
Journal of Parallel and Distributed Computing 169 (2022) 211–225

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

Optimal load balancing and assessment of existing load balancing

criteria

Anthony Boulmier a,∗, Nabil Abdennadher b, Bastien Chopard a

a University of Geneva, Department of Computer Science, Route de Drize 7, 1227 Carouge, Switzerland
b University of Applied Sciences and Arts, Western Switzerland (HES-SO), Rue de la Prairie 4, 1202 Geneva, Switzerland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 April 2021
Received in revised form 7 May 2022
Accepted 7 July 2022
Available online 16 July 2022

Keywords:
High performance computing
Parallel computing
Dynamic load balancing
Load balancing criteria
Performance optimization

Parallel iterative applications often suffer from load imbalance, one of the most critical performance
degradation factors. Hence, load balancing techniques are used to distribute the workload evenly to
maximize performance. A key challenge is to know when to use load balancing techniques. In general,
this is done through load balancing criteria, which trigger load balancing based on runtime application
data and/or user-defined information. In the first part of this paper, we introduce a novel, automatic
load balancing criterion derived from a simple mathematical model. In the second part, we propose a
branch-and-bound algorithm to find the load balancing iterations that lead to the optimal application
performance. This algorithm finds the optimal load balancing scenario in polynomial time while, to
the best of our knowledge, it has never been addressed in less than an exponential time. Finally, we
compare the performance of the scenarios produced by state-of-the-art load balancing criteria relative
to the optimal load balancing scenario in synthetic benchmarks and parallel N-body simulations. In the
synthetic benchmarks, we observe that the proposed criterion outperforms the other automatic criteria.
In the numerical experiments, we show that our new criterion is, on average, 4.9% faster than state-
of-the-art load balancing criteria and can outperform them by up to 17.6%. Moreover, we see in the
numerical study that the state-of-the-art automatic criteria are at worst 26.43% slower than the optimum
and at best 10% slower.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Parallel iterative applications often exhibit an irregular compu-
tational scheme that may create load imbalance over time. Load
imbalance is a major performance degradation factor. For that pur-
pose, dynamic load balancing mechanisms are used throughout
the application execution to keep processing elements’ workloads
evenly distributed and their communications minimized. Those
mechanisms involve two separate questions how and when to load
balance [25]. “How to load balance” is related to finding the al-
gorithm that divides the computational domain (partitioning algo-
rithm) into several pieces that are distributed (mapping algorithm)
on the available processing elements while minimizing their com-
munications. “When to load balance” defines the particular itera-
tions (i.e., a scenario) at which the load balancing mechanism (i.e.,
using the partitioning and mapping algorithm) is required. Their
goal is to minimize the application wall time.

* Corresponding author.
E-mail address: anthony.boulmier@unige.ch (A. Boulmier).
https://doi.org/10.1016/j.jpdc.2022.07.002
0743-7315/© 2022 The Author(s). Published by Elsevier Inc. This is an open access artic
“How to load balance” has been explored by several authors
over the years leading to various partitioning and mapping algo-
rithms. In particular, the partitioning algorithm consists of solving
a balancing graph partitioning problem, which is known to be NP-
Complete [10]. Hence, heuristics have been developed, exhibiting
good balancing capabilities for various types of problems. Among
the most famous, recursive coordinate bisection (RCB) [30], space-
filling curves (SFC) [1], recursive spectral bisection [33], and METIS
(multilevel k-way) [14] can be mentioned. For more sophisticated
techniques, we suggest the reader to refer to [8,7,9]. However, it is
difficult for scientists to know how well a particular technique will
perform on their own problem. Moreover, due to the complexity of
modern algorithms and the lack of “plug and play” libraries, scien-
tists often use the most famous load balancing techniques, which
may not be optimal for their problem. In addition, we pointed out
in a previous work that researchers should not select a load bal-
ancing technique only based on its capability to correct imbalance
but also during how many iterations it keeps a low level of im-
balance [3]. This further increases the difficulty to select the most
optimal technique. To overcome this challenge, researchers have
proposed algorithms to select automatically the most suitable load
balancing techniques based on application data [24,18,2].
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jpdc.2022.07.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2022.07.002&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:anthony.boulmier@unige.ch
https://doi.org/10.1016/j.jpdc.2022.07.002
http://creativecommons.org/licenses/by/4.0/

A. Boulmier, N. Abdennadher and B. Chopard Journal of Parallel and Distributed Computing 169 (2022) 211–225
“When to load balance” is a challenging problem that involves
finding the iterations at which a parallel iterative application
should trigger its load balancing mechanisms to maximize per-
formance. Herein, we refer to the optimal load balancing scenario
as the sequence of iterations where the load balancing is applied
such that the application wall time is minimized. As the load bal-
ancing itself has a cost (compute the new partition and migrate
the data), one (most of the time) can not simply re-balance every
iteration because the load balancing cost C overcomes the perfor-
mance gain. To find the optimal scenario for analysis purposes, one
straightforward way is to try every load balancing scenario and
keep the one that yields the best performance. However, this is
unfeasible in practice, even for a small number of iterations. In-
deed, for an application comprising of γ iterations, the number of
scenarios is 2γ .

In the literature, load balancing criteria have been proposed to
decide whether the load balancing mechanism should be triggered
or not. A load balancing criterion is a condition based on applica-
tion information and/or user data. One of the most straightforward
criteria re-balances the application every T iterations enabling the
correction of recurring imbalance. However, this is inefficient when
load imbalance exhibits a non-periodic pattern. Some more so-
phisticated criteria use mathematical models taking into account
collected data, such as the unbalancing pace (i.e., workload in-
crease rate), the load balancing cost, the expected scalability, the
maximum authorized imbalance, and others. For instance, Marquez
et al. [4] propose to apply the load balancing algorithm when at
least one of the processing elements is below (respectively above)
a pre-defined workload lower bound (respectively upper bound).
Procassini et al. [27] predict the time per iteration post load bal-
ancing using an estimation of the efficiency’s improvement and
trigger the re-balancing mechanism when the increase in time
per iteration is greater than the load balancing cost. Menon et
al. [19] propose to re-balance the application when the cumulative
load imbalance (i.e., the sum of the current imbalance over time)
overcomes the load balancing cost. Pearce et al. [24] perform a
cost-benefit analysis of the load balancing process. They use a load
model to estimate both the cost of load balancing with various al-
gorithms and the benefit of correcting the imbalance. They activate
the load balancing mechanism if its benefit is greater than its cost.
Finally, the wide choice of criteria makes the choice of a suitable
criterion difficult due to the lack of rigorous comparative stud-
ies. Worse, because it is hard to find the optimal load balancing
scenario among all the possible candidates, there is no clue how
far the performance of the scenario produced by a load balanc-
ing criterion is from the optimal scenario’s performance. Therefore,
finding the optimal scenario and quantifying its performance is an
important and challenging task.

