a principle of
persistence [24], a locally optimal technique may remain optimal
during a few load balancing intervals, which could justify the use of
such a metric for load balancing algorithm selection. In the next section,
we will confirm this hypothesis with the numerical experiments.

Now, let us decompose Eq. (1) into 𝑡 balancing intervals respectively
at 𝜏0, 𝜏1,… , 𝜏𝑡−1. Assuming that a load balancing is done at iteration 0,
then 𝜏0 = 0. Besides, we underline that no load balancing is done at the
end of the application execution. This reads

𝑇 𝑎
par = ∫

𝜏𝑎1

0
𝑢𝑎0(𝑥)d𝑥 + 𝐶𝑎

0 + ∫

𝜏𝑎2

𝜏𝑎1

𝑢𝑎1(𝑥)d𝑥 + 𝐶𝑎
1 +⋯

+∫

𝛾

𝜏𝑎𝑡−1

𝑢𝑎𝑡−1(𝑥)d𝑥 + 𝐶𝑎
𝑡−1 +

∫

𝛾

0
𝜇(𝑥)d𝑥. (4)

urely, it is easy to compare two algorithms having the same intervals.
he current best algorithm is the one that minimizes the time of the cur-
ent balancing interval. However, in practice, load balancing intervals
ave different sizes and thus are more complicated to compare. Hence,
o evaluate the efficiency of a load balancing algorithm 𝑎 during the
nterval [𝜏𝑎𝑖 , 𝜏

𝑎
𝑖+1], we propose to compute the average balancing interval

ime-per-iteration �̂� 𝑎
𝜏𝑖

, which reads

̂ 𝑎
𝜏𝑖
=

∫
𝜏𝑎𝑖+1−𝜏

𝑎
𝑖

0 𝑢𝑎𝑖 (𝑥)d𝑥 + 𝐶𝑎
𝑖 + ∫

𝜏𝑎𝑖+1
𝜏𝑎𝑖

𝜇(𝑡)d𝑡

𝜏𝑎𝑖+1 − 𝜏𝑎𝑖
. (5)

sing this equation, it is trivial to compare the efficiency of two
lgorithms at any point during application execution. For instance, let
be the iteration at which we want to compare algorithm 𝑎 and 𝑏. Also,
𝑎
𝑖 ≤ 𝑗 ≤ 𝜏𝑎𝑖+1 and 𝜏𝑏𝑗 ≤ 𝑘 ≤ 𝜏𝑏𝑗+1. Hence, 𝑎 performs better than 𝑏, during
heir load balancing interval that includes iteration 𝑘, if
̂ 𝑎
𝜏𝑖
< �̂� 𝑏

𝜏𝑗
.

Nevertheless, even if comparing two algorithms becomes easy using
he effort metric. One limitation lies in the lack of information about
hat aspect of load balancing generates most of the effort. Indeed, it

s still unclear if a given effort comes from the load balancing cost 𝐶,
he imbalance correcting capability, or the speed of the load imbalance
rowth. Having a metric with a high level of explainability could be of
reat use to better understand why some partitioning methods perform
etter than others. A possible solution could be to estimate the ratio of
ach component of the load balancing effort. However, this is out of
he scope of this paper and will be targeted for future work.

Journal of Computational Science 61 (2022) 101644A. Boulmier et al.
Fig. 4. Toy example that contracts a gas disk of 10,000 particles with a load balancing step every 600 iterations. The right figure shows the cumulative load imbalance over
time. The left figure indicates the parallel time of each load balancing algorithm. NoRCB effectively reduces the rate at which the load imbalance is created compared to classical
geometric partitioning techniques, which greatly improves the parallel application time.
s
a
t
m
(
t
i

f

4. Numerical study

In this section, we assess the performance of the proposed informed
partitioning concept. First, we present a simple toy example showing
that NoRCB effectively reduces the load imbalance growth, which
significantly helps in reducing the application wall time. Afterward, we
compare the parallel time of our implementation of informed partition-
ing against the geometric partitioning techniques (RCB, RIB, and HSFC)
available in the Zoltan [21] framework on three 2D N-body simulations
exhibiting various particle configurations. The partitioning has been
applied to the positions of the particles. The experiments have been
executed with YALBB [25], a homemade load balancing benchmark
based on N-body simulations with a short-range force. In particular,
the Lennard-Jones potential is used.

In the toy example, we condense a gas disk comprising 10,000 par-
ticles during 5000 iterations. Note that this experiment is particularly
suited for our implementation of informed partitioning because the
movement of the particles is not curved (at least during some itera-
tions). Hence, the bisection follows their movement perfectly, and it
reduces the load imbalance growth drastically. Therein, to simplify the
load imbalance analysis, we consider a periodic load balancing criterion
that triggers the load balancing mechanism every 600 iterations. The
goal is to assert that the imbalance cumulated over the load balancing
period grows slower with NoRCB than with the other techniques. How-
ever, doing so with an automatic load balancing criterion is much more
difficult because such a criterion minimizes the global load balancing
effort. Therefore, it is hard to observe if the load imbalance growth is
effectively reduced compared to the other aspects.

In Fig. 4(a), we observe that NoRCB is almost twice as fast as the
other techniques. Indeed, the reason is given in Fig. 4(b), where we
observe that within each load balancing interval of 600 iterations, the
load imbalance grows significantly slower with NoRCB. It confirms that
informed partitioning can reduce the load imbalance growth.

Now, we go further in the assessment of our concept by testing it in
the three complex experiments. Therein, we employed the theoretically
optimal and automatic load balancing criterion that we introduced
in [14]. This criterion triggers the load balancing mechanism when

𝜏𝑢(𝜏) − ∫

𝜏

0
𝑢(𝑥)d𝑥 = 𝐶,

is satisfied. To recall, 𝜏 indicates the load balancing interval, 𝑢(⋅) is
the load imbalance time metric from DeRose et al. [23] (see Eq. (2)),
and 𝐶 denotes the load balancing cost. This balancing criterion is
derived from Eq. (1) and performs better than the criterion form
Menon et al. [16] in most of our test cases.

The first experiment, ‘‘Contraction’’, reproduces the toy example
with more particles. It condenses a gas disk composed of 40,000 par-
6

ticles. Similarly, the gas disk undergoes an attraction force toward its
Fig. 5. A gas disk of 40,000 uniformly distributed particles is contracting. The density
increases as the particles move toward the center of the disk and the number of
interactions to be computed increases as shown in the plot.

Table 1
Domain size and number of particles for the three numerical experiments.

Parameter Gravity Contraction Rotation and contraction

Domain size (x, y) (1.0, 1.0)
Number of particles 40,000 40,000 10,000

center. To illustrate the complexity of this task, Fig. 5 shows the number
of interactions that must be computed at each iteration.

The second experiment, ‘‘Gravity’’, deals with a gas composed of
40,000 uniformly distributed in a rectangle of size (0.5, 1.0) inside a
quare of size (1.0, 1.0). The particles have their velocity sampled from
uniform distribution. Moreover, the gas is under a force that attracts

he particles to the bottom of the square domain. This experiment is
ore difficult for the non-orthogonal recursive coordinate bisection

NoRCB) because the particle movement starts from a Brownian motion
o a linear movement directed toward the bottom of the domain. Fig. 6
llustrates the number of interactions to be computed at each iteration.

The third experiment, ‘‘Rotation and Contraction’’, involves a uni-
ormly distributed gas disk with a center 𝑐 where each particle has a

velocity perpendicular to the vector directed from the particle to 𝑐.
Moreover, the gas disk is attracted to the center 𝑐. This experiment
is the hardest for informed partitioning because of the presence of
the disk’s angular velocity. Fig. 7 shows the number of interactions to
compute at each iteration.

These experiments have been conducted with 128 processing el-
ements (Intel E5-2630V4, 2.2 GHz) on Yggdrasil, the cluster of the
University of Geneva, except for the toy example that has been executed
with 64 processing elements. Each of them has been done 5 times with
each load balancing technique, and we report their median parallel
time. Moreover, we show, for each load balancing algorithm, the value
of our effort metric �̂� over time and identify at what time during
𝜏𝑖

Journal of Computational Science 61 (2022) 101644A. Boulmier et al.

a
f
p
s
h
a

i
u
a
a
s
c
b
t
t
i
i
(

Fig. 6. A half square gas containing 40,000 uniformly distributed particles is subject
to the gravity. The density decreases as the particles are attracted toward the ground
and increases again when they reach it, hence a variation of the workload resulting
from the change of interacting pairs of particles.