This paper introduces a load balanced application theoretical
model to derive a novel, automated load balancing criterion that
performs at worse on par with state-of-the-art load balancing cri-
teria. Moreover, we propose a new method derived from the A∗
algorithm [11] to find the iterations at which the load balancing
mechanism must be used to obtain optimal performances. This
method can be applied to real applications and synthetic bench-
marks built with our theoretical model. Then, we use the optimal
scenario to evaluate the performance of several state-of-the-art
load balancing criteria on various synthetic benchmarks. Such a
study provides insights into the performance gap between state-of-
the-art criteria and the optimum. Finally, we implement our novel
algorithm in an N-body simulation and discuss the difference of
performance and behavior between state-of-the-art load balancing
criteria and the optimal scenario. The result of our efforts also in-
cludes two implementations of our novel algorithm. The first is a
standalone package for studying optimal scenarios within synthetic
212
benchmarks, and the second is an implementation for real appli-
cations.

Section 2 proposes a definition of the load balancing deci-
sion problem and introduces the challenges to solve it. Section 3
presents the background works related to load balancing crite-
ria. Section 4 introduces a model for parallel applications with
dynamic load balancing and shows how to derive a novel, fully
automatic load balancing criterion based on the past and current
behavior. Section 5 presents an efficient algorithm to find the opti-
mal load balancing scenario. Section 6 assesses the performance of
load balancing criteria with respect to the optimal scenario in syn-
thetic benchmarks and within a parallel N-body simulation. Sec-
tion 7 concludes this work and proposes insight for future works.

2. The load balancing decision problem

Consider an iterative parallel application (e.g., N-body, compu-
tational fluid dynamics, etc.) comprising of γ iterations. Computing
such an application in parallel on P processing elements requires
distributing its workload among the processing units used for
the computation while minimizing communications. The time per
time-step is equal to the time of the slowest (or most loaded) pro-
cessing element due to synchronization mechanisms at the end of
each iteration. To maximize efficiency, the workload attributed to
each processing element must be roughly equal at each iteration.
This is achieved through load balancing algorithms that mitigate
the load imbalance penalty. For parallel applications that do not
exhibit a dynamic nature, only one load balancing is required at
the beginning of its execution. This is usually called static load bal-
ancing. In contrast, when the processing elements’ workload is not
the same from iteration to iteration, several load balancing steps
may be required. This is known as dynamic load balancing. We
call the set of iterations at which the load balancing algorithm is
used the “load balancing scenario”. The processing elements must
coordinate and take a load balancing decision at each iteration (re-
balancing or not) to create a scenario. This decision process leads
to 2γ possible scenarios where γ is the number of iterations. The
dynamic load balancing decision problem consists of finding the
optimal scenario, minimizing the application wall time.

Definition 2.1 (Dynamic load balancing decision problem). Given an
application comprising of γ iterations and P processing elements,
find the set of iterations σ ∗ (i.e., the scenario) at which the load
balancing mechanism must be activated such that the application
wall time is minimized.

This decision problem is an optimization problem in which we
look for

σ ∗ = argmin
σ∈S

T (σ), (1)

where T (σ) is a function returning the application wall time given
a load balancing scenario and σ is a particular scenario among the
2γ possible ones (S). Note that T (σ) can either be modeled by an
equation or computed by the application code itself (i.e., actually
measured on a computer).

Solving this problem is non-trivial as the load balancing benefit
usually depends on the application’s future behavior, the moment
at which the load balancing is applied, and the success of the data
partitioning. Let us imagine an application where the load imbal-
ance is ephemeral. Molecular dynamic applications may see such
behaviors. For instance, the particle density across the computa-
tional domain can change periodically due to some forces. Therein,
it is unclear whether re-distributing the particles would be ben-
eficial due to the load balancing cost. To accurately answer this

A. Boulmier, N. Abdennadher and B. Chopard Journal of Parallel and Distributed Computing 169 (2022) 211–225
question, one would have to predict that such behavior happens.
This implies that the application is predictable (in the long term),
which appears to be unfeasible [24]. Therefore, load balancing de-
cisions can only be built on strong and reliable metrics based on
prior data.

Asking whether re-balancing the workload is required or not
depends on multiple factors. In the literature, scientists base their
decision on load balancing criteria that employ various metrics
such as the parallel efficiency, the load imbalance, the iteration
index, the min/max workload, and others. Usually, a parallel ap-
plication needing load balancing capability would implement a
criterion to decide when to redistribute the workload among the
processing elements attributed to the computation of the applica-
tion. A criterion is essentially an equation that must be evaluated
each time a load balancing decision must be taken. Note that while
being unaware of system perturbations (e.g., cache misses, OS in-
terrupts, or temporary system faults or malfunctions [21]) that can
alter the time-per-iteration of some processing elements, load bal-
ancing criteria implicitly take them into account because their de-
cision making is based on load imbalance metrics. Hence, if some
perturbations exacerbate the load imbalance, the load balancing
criterion will execute the load balancing algorithm to improve the
situation. Bear in mind that it is the task of the load balancing al-
gorithm to take care of producing the most suited partitioning by,
for instance, ensuring that slower processing elements facing per-
turbations (e.g., cache contention, off-chip bus saturation, NUMA
effects) get less work. However, some open questions remain to
be answered, for instance: (i) how to build a perturbation aware
load balancing technique?; and (ii) how does a load balancing al-
gorithm would work in conjunction with advanced software and
hardware techniques, such as dynamic concurrent throttling (DCT),
dynamic voltage and frequency scaling (DVFS), or, more challeng-
ing, a combination of both [22]?. How would the algorithm ensure
that the produced partitions are well balanced and take into ac-
count the overhead of such techniques [29]. These questions, de-
spite being challenging and interesting, are not addressed in the
present paper and are left for future works. For a review of load
imbalance metrics, we suggest the reader to refer to [28]. We de-
fine the criteria that use local information as local criteria, whereas
the other criteria are considered as global criteria. Local informa-
tion is a data that is related to a single processing element, such
as the current processing element workload, the processing ele-
ment workload increase rate, etc. In contrast, global information
concerns all processing elements, such as the time per iteration,
the average workload, or the load balancing cost. In the next sec-
tion, we dig into more details in the various load balancing criteria
proposed over time by researchers.