Fig. 7. A rotating gas disk of 10,000 uniformly distributed particles is subject to an
attraction force toward its center. The density increases as the disk contracts under
the attraction force. As in the Contraction experiment, the number of interaction to
compute grows as the gas disk contracts.

Table 2
Summary of the number of load balancing calls required by each technique for each
experiment.

Gravity Contraction Rotation and Contraction

NoRCB 172 183 127
HSFC 1163 1028 990
RCB 2038 968 1154
RIB 1820 990 1043

the application our novel technique is efficient/inefficient. The domain
size and the number of particles used in the experiments are shown in
Table 1.

In Figs. 8(a), 8(b), and 8(c), we present the median parallel time
among 5 trials of each experiment executed with a particular load bal-
ncing algorithm. We employed the geometric partitioning algorithm
rom the Zoltan framework as well as our implementation of ‘‘informed
artitioning’’, namely NoRCB (non-orthogonal recursive coordinate bi-
ection). Table 2 summarizes the number of times the load balancer
as been called during each experiment with every load balancing
lgorithm.

In the Contraction experiment, we observe that ‘‘informed partition-
ng’’ outperforms the other techniques and decreases the wall-time by
p to 76%. Therein, NoRCB can discover that the gas disk contracts
nd adapts the partition accordingly, thanks to the guidance of the
verage velocity vector. It is confirmed by our metric in Fig. 9(a), which
hows that the effort (i.e., the combined effect of the load balancing
ost, the imbalance correction, and the load imbalance growth) induced
y the partitioning is lower for informed partitioning. The slope of
his curve is also less steep than the slope of the other geometric
echniques. It indicates that the contraction of the gas (i.e., the density
ncrease) has less effect on our technique. NoRCB has many advantages
n this experiment. First, it allows an even partition of the interactions
although we use the algorithm on the particle positions). It is a
7

consequence of the algorithm tessellation. Indeed, in this experiment,
the closer we get to the center, the higher the density. Hence, by
dividing the computational space radially ‘‘like a cake’’ as shown in
Fig. 3, every processing element gets the same number of interactions,
drastically decreasing the load imbalance (and its growth). Second, our
implementation’s high load imbalance correction capability, despite
having a high cost due to a non-optimized parallel implementation,
allows a low time per iteration post load balancing. Third, NoRCB
triggers the load balancing mechanism only 172 times, whereas the
others use it more than seven times more (1163 for HSFC, 2038 for
RCB, and 1820 for RIB), which again reduces the footprint of the load
balancing mechanism. Finally, we measured that NoRCB increased the
amount of data transferred in peer-to-peer communications by 27%
on average compared to the other techniques. It appears that the gain
obtained from the reduction of the load imbalance growth overcomes
the communication overhead.

In the Gravity experiment, we notice that ‘‘informed partitioning’’
is less efficient than in the first experiment. However, it still reduces
the application wall time by up to 15%. The reason for this lies in the
change in the particle movement during application execution. Indeed,
the gas starts by following a Brownian motion with a null average
velocity but is slowly attracted to the ground by the gravitation force.
After 3000 iterations, the particles are directed toward the ground.
From this moment, NoRCB starts to shine because it can adapt the
partitioning to the average velocity and effectively reduces the number
of migrating particles. Hence, we see in Fig. 9(b) that ‘‘informed
partitioning’’ (blue line) is not better than other techniques at the
beginning (indistinguishable from other lines) but becomes effective
only after 3000 iterations (the effort metric is lower for NoRCB at
this point). Moreover, we report that NoRCB reduces the number of
load balancing calls by up to 561%. Finally, in this experiment, we
observed that NoRCB increases the amount data transferred during
peer-to-peer communications by 50% in average. Mainly, this overhead
was around 7% when particles did not follow a straight line and around
59% when they were following a straight movement. This suggest
that a more advanced version of NoRCB would try to control this
overhead by allowing orthogonal cuts when needed. In this experiment,
we measured that NoRCB increased the amount of data transferred in
peer-to-peer communications by 72% on average compared to the other
techniques. Furthermore, we observe that this increase in communica-
tions is concentrated during the dense phase when the particles collide
on the ground. Nevertheless, this result confirms that, even when the
movement of particles is not always straight, NoRCB improves the
application performance by a significant amount (15%).