3. Background works

In the literature, scientists often use straightforward load
balancing criteria while it is well known that without fine-
tuning, they provide poor performance [24,19]. For instance, Fatte-
bert et al. [7], Offenhäuser [23], and Lieber et al. [16] chose to load
balance their application respectively every 100, 1000, and 180 it-
erations while Ishiyama et al. [13] re-balanced every iteration. The
rationales behind these choices are manifold. Some argue that the
load balancing cost is negligible compared to load imbalance [13],
while others use application knowledge to tune their criterion.
More recently, Miller et al. [20] performed a study to improve
the load balancing in their particle-in-cell code. In this study, they
proposed a new shared-memory load balancing strategy, that they
apply every 20 and 40 solver iterations, that improves the perfor-
mance of their application by a factor 2 compared to a no load
balancing approach. Another work performed by Prät et al. [26]
focused on improving the performance of an adaptive mesh refine-
213
ment based molecular dynamic application using multi-threading,
vectorization friendly data-structure, and dynamic load balancing.
In their work, the authors claim to outperform LAAMPS by a factor
1.38 on a micro-jetting scenario and by 2.6 in a steady scenario.
They achieve these levels of performance with the RCB algorithm
applied every 500 timesteps.

Unfortunately, all these previous works do not study their load
balancing triggering strategy. Hence, it is hard to know if they are
effective (or not) and why. Moreover, we will see later in this pa-
per that a bad load balancing criterion can suffer from a huge
performance penalty compared to the optimal scenario. Indeed,
it is likely that many of the load balancing calls are unnecessary,
ill-timed, or worse, the application may still suffer from load im-
balance. For that purpose, researchers have tried to develop more
sophisticated and generic criteria that provide better overall per-
formance.

Marquez et al. [4] have proposed a load balancing criterion
based on an acceptable workload variation range for agent-based
simulations. The idea is to trigger the load balancing mechanism
if any agent’s workload goes outside of a comfort zone defined by
a minimal acceptable workload Wmin and a maximal acceptable
workload Wmax. In other words, when the following condition is
true:

W p < Wmin or Wmax < W p ∃p = 1..P . (2)

This criterion is considered local as the formula uses the local
workload of processing element W p . The formula proposed by
Marquez et al. can be implemented using a “tolerance factor” ξ ,
which specifies how far a single processing element can get away
from the average workload. Then, Equation (2) can be rewritten

W p <
(1 − ξ)

P

P∑
1

W p or
(1 + ξ)

P

P∑
1

W p < W p . (3)

Indeed, the tolerance factor has to be tuned by hand as the value
may differ from application to application, making it difficult to
find a good value for this parameter. Moreover, within a single ap-
plication, the tolerance factor that provides the best performance
may change over time. Unfortunately, an automatic selection of the
acceptable workload range has never been proposed.

Procassini et al. [27] use a different strategy to automatically
load balance HPC applications. Their global criterion redistributes
the workload whether the performance improvement due to load
balancing plus the load balancing cost is greater than a fraction of
the current time per iteration. In other words, the load balancing
mechanism is triggered at iteration t when the following condition
is true:

TwithLB(t) + C < ρ ∗ TwithoutLB(t), (4)

where TwithLB(·) is the iteration time after load balancing, C is the
load balancing cost in seconds, ρ is the desired increase in perfor-
mance post load balancing, and TwithoutLB(·) is the iteration time
before load balancing. In their paper, they used ρ = 0.9. However,
the same idea can be generalized for any ρ ∈R>0. Procassini et al.
estimate the time per iteration post load balancing by decreasing
the current time per iteration proportionally to the expected in-
crease in performance due to load balancing. This reads

TwithLB(t) = εpre(t)

εpost(t)
∗ TwithoutLB(t), (5)

where εpost (resp. εpre) is the parallel efficiency post (resp. pre)
load balancing step. While the parallel efficiency post load balanc-
ing has to be estimated based on prior data, the efficiency before
load balancing is computed with

A. Boulmier, N. Abdennadher and B. Chopard Journal of Parallel and Distributed Computing 169 (2022) 211–225

Table 1
Summary of available load balancing criteria. Note that the periodic criterion belongs to the common knowledge of load balancing. Tracking back its origin is complicated.

Name User defined parameters Required data Type Foundation Developed for Decision

Periodic Load balancing period T - Global - Any simulations Every T it.

Marquez et al. [4] Tolerance factor ξ - PEs workload Local Experiments Agent-based simulations Equation (2)

Procassini et al. [27] Desired performance improvement
post load balancing ρ

- Efficiency
- Load Balancing Cost

Global Experiments Monte-Carlo Transport Equation (4)

Menon et al. [19] - - Imbalance Increase Rate
- Load Balancing Cost

Global Theory Any simulations Equation (19)

Zhai et al. [36] Evaluation phase P - Imbalance Increase Rate
- Load Balancing Cost

Global Experiments Any simulations Equation (8)

Our criterion - - Imbalance time [5]
- Load Balancing Cost

Global Theory Any simulations Equation (24)
εpre(t) = Tseq(t)

P ∗ Tpar(t)
. (6)

The presence of the factor ρ , which must be fixed by hand, makes
the tuning of this criterion for optimal performance difficult. Note
that Lieber et al. [16] also implemented an “auto-mode” into their
application (FD4), which employs a simple cost-benefit analysis of
the load balancing process. The criterion utilized therein is analog
to Equation (4), except that they use ρ = 1 and they estimate the
time post-load balancing using data collected from previous load
balancing steps.

Menon et al. [19] have shown that the optimal load balancing
scenario for a parallel iterative application, where the maximum
and average load can be modeled linearly with time, is a fixed re-
balancing frequency. The load balancing time interval τ is equal to
the amount of iteration required by the cumulative load imbalance
to reach the load balancing cost C . When the workload increase
rate is constant, it can be computed by the following formula:

τ =
√

2C

α
, (7)

where C is the load balancing cost in seconds and α is the differ-
ence in the time-per-iteration increase rate between the “slowest”
processing element and the average time-per-iteration increase
rate. They derived this global criterion by minimizing the time
with respect to the load balancing time interval. Like the criterion
proposed by Procassini et al. [27], the information used therein is
measured and updated throughout application execution. For in-
stance, the load balancing cost C has to be estimated while the
maximum and average workload increase rates are measured at
runtime. We refer to criteria analog to Menon criterion as Menon’s
like criteria.

Zhai et al. [37] have used Menon criterion to improve the
performance of CMT-nek. CMT-Nek is a compressible multiphase
turbulence application, which enhances the physics of the CE-
SAR Nek5000 application. In particular, they proposed to compute
the cumulative time-per-iteration degradation D during applica-
tion execution and to trigger a load balancing call when it has
reached the load balancing cost C or after τ iterations, as sug-
gested by Menon, leading to this global load balancing criterion:

D ≥ C or i ≡ 0 mod τ , (8)

where i is the current iteration index and the cumulative time-
per-iteration degradation D from the last load balancing iteration
LBp up to the current iteration t is computed using
214
D =
t∑

i=LB p

(
Tmedian(i, i − 2) − Tavg(P)

)
, (9)

where Tavg(P) is the average time per time-step over an user-
defined evaluation phase P and Tmedian(i, i −2) is the median time
per time-step among the three last iterations.

Recently, Mayr et al. [17] have proposed a new load balancing
criterion for simulations of contact problems using Mortar meth-
ods. Therein, they measure two specific quantities Kt and Kc that
must not cross their respective user-defined threshold νt and νc .
Kt is defined as the ratio of the largest by the smallest mortar eval-
uation time, whereas Kc is defined as the ratio of the largest by
the smallest number of elements in the contact zone. In the case
where νt or νc is crossed, the load balancing algorithm is executed.
Despite that this strategy seems to work well on their problem
compared to a static approach, this work lacks from showing that
the proposed load balancing criterion is close to the optimal solu-
tion or outperforms other criteria for contact problems. Note that
this load balancing criterion will not be used in our experiments
later in the paper due to its tight link to the simulations of contact
problems.

Finally, the literature lacks rigorous load balancing criteria com-
parison studies, which would be hard to perform due to the ab-
sence of algorithms capable of computing the optimal scenario.
Indeed, researchers may think that a load balancing criterion is
performing well even though it is, in fact, far from the optimal
solution. Therefore, the present work proposes to fill this gap by
systematically comparing several state-of-the-art load balancing
criteria against the optimal load balancing scenario. The optimal
load balancing scenario is computed in polynomial time using our
novel algorithm presented in Section 5. Also, one difficulty for HPC
developers regarding load balancing is to choose the good load bal-
ancing criteria. Indeed, all the criteria available in the literature
bring confusion and only a few are backed up by a strong theory.
We summarize the load balancing criteria described above in Ta-
ble 1 to ease the choice of HPC researchers. This table details what
we find to be the most useful properties of load balancing crite-
ria. In addition, in Section 5, we propose an efficient branch-and-
bound algorithm for finding the optimal load balancing scenario to
compare load balancing criteria relative to the optimum and help
the selection of load balancing criteria.

4. A workload-aware load balancing criterion

To study the performance of the scenarios produced by load
balancing criteria relative to the optimal load balancing scenario’s
performance, we propose a mathematical framework for comput-
ing the CPU time of load balanced parallel applications inspired by

A. Boulmier, N. Abdennadher and B. Chopard Journal of Parallel and Distributed Computing 169 (2022) 211–225

t a
Menon’s work [19]. First, let us consider a parallel execution on
P processors characterized by two functions, μ(t) and m(t). The
function μ(t) gives at each iteration t the average load (i.e., the to-
tal load on the P processors divided by P), whereas m(t) gives the
load of the slowest (or most loaded) processor at iteration t . Note
that here, μ(t) and m(t) are expressed with units of time. Further-
more, let us assume that executing the load balancing mechanism
always leads to perfect load balancing.

Second, let us define Tpar the parallel time on γ iterations given
by

Tpar =
γ∫

0

m(t) dt =
γ∫

0

m(t) − μ(t) dt +
γ∫

0

μ(t) dt. (10)

Note that this equation has been greatly inspired from the model
of Menon et al. [19], however, herein we relax the assumption that
m(t) and μ(t) are represented by line equations. Let us now di-
vide the interval [0, γ] in n pieces [si, si+1] with s0 = 0, si+1 > si

and sn = γ . Moreover, we assume that load balancing steps are
performed at iterations si for i = 0, 1, ...n − 1 and they take an ad-
ditional time C . Hence, Equation (10) becomes

Tpar =
n−1∑
i=0

(si+1∫
si

u∗
i (t)dt + C

) +
γ∫

0

μ(t) dt, (11)

where u∗
i (t) is the imbalance time metric proposed by DeRose

et al. [5] defined as

u∗
i (t) = m(t) − μ(t) for t ∈ [si, si+1]. (12)

Also, we point out that load balancing is done at s0 but not at the
end of the execution (i.e., at sn). Obviously, m(t) resets to μ(t) after
every load balancing step if the load is perfectly balanced. Thus,
always u∗

i (si) = 0. To increase the readability of Equation (11), let
us express it with the following change of variables

τi = si+1 − si ui(x) = u∗
i (t − si). (13)

Equation (11) now becomes

Tpar =
n−1∑
i=0

(τi∫
0

ui(x)dx + C
) +

γ∫
0

μ(t) dt. (14)

Remark 1. In general, ui(x) is unpredictable because it depends
on si and the load balancing technique itself. Indeed, the domain
decomposition used by the load balancing mechanism affects the
load imbalance growth. In section 6.1, we give a possible solution
to this challenge when we use our model as a framework for syn-
thetic benchmarks.