In the Rotation and Contraction experiment, NoRCB has no ben-
efit over other geometric partitioning techniques. As we observe in
Fig. 8(c), NoRCB is 3.2% less efficient than HSFC, which performs
the best. The reason is that the particles never have a straight move-
ment due to the rotation of the gas disk and the attraction force. As
mentioned earlier, when the particles follow a curved trajectory, the
straight bisections prevent from reducing the load imbalance growth.
Moreover, as shown in Fig. 9(c), HSFC seems to generate slightly less
effort than the other techniques, which is confirmed in Fig. 8(c). In this
experiment, a better partitioning should consider the angular velocity
of the disk. Indeed, if the rotation is stronger than the contraction, a
good partitioning would perform circular cuts as shown in Fig. 10. It
shows an example of circular partitioning where the space is divided
into rings; in this figure each color denotes the space assigned to
a processing element. Finally, in this experiment, we observed that
NoRCB increases the amount of data transferred during peer-to-peer
communications by 79% on average. Here, there is no straight move-
ment (even partially), which could compensate for the communication
overhead. However, NoRCB is performing on par with other geometric
techniques even in that case.

These results motivate the need for further research about informed

partitioning and how to decrease the communication overhead in

Journal of Computational Science 61 (2022) 101644A. Boulmier et al.

t
o
t

t
e

N
s

v
a
w
t
t
t
n
a

Fig. 8. Median parallel time, among 5 trials, of all experiments executed with each load balancing algorithm. Our implementation of ‘‘informed partitioning’’ works best when
he movement of the particles follows a straight line (Contraction experiment and the second part of the Gravity experiment). Consequently, it is less efficient in the beginning
f the Gravity experiment before the particles are moving toward the ground. ‘‘informed partitioning’’ performs almost as good as Zoltan’s geometric partitioning technique when
he particle movements are curved like in the Rotation and Contraction experiment.
Fig. 9. Plot of Eq. (5) (effort metric) over time for each experiment. In (1), we observe that our implementation of ‘‘informed partitioning’’ (NoRCB) is the most efficient throughout
application execution. In (2), we see that NoRCB starts to become more efficient when the particles have a straight movement starting from iteration 3000. In (3), all the techniques
lead to an almost similar effort.
Fig. 10. Example of circular partitioning that could be used in the rotation and con-
raction experiment. The colored areas describes the spaces assigned to the processing
lements.

oRCB. Also, in its present form, NoRCB can already be used in
imulations where a partial straight movement of particles is identified.

To conclude, we observed in this numerical study that using the
elocity to drive the bisection in the recursive coordinate bisection
lgorithm allows an efficient reduction of the load imbalance growth,
hich improves the parallel application time by up to 76% in contrac-

ion experiment and 15% in the gravity experiment. Afterward, we saw
hat when the movement of the particles does not correspond to straight
rajectories, this algorithm performs on par with other geometric tech-
iques. We also see that the effort metric presented in Section 3 allows
better understanding of the reason why and, in particular when load

balancing algorithms perform well or not. Therefore, we highly suggest
that researchers try to find ways to enhance existing load balancing
techniques with informed partitioning. We also encourage the use of
our effort metric to increase the understanding of the performance of
load balancing algorithms during application execution.
8

5. Discussion

In a previous paper, we developed a load balancing paradigm
in which we used information about the workload increase rate to
‘‘underload’’ the processing elements that are currently overloading,
such that they will catch up due to their imbalance ‘‘momentum’’ [26].
This paradigm, combined with a simple stripe load balancing scheme,
allowed us to improve the performance of a simulation of stochastic
rock erosion application by up to 16% compared to the classical HSFC
algorithm from Zoltan. It appears that this previous work and the work
presented in the present paper have similarities. In both works, the
goal is to have long-lasting partitions by leveraging the dynamics of
either the computational elements or the processing elements’ workload
itself. However, we use two distinct approaches to achieve the same
objective. In Fig. 11 we show a simple visualization of the two methods
we have proposed. In the bottom left, classical load balancing methods
does not use load imbalance anticipation nor informed partitioning
to increase the partition lifetime. In the top left corner, ULBA [26]
anticipates the imbalance but does not adapt the partitions to it. Finally,
in the bottom right corner, NoRCB (current paper) adapts the partition
to reduce the load imbalance growth (ideally to suppress it). It is
clear that it is not possible to combine the two methods as the goal
of one is to cancel the other. Indeed, the ultimate goal of ‘‘informed
partitioning’’ is to suppress the load imbalance growth. Hence, it makes
no sense to combine a perfect ‘‘informed partitioning’’ technique with
the load imbalance anticipation. In other words, the objective of these
two techniques is orthogonal. However, we could imagine that, by
accepting a little imbalance growth while using informed partitioning,
we could employ anticipation to compensate. Such a combination may
be more efficient than using a single method. Further research efforts
are needed to confirm it, and this will be in the scope of future papers.

6. Conclusion

In this paper, we presented the proof-of-concept of ‘‘informed par-
titioning’’. This concept employs application data to adjust the parti-
tioning tessellation such that the load imbalance growth is reduced.

Journal of Computational Science 61 (2022) 101644A. Boulmier et al.
Fig. 11. Load imbalance anticipation versus informed partitioning. Both methods tend
to maximize the partition lifetime with different approaches. Is it possible to combine
them to further improve load balancing techniques?.

Thus, in conjunction with the load balancing cost and the imbalance
correcting capability, it improves the parallel application wall time. To
illustrate the ‘‘informed partitioning’’ idea, we presented an algorithm
that performs non-orthogonal recursive bisections in an N-Body simu-
lation. In particular, this algorithm uses the velocity of the particles to
guide the bisection axis, such that the number of particles that migrate
between processing elements over time is reduced. We also proposed
a new load balancing effort metric that incorporates all cost aspects
of load balancing. This metric can be used to rank load balancing
techniques by the amount of effort they cause to the application, and
this at any time point during application execution, highlighting what
technique is the most efficient at this stage.

To assess the efficiency of ‘‘informed partitioning’’ and the use of our
effort metric, we performed a numerical study on YALBB [25], a home-
made load balancing benchmark that solves the N-body problem with
a short-range force. Therein, we compared the efficiency of ‘‘informed
partitioning’’ with the geometric partitioning techniques available in
the Zoltan [21] framework on a toy example and three concrete and
more complex examples. Furthermore, we highlighted at what time
during application execution our metric succeeded/failed to be efficient
thanks to our novel effort metric. In particular, we observed that NoRCB
performs the best when the particle trajectories are close to straight
lines between two load balancing steps. In contrast, the benefit of our
technique is reduced when their trajectory is strongly curved. In two
out of three experiments, we observed performance improvement up
to 76% and 15%, while being a marginal 3% slower than HSFC (best)
in the last experiment. These experiments suggest that NoRCB is an
efficient geometric partitioning technique and should be considered
when at least a partial straight movement of particles in the simulation
has been identified.

We pointed out that our effort metric does not reveal the source of
the effort. In particular, it is difficult to understand if the effort comes
from the load balancing cost, an inadequate imbalance correcting
capability, or a significant load imbalance growth.

To conclude, our plan regarding informed partitioning is many-fold.
First, we plan to optimize our parallel implementation of NoRCB to
test its efficiency on larger problems involving thousands of processing
elements. Second, we will improve our effort metric to make it more ex-
plainable. Last, we plan to continue the research efforts on anticipation
versus informed partitioning and how to combine them.

CRediT authorship contribution statement

Anthony Boulmier: Conceptualization, Methodology, Software,
Writing – original draft. Nabil Abdennadher: Funding acquisition.
9

Bastien Chopard: Supervision, Validation, Writing – review & editing,
Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W.H. Freeman & Co., New York, USA, 1979.