Derivation of Menon criterion. To derivate the criterion from Menon e
using Equation (14) we need to set ui(x) as a linear equation such
as

ui(x) = u(x) = αx. (15)

Then, Equation (14) reads

Tpar = γ

τ

(τ∫
0

αxdx + C
) +

γ∫
0

μ(t) dt. (16)

Note that we obtain here the same equation as in the paper of
Menon et al. [19]. The optimal value of τ is then obtained by solv-
ing and isolating τ in
215
l. [19]

∂Tpar

∂τ
= 0. (17)

That is,

∂Tpar

∂τ
= 0

− γ

τ 2

(ατ 2

2
+ C

) + γ

τ
ατ = 0

α

2
− C

τ 2
= 0

τ =
√

2C

α

(18)

It is worth noticing that for this value of τ , one has

τ∫
0

u(t)dt = ατ 2

2
= C . (19)

In other words, the load balancing mechanism must be used when
the load imbalance metric u(t) = m(t) −μ(t) accumulated over the
iterations reaches the load balancing cost C . For the sake of sim-
plicity, this quantity reads

U =
τ∫

0

u(t)dt. (20)

Remark 2. In this case, where ui(x) = u(x) = αx, it is possible to
obtain the optimal value of ρ for Procassini criterion using Equa-
tion (4). If τ is the optimal load balancing interval when u(x) is
a linear equation, and the load balancing is perfect, the optimal
value ρτ is

ρτ = TwithLB(τ) + C

TwithoutLB(τ)
= μ(τ) + C

μ(τ) + u(τ)
. (21)

Therefore, Procassini criterion is equal to Menon criterion provided
that ui(x) = u(x) = αx and that ρτ is employed. More generally,
this indicates that for each load imbalance function u(·) there ex-
ists an optimal ρ value. Unfortunately, as u(·) is in general unpre-
dictable, computing ρτ seems highly challenging in practice.

Generalization for any u(t). It is now possible to reformulate this
result without assuming any particular form of u(t). Starting from
Equation (14), which now reads

Tpar =
n−1∑
i=0

(τ∫
0

u(x)dx + C
) +

γ∫
0

μ(t) dt. (22)

We obtain the optimal value of τ using the same methodology,
which is solving and isolating τ in

∂Tpar

∂τ
= − γ

τ 2

(τ∫
0

u(x)dx + C
) + γ

τ
ατ = 0. (23)

The solution of this equation is

τu(τ) −
τ∫

0

u(x)dx = C, (24)

which leads to a new global load balancing criterion that does not
make any assumption on the function u(t) that describes the load
balancing metric over the iterations. This result differs from the

A. Boulmier, N. Abdennadher and B. Chopard Journal of Parallel and Distributed Computing 169 (2022) 211–225

Fig. 1. Toy example illustrating the key difference between our criterion and Menon criterion. The left figure shows a load imbalance that correct itself after a hundred
iterations. The colored area in the left figure shows the criterion value of both criteria at iteration 60. The right figure illustrates the evolution of the criterion value over the
iterations. A key observation is that Menon criterion will apply the load balancing mechanism at iteration 96 even though it is not needed, whereas our criterion successfully
detects this situation.
one presented by Menon et al. [19] because now a load balancing
step is done when the area above the load imbalance curve equals
the load balancing cost C . To illustrate this, we propose in Fig. 1
a toy example showing the main difference between our criterion
and Menon criterion and a plot of their value over time. In this
example, the load imbalance is ephemeral starting at iteration 0
and it grows until iteration 69, then, it decreases until it reaches
u(100) = 0. In the figure placed on the right, we see that Menon
criterion applies a load balancing at iteration 96 even though the
load imbalance is almost completely corrected at this point. In con-
trast, we observe that our criterion is able to detect that such a
situation does not need load balancing. Finally, the colored area in
the left figure shows the criterion value of both criteria at iteration
60. We see that, unlike Menon criterion, our criterion corresponds
to the area between the load imbalance curve and u(τ).

To have a better idea of the performance improvement we
might gain by using this criterion, we propose, in Section 6, a com-
parative study of the criteria presented in Section 3 on synthetic
benchmarks and real N-body simulations. In the next section, we
present an efficient algorithm for finding the optimal load balanc-
ing scenario, which we will use to rank the load balancing criteria
as a function of their relative performance compared to the opti-
mum.

Remark 3. Following the development of our theoretical model, it
clearly appears that the exact solution of this problem can only be
obtained using an exhaustive search. Indeed, we observed that this
problem is recursive as the load balancing time intervals si, si+1
(i.e., the solution) are part of the input data. This seems to prevent
us from finding an analytical solution.

5. Finding the optimal load balancing scenario

It is essential to know the performance of the optimal load
balancing scenario to analyze the performance of the scenario pro-
duced by load balancing criteria. To find this optimum, we need an
efficient way to look for the optimal scenario among all the pos-
sible ones. Unfortunately, the number of possible scenarios grows
exponentially with the number of iterations to compute (i.e., γ).
For that reason, it is impossible to use brute force algorithms even
for a small number of iterations.

To overcome this problem, we can organize the scenarios in a
tree to use efficient tree search algorithms. Indeed, the load bal-
ancing decision problem fits well in a binary tree because a deci-
sion (using or not the load balancing mechanism) must be made
at each iteration. The vertices represent the state of the application
(balanced or not). The edges e represent the process of going from
an iteration to another (i.e., computing the iteration and applying,
or not, the load balancing algorithm). The edge cost C (e) repre-
216
Fig. 2. The load balancing decision problem organized as a binary tree. “Y” (respec-
tively “N”) means that the application is balanced (respectively not balanced) at the
given iteration. In other words, left edges apply load balancing while right edges do
not.

sents the CPU time for going from an iteration to the next. Fig. 2
shows how load balancing decisions are organized as a binary tree.