[2] O.T. Pearce, M.L. Adams, B.R. De Supinski, L. Rauchwerger, V.E. Taylor, Load
Balancing Scientific Applications: A Dissertation (Ph.D. thesis), Texas A&M
University, 2014.

[3] H.D. Simon, S.H. Teng, How good is recursive bisection? SIAM J. Sci. Comput.
18 (5) (1997) 1436–1445, http://dx.doi.org/10.1137/S1064827593255135.

[4] J.R. Pilkington, S.B. Baden, Dynamic partitioning of non-uniform structured
workloads with space filling curves, IEEE Trans. Parallel Distrib. Syst. 7 (3)
(1996) 288–300, http://dx.doi.org/10.1109/71.491582.

[5] R. Van Driessche, D. Roose, An improved spectral bisection algorithm and its
application to dynamic load balancing, Parallel Comput. 21 (1) (1995) 29–48,
http://dx.doi.org/10.1016/0167-8191(94)00059-J.

[6] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning
irregular graphs, SIAM J. Sci. Comput. 20 (1) (1998) 359–392, http://dx.doi.
org/10.1137/S1064827595287997.

[7] V. Zhakhovskii, K. Nishihara, Y. Fukuda, S. Shimojo, T. Akiyama, S. Miyanaga,
H. Sone, H. Kobayashi, E. Ito, Y. Seo, M. Tamura, Y. Ueshima, A new dynamical
domain decomposition method for parallel molecular dynamics simulation, in:
IEEE International Symposium on Cluster Computing and the Grid (CCGrid), Vol.
2, 2005, pp. 848–854, http://dx.doi.org/10.1109/CCGRID.2005.1558650.

[8] J.-L. Fattebert, D.F. Richards, J.N. Glosli, Dynamic load balancing algorithm for
molecular dynamics based on voronoi clls domain decompositions, Comput. Phys.
Comm. 183 (2012) 2608–2615, http://dx.doi.org/10.1016/j.cpc.2012.07.013.

[9] M.S. Egorova, S.A. Dyachkov, A.N. Parshikov, V.V. Zhakhovsky, Parallel SPH
modeling using dynamic domain decomposition and load balancing displacement
of voronoi subdomains, Comput. Phys. Comm. 234 (2019) 112–125, http://dx.
doi.org/10.1016/j.cpc.2018.07.019.

[10] C. Begau, G. Sutmann, Adaptive dynamic load-balancing with irregular domain
decomposition for particle simulations, Comput. Phys. Comm. 190 (2015) 51–61,
http://dx.doi.org/10.1016/j.cpc.2015.01.009.

[11] M. Deveci, S. Rajamanickam, K.D. Devine, U.V. Catalyurek, Multi-jagged: A
scalable parallel spatial partitioning algorithm, IEEE Trans. Parallel Distrib. Syst.
27 (3) (2016) 803–817, http://dx.doi.org/10.1109/TPDS.2015.2412545.

[12] E. Boman, K. Devine, V. Leung, S. Rajamanickam, L.A. Riesen, M. Deveci, U.V.
Catalyurek, Zoltan2: Next-Generation Combinatorial Toolkit, Albuquerque, NM,
USA, 2012.

[13] S. Hirschmann, D. Pfluger, C.W. Glass, Towards understanding optimal load-
balancing of heterogeneous short-range molecular dynamics, in: 23rd Interna-
tional Conference on High Performance Computing Workshops (HiPCW), IEEE,
2016, pp. 130–141, http://dx.doi.org/10.1109/HiPCW.2016.027.

[14] A. Boulmier, N. Abdennadher, B. Chopard, Optimal load balancing and assess-
ment of existing load balancing criteria, 2021, URL http://arxiv.org/abs/2104.
01688.

[15] M. Lieber, W.E. Nagel, Highly scalable SFC-based dynamic load balancing and
its application to atmospheric modeling, Future Gener. Comput. Syst. 82 (2018)
575–590, http://dx.doi.org/10.1016/j.future.2017.04.042.