A load balancing scenario is defined as a path from the root
(iteration 0) to a leaf node (iteration γ). The cost of a path p from
the root node to any subsequent node, C (p), is the sum of the
edge costs that belong to the path, which reads

C (p) =
∑
e∈p

C (e). (25)

As mentioned in Equation (1), the optimal scenario is the one that
minimizes the path cost among all scenarios, minimizing the ap-
plication wall time.

5.1. Load balancing tree pruning

To reduce the tree size and the complexity of the search, we
propose two steps: (i) to merge redundant load balancing nodes
and (ii) to prune edges that belong to sub-optimal paths. We as-
sume that the load balancing mechanism is independent of previ-
ous load balancing decisions in these two steps. This means that
the workload of the processing units post load balancing does not
depend on previous decisions but only on current information. Af-
terward, we apply the A∗ algorithm proposed by Hart et al. [11], in
which we include these two optimizations, to find the optimal load
balancing scenario. Note that the algorithm proposed herein has
no practical uses in production, but is rather dedicated for anal-
ysis purposes because it requires some iterations to be executed
multiple times.

Redundant nodes merging. As we saw previously in Section 4, re-
gardless of past decisions, the edge cost C (e) for going from itera-
tion i to the next is C +μ(i) if we performed a load balancing step.
This is because the data partitioning after a load balancing call is
independent of the previous decisions. This is illustrated in Fig. 3
which shows the processing elements’ workload within the load

A. Boulmier, N. Abdennadher and B. Chopard Journal of Parallel and Distributed Computing 169 (2022) 211–225
Fig. 3. The impact of load balancing on workloads within the load balancing tree
before the merging process. The nodes that share the same data partitioning at the
same iteration are redundant.

Fig. 4. The load balancing tree after the merging process, now, i paths lead to a
unique load balancing node (“Y” node) at each iteration, where i is the node’s iter-
ation.

balancing tree. Therein, we see that there is no difference between
two load balancing nodes (flattened workloads) at the same level
of the tree. The only thing that distinguishes these nodes is their
cumulative cost. Therefore, load balancing nodes (i.e., “Y” nodes) at
the same iteration can be merged.

Sub-optimal path elimination. Merged nodes may have multiple
paths leading to them, as illustrated in Fig. 4. The idea of sub-
optimal path elimination is to find the shortest path from the root
(iteration 0) to each load balancing node (merged node) and re-
move the other paths. Indeed, if a load balancing node y is part of
the final solution, then the shortest path from the root node to y is
also part of the solution. It is true if and only if the load balancing
cost C is independent of previous decisions, which is an assump-
tion that we think to be reasonable. Finally, let us assume that the
load balancing node y is a merged node at iteration i, therefore, y
has i paths leading to it. Then, the shortest path p∗

0→y is obtained
by solving

p∗
0→y = argmin

pk
0→y ∀k=1..i

C (pk
0→y), (26)

where pk
0→y is the kth path reaching node y. In practice, only

the last edge of each sub-optimal path is removed because the
previous edges belong to other paths. Fig. 5 illustrates a possible
resulting tree after the sub-optimal path elimination process.

Thanks to the pruning process, the size of the load balancing
tree is drastically reduced. The number of vertices decreases from

V = 2γ − 1 (27)

to

V =
γ −1∑

(i + 1) = γ (γ + 1)

2
(28)
i=0

217
Fig. 5. Example of the sub-optimal path elimination process. A dashed edge, from
a dashed node (“Y” node) to its parent, is removed if it does not belong to the
shortest path from the root to the node. The total number of edges is reduced from
exponential to linear in the number of iterations (i.e., the depth).

and the number of edges decreases from

E = 2γ − 2 (29)

to

E = V − 1. (30)

These two optimizations that we include in the A∗ algorithm allow
us to find the optimal load balancing scenario efficiently.

5.2. Optimal scenario search algorithm

The A∗ algorithm [11] is a well-known path search algorithm.
It aims at finding the path from a source node to a destination
with the smallest cost. Besides, A∗ is optimal and complete, which
means that it will finish and it will find the solution if one exists.
It is done by keeping a list of paths and extending them, one edge
at a time until the destination is reached. At each iteration, A∗
extends the path that minimizes the cost equation

f (n) = g(n) + h(n), (31)

where n is a candidate node, g(n) is the total cost to reach that
node, and h(n) is an optimistic estimation of the path cost from
n to the destination node (i.e., the solution) [11]. In our case, we
model g(n) as the time taken by the application to reach a partic-
ular iteration given a load balancing scenario. h(n) represents the
computation time from a particular iteration to the end of the ap-
plication, given no load imbalance. This mathematically reads

h(n) =
γ∑

j=i

μ(j), (32)

where i corresponds to the node’s iteration (i.e., depth), γ is the
total number of iterations, and μ(·) refers to the average time per
iteration. After a path has been extracted from the queue, its chil-
dren are generated and inserted into the list of paths. In practice,
the whole algorithm is managed by a priority queue where paths
are inserted, sorted according to their cost f (n), and at each it-
eration the path of least cost is extracted. This algorithm belongs
to the category of branch-and-bound algorithms given the defini-
tion of Horowitz and Sahni [12] because no path is being extracted
from the queue before all the children of the current path being
expanded have been inserted in the queue.

To apply the two optimizations mentioned earlier, we cus-
tomize two parts of the algorithm: (i) how new nodes are in-
serted in the queue (sub-optimal path elimination) and (ii) how
the queue is kept sorted and clean from redundant nodes (re-
dundant nodes merging). Algorithm 1 shows the pseudo-code for

A. Boulmier, N. Abdennadher and B. Chopard Journal of Parallel and Distributed Computing 169 (2022) 211–225
finding the optimal load balancing scenario with our branch-and-
bound algorithm. Our optimizations appear during the expansion
of the current path (i.e., generation of its children and their inser-
tion in the priority queue), hence, our modified A∗ algorithm still
belongs to the branch-and-bound category given the definition of
Horowitz and Sahni [12].