[16] H. Menon, N. Jain, G. Zheng, L. Kalé, Automated load balancing invocation based
on application characteristics, in: 2012 IEEE International Conference on Cluster
Computing, 2012, pp. 373–381, http://dx.doi.org/10.1109/CLUSTER.2012.61.

[17] R.J. Procassini, M.J. O’brien, J.M. Taylor, Load Balancing Of Parallel Monte Carlo
Transport Calculations, Tech. rep., 2004.

[18] K. Zhai, T. Banerjee, D. Zwick, J. Hackl, S. Ranka, Dynamic load balancing for
compressible multiphase turbulence, in: Proceedings of the 2018 International
Conference on Supercomputing - ICS ’18, ACM Press, New York, New York,
USA, 2018, pp. 318–327, http://dx.doi.org/10.1145/3205289.3205304.

[19] M. Claudio, E. César, J. Sorribes, A load balancing schema for agent-based SPMD
applications, in: Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA), 2013.

[20] C.A. Hoare, Algorithm 65: Find, Commun. ACM 4 (7) (1961) 321–322, http:
//dx.doi.org/10.1145/366622.366647.

[21] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, C. Vaughan, Zoltan data
management services for parallel dynamic applications, Comput. Sci. Eng. 4 (2)
(2002) 90–97.

[22] C. Siebert, Scalable and efficient parallel selection, in: Lecture Notes in Computer
Science, in: LNCS, vol. 8384, Springer, 2014, pp. 202–213, http://dx.doi.org/10.
1007/978-3-642-55224-3{_}20.

http://refhub.elsevier.com/S1877-7503(22)00063-1/sb1
http://refhub.elsevier.com/S1877-7503(22)00063-1/sb1
http://refhub.elsevier.com/S1877-7503(22)00063-1/sb1
http://refhub.elsevier.com/S1877-7503(22)00063-1/sb2
http://refhub.elsevier.com/S1877-7503(22)00063-1/sb2
http://refhub.elsevier.com/S1877-7503(22)00063-1/sb2
http://refhub.elsevier.com/S1877-7503(22)00063-1/sb2
http://refhub.elsevier.com/S1877-7503(22)00063-1/sb2
http://dx.doi.org/10.1137/S1064827593255135
http://dx.doi.org/10.1109/71.491582
http://dx.doi.org/10.1016/0167-8191(94)00059-J
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1109/CCGRID.2005.1558650
http://dx.doi.org/10.1016/j.cpc.2012.07.013
http://dx.doi.org/10.1016/j.cpc.2018.07.019
http://dx.doi.org/10.1016/j.cpc.2018.07.019
http://dx.doi.org/10.1016/j.cpc.2018.07.019
http://dx.doi.org/10.1016/j.cpc.2015.01.009
http://dx.doi.org/10.1109/TPDS.2015.2412545
http://refhub.elsevier.com/S1877-7503(22)00063-1/sb12
http://refhub.elsevier.com/S1877-7503(22)00063-1/sb12
http://refhub.elsevier.com/S1877-7503(22)00063-1/sb12
http://refhub.elsevier.com/S1877-7503(22)00063-1/sb12
http://refhub.elsevier.com/S1877-7503(22)00063-1/sb12
http://dx.doi.org/10.1109/HiPCW.2016.027
http://arxiv.org/abs/2104.01688
http://arxiv.org/abs/2104.01688
http://arxiv.org/abs/2104.01688
http://dx.doi.org/10.1016/j.future.2017.04.042
http://dx.doi.org/10.1109/CLUSTER.2012.61
http://refhub.elsevier.com/S1877-7503(22)00063-1/sb17
http://refhub.elsevier.com/S1877-7503(22)00063-1/sb17
http://refhub.elsevier.com/S1877-7503(22)00063-1/sb17
http://dx.doi.org/10.1145/3205289.3205304
http://dx.doi.org/10.1145/366622.366647
http://dx.doi.org/10.1145/366622.366647
http://dx.doi.org/10.1145/366622.366647
http://refhub.elsevier.com/S1877-7503(22)00063-1/sb21
http://refhub.elsevier.com/S1877-7503(22)00063-1/sb21
http://refhub.elsevier.com/S1877-7503(22)00063-1/sb21
http://refhub.elsevier.com/S1877-7503(22)00063-1/sb21
http://refhub.elsevier.com/S1877-7503(22)00063-1/sb21
http://dx.doi.org/10.1007/978-3-642-55224-3{_}20
http://dx.doi.org/10.1007/978-3-642-55224-3{_}20
http://dx.doi.org/10.1007/978-3-642-55224-3{_}20