As discussed earlier, load balancing nodes at the same depth
(i.e., iteration) are redundant. Therefore, instead of inserting load
balancing nodes directly in the queue, we check if one already ex-
ists at the same iteration and replace it if the new node has a
lower cumulative edge cost (line 10 in Algorithm 1 and detailed
in Algorithm 2). However, according to the sub-optimal path elim-
ination process, we must guarantee that we can not insert a load
balancing node at a given depth if the shortest path has already
been discovered at this level. To do this, we implemented a lookup
table in which we map the iteration (i.e., depth) to a boolean. This
boolean indicates if a load balancing node has already been re-
moved. When a new node has to be inserted, we look up inside
the table to see if one has already been seen and if it does, we
discard it.

Even though the aforementioned optimizations allow to re-
trieve the optimal load balancing scenario, they may prune the nth
best solution. Those solutions may be of interest to measure the
gap between the optimal and close-to-optimal scenarios. Hence,
to retrieve them as well, we need to prune fewer paths in the
sub-optimal path elimination process. To recall, we previously ex-
plained that, in this process, we keep the last edge from a parent
of a load balancing node only if it belongs to the shortest path
from the root node to the load balancing node. This constraint has
to be relaxed to allow the computation of the nth best solution.
The idea is to keep the last edge from a parent of a load balancing
node whether they belong at least to its nth shortest path. It has a
logical meaning; in fact, if we keep all the possible edges, we end
up with the original algorithm, which is able to retrieve all the so-
lutions ordered by their cumulative edge cost. Note that the time
to the solution will increase because the size of the tree increases
as well.

Finally, the last point to discuss is how to find the optimal load
balancing scenario in a real application when C (e) is measured on
a real computer and not by an equation. In this setup, the idea
remains the same as before. However, when a node produces its
children, we compute the two edge costs by executing the cor-
responding iterations. Indeed, the partition and the state of the
application (e.g., the position of the particles in space, their veloci-
ties, etc.) must be propagated and updated after each computation.
To reduce the memory footprint, we propose to use a lookup ta-
ble to store the application states as a function of their iteration.
Moreover, this is necessary to guarantee that every node at the
same iteration has the same application state, which is needed for
results consistency.

We made available an implementation of the optimal load bal-
ancing scenario algorithm in C++ with two different packages:

• LBOPT [34]: This package includes the customized A∗ algo-
rithm and the model presented in Section 3. LBOPT can be
used to have a first idea of the performance of various load
balancing criteria that can be modeled using equations.

• YALBB [35]: It implements an N-body simulation with a short-
range force. YALBB eases the benchmarking of load balancing
algorithms and criteria by separating the physics from the
code of interest. It employs template meta-programming and
an extensive use of modern C++ constructs.
218
6. Comparison of load balancing criteria

This section proposes a comparison study of four load balanc-
ing criteria present in the literature; moreover, we discuss the pros
and cons of these criteria. For that purpose, we have two ap-
proaches. First, we used synthetic benchmarks that we modeled
using the equations presented in Section 4. Therein, we compared
only global load balancing criteria, and for Menon’s like criteria,
we implemented only the original Menon criterion. For instance,
we did not consider the criterion from Marquez et al. [4] be-
cause it involves the local workload from the processing elements.
These synthetic benchmarks target various types of workload in-
crease rates that create load imbalance over time. They are meant
to cover as many real-life situations as possible. We studied the
following schemes where the load imbalance

• Follows a linear growth, a logarithmic growth, and a quadratic
growth.

• Auto-corrects itself periodically.

We used YALBB to assess the efficiency of load balancing crite-
ria on a real-world problem. We then compared their performance
against the optimum obtained using the algorithm presented in
Section 5. We employed several particle distributions and behav-
iors to match as closely as possible our synthetic benchmarks.

6.1. Synthetic benchmarks

Two main pieces of information describe a parallel application.
First, the total workload associated with the problem itself W (t)
(i.e., the time to compute the application on one processing unit).
In the case of inherently irregular applications, this workload may
change over time. Second, the distribution of the total workload
among the processing elements (i.e., load imbalance) is used for
the computation I(t). From those two pieces of information, we
compute m(t) and μ(t), which we use in Equation (10), to com-
pute the application parallel time. To recall, Equation (10) reads

Tpar =
γ∫

0

m(t) dt =
γ∫

0

m(t) − μ(t) dt +
γ∫

0

μ(t) dt. (33)

Using W (t), we can retrieve the average workload μ(t) given a
number of processing elements, whereas, we can compute m(t)
using the load imbalance I(t) and μ(t) using the well-known per-
cent imbalance metric [24]

I(t) = m(t)

μ(t)
− 1,

m(t) = [I(t) − 1]μ(t).

For that purpose, we have to define the function W (t) and I(t)
and how they behave over time.

The first function, W (t), gives at each iteration the total amount
of work to do (expressed in units of time). It reads

W (t) = W0 +
t∑

i=1

ω(i), (34)

where W0 is the initial application workload and ω(t) is a function
giving the difference of application workload between two itera-
tions. Hence, the average workload μ(t) is expressed as μ(t) =
W (t)/P . The second function, I(t), gives at each iteration the load
imbalance, hence it is expressed as

A. Boulmier, N. Abdennadher and B. Chopard Journal of Parallel and Distributed Computing 169 (2022) 211–225

Table 2
Parameters used to define the synthetic benchmarks. Two types of situations have been
considered. The first one (top side of the table) considers benchmarks with a static work-
load and irregular workload distribution. In contrast, the second one (bottom side of the
table) targets a benchmark with an irregular workload and an irregular workload distri-
bution. All workloads are expressed in time units.