Journal of Computational Science 61 (2022) 101644A. Boulmier et al.
[23] L. DeRose, B. Homer, D. Johnson, Detecting Application Load Imbalance on High
End Massively Parallel Systems, Springer, Berlin, Heidelberg, 2007, pp. 150–159,
http://dx.doi.org/10.1007/978-3-540-74466-5_17.

[24] L.V. Kalé, The virtualization model of parallel programming: Run-time
optimizations and the state of art, in: LACSI, Albuquerque, 2002.

[25] xetqL/yalbb: Yet Another Load Balancing Benchmark. URL https://github.com/
xetqL/yalbb.

[26] A. Boulmier, F. Raynaud, N. Abdennadher, B. Chopard, On the benefits of antic-
ipating load imbalance for performance optimization of parallel applications, in:
International Conference on Cluster Computing (CLUSTER), IEEE, Albuquerque,
NM, USA, 2019, http://dx.doi.org/10.1109/CLUSTER.2019.8890998.

Anthony Boulmier received his B.A.Sc. and his M.Sc. from
the University of Applied Sciences Western Switzerland
(HES-SO). He received his Ph.D. in Computer Science from
the University of Geneva in 2022. His work focuses on the
performance optimization of parallel applications through
load balancing.

Prof. Nabil Abdennadher received the Diploma in Engi-
neering (Computer science) from ENSI, Tunisia, and the
Ph.D. degrees in Computer Science from University of
Valenciennes (France) in 1988 and 1991, respectively. He
was an assistant professor at the University of Tunis II from
1992 to 1998 and a research assistant at EPFL from 1999
to 2000.

In 2001, he joined the Depart. of Computer Engineering
at the University of Applied Sciences, Western Switzerland
(HES-SO, HEPIA) as an assistant HES professor. In 2008,
10
he became an associate HES professor and in 2017 he was
promoted to full HES professor.

He is currently head of both the inIT Research Institute
and the LSDS research group. His major research interests
include high performance and distributed computing, Inter-
net of Things and urban computing. He is representative
of the Swiss Alliance for Data-Intensive Services in Swiss
Romande, and member of the Editorial Board of the Journal
of Reliable Intelligent Environments.

Prof. Bastien Chopard is full professor at the University
of Geneva, and group leader in the Swiss Institute of
Bioinformatics. He earned his Ph.D. in theoretical physics
from the University of Geneva in 1988. He then spent
two years as a postdoc in the laboratory for computer
science at MIT (Cambridge, USA), and one year in the
Research Center, Juelich (Germany) before joining the com-
puter science department at University of Geneva. His main
research interests is the modeling and simulation of complex
systems. He is internationally recognized for his work on
Cellular Automata and Lattice Boltzmann methods. He wrote
more than 200 scientific articles, presenting interdisciplinary
research in various fields, such as physics, social and envi-
ronmental science, bio-medical applications, numerical and
optimization methods, parallel computing and multiscale
modeling.

http://dx.doi.org/10.1007/978-3-540-74466-5_17
http://refhub.elsevier.com/S1877-7503(22)00063-1/sb24
http://refhub.elsevier.com/S1877-7503(22)00063-1/sb24
http://refhub.elsevier.com/S1877-7503(22)00063-1/sb24
https://github.com/xetqL/yalbb
https://github.com/xetqL/yalbb
https://github.com/xetqL/yalbb
http://dx.doi.org/10.1109/CLUSTER.2019.8890998

	Toward informed partitioning for load balancing: A proof-of-concept
	Introduction
	Informed partitioning
	Non-orthogonal recursive bisection
	Limitations

	An effort metric for load balancing techniques
	Numerical study
	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References