ω(t) ι(t − LBprevious) W0 P C γ

0 0.1 52 ∗ P 10,649,600 W0 ∗ P ∗ 102 600

0 1/(0.4 ∗ t + 1) 52 ∗ P 10,649,600 W0 ∗ P ∗ 102 600

0 0.02 ∗ t 52 ∗ P 10,649,600 W0 ∗ P ∗ 102 600

0 −(0.1 ∗ (t%17)) + 0.8 52 ∗ P 10,649,600 W0 ∗ P ∗ 102 600

sin πt
180 0.1 52 ∗ P 10,649,600 W0 ∗ P ∗ 102 600

sin πt
180 1/(0.4 ∗ t + 1) 52 ∗ P 10,649,600 W0 ∗ P ∗ 102 600

sin πt
180 0.02 ∗ t 52 ∗ P 10,649,600 W0 ∗ P ∗ 102 600

sin πt
180 −(0.1 ∗ (t%17)) + 0.8 52 ∗ P 10,649,600 W0 ∗ P ∗ 102 600
I(t) =
{

I(t − 1) + ι(t − LBprevious) if t > LBprevious,

0 otherwise,
(35)

where LBprevious is the previous iteration at which the load bal-
ancing mechanism has been used and ι(t) is a function returning
the difference in load imbalance between two iterations. Typically,
I(t) ∈ [0, P − 1], hence, in practice, a particular attention as to be
given to not trespass those bounds. Now, by setting ω(·), ι(·), W0,
P , and the number of iterations γ , we can compute m(t) and μ(t)
for each iteration and use Equation (10) to compute the parallel
time of the application.

Remark 4. Here, we make a strong assumption on the shape of
the load imbalance curve after load balancing. Indeed, in practice,
the load balancing mechanism involving data partitioning will in-
fluence the load imbalance growth. It is impossible to know the
load imbalance function after load balancing without a deep un-
derstanding about the partitioning algorithm impact on the prob-
lem to solve, which is extremely challenging to incorporate into
a mathematical model. Herein, we decide to use ι(t − LBprevious),
which means that each time a load balancing is performed, the
load imbalance pattern is repeated. Another possibility could have
been to set the y-intercept to 0 (i.e., shift the function ι(·) down)
after each load balancing step. However, this solution was diffi-
cult to implement without providing any clear benefits. Finally, we
think that this subject is worth a research effort and will be tar-
geted in future works.

The parameters used in the synthetic benchmarks are summa-
rized in Table 2. The initial workload (expressed in time units)
is proportional to a 2D Lattice-Boltzmann computational fluid dy-
namic problem with 109 D2Q9 cells per processing unit with a
performance of 1 Gflops [31]. The number of processing units is
equal to the number of cores available in the supercomputer “Sun-
way TaihuLight” [32]. We studied two types of situations. First, we
targeted benchmarks with a static workload (i.e., the global work-
load is always the same) but with a workload distribution that
changes over time. Then, we focused on the same benchmarks but
with an irregular workload that increases/decreases over time. The
static workload benchmarks target applications that suffer from
load imbalance due to the parallelization. The irregular workload
benchmarks target applications with varying workload per time-
step, and where the load imbalance comes from both the problem
in itself and the parallelization.

Finally, we use our C++ implementation of our branch-and-
bound algorithm presented in Section 5 (LBOPT), in which we
employ m(t) and μ(t) (derived from W (t) and I(t)) to compute
219
the parallel time to reach any node in the tree and find the opti-
mal load balancing scenario σ ∗ .

The results of the synthetic benchmarks for static applications
are shown in Fig. 6. For Procassini criterion, we tried 5000 values
of ρ between 0.5 and 50.0; however, for readability, we decided
only to show the scenario that performed the best. The upper
figure shows the simulated parallel time that we obtained using
the model presented in Section 4. The lower figure indicates the
growth of the cumulative time-per-time-step U (defined in Equa-
tion (20)), and the horizontal bar gives the value of C in order to
track how the criteria differ from Menon criterion given by Equa-
tion (19). We use this figure to compare the behavior of the load
balancing criteria.

In the constant experiment (Fig. 6a), both Menon criterion and
our criterion behave like the optimal strategy. In other words,
their load balancing time interval is similar to σ ∗ . Still, they differ
marginally at the end of the simulation. It is important to remark
that depending on when the last load balancing step happens, and
it may be preferable to delay or schedule some load balancing calls
earlier, as we can observe in Fig. 6a. Indeed, wasting a call at the
very end of a simulation is useless. However, to take such a deci-
sion, one may need to foresee the future and detect if, given the
current criterion, a call would appear near the end. Obviously, only
the solution from our branch-and-bound algorithm is able to see
that, as it tests “all” the possible solutions. Procassini criterion with
a ρ value of 19.43 seems optimal. Note that we also tried to use
ρτ (defined in Equation (21)) for Procassini criterion. We observed
that Procassini criterion performs the load balancing steps at the
exact same iteration as Menon and our criterion, as suggested in
Remark 2. Finally, this experiment fits well the hypothesis of both
our criterion and Menon criterion, and thus they behave optimally,
as shown in Section 4.

In the linear experiment (Fig. 6b), our criterion and Procassini
criterion with a ρ value of 15.5 behave like the optimal scenario
and therefore are very close in terms of performance. However, we
notice that Menon criterion does not follow the same load balanc-
ing time interval as the optimal scenario, leading to a performance
loss of approximately 10%. In particular, we remark that Menon
criterion does not re-balance frequently enough.

In the sublinear experiment (Fig. 6c), the opposite situation
appears (compared to the linear experiment). Herein, Menon crite-
rion re-balance too often, wasting valuable resources. It is expected
behavior as we observed in Section 4 that this criterion is optimal
only if the load imbalance growth is constant, which is not the
case in the sublinear experiment nor in the linear experiment.

In the auto-correct experiment (Fig. 6d), we see that neither
our criterion nor Menon criterion can understand that no load
balancing is required because the load imbalance corrects itself pe-

A. Boulmier, N. Abdennadher and B. Chopard Journal of Parallel and Distributed Computing 169 (2022) 211–225

Fig. 6. Results of the synthetic benchmarks with static workloads for Menon criterion [19], our criterion, and Procassini criterion [27] against the optimal scenario σ ∗ .
Four sources of load imbalance are considered: (i) constant, (ii) linear with time, (iii) sublinear with time, and (iv) linear with time and self-correcting every 17 iterations.
Parameters used in this benchmark are summarized in Table 2. U is defined in Equation (20).
riodically. Nevertheless, our criterion is able to detect up to five
auto-correcting patterns in a row. For that reason, in this exper-
iment, our criterion is far better in terms of performance than
Menon criterion. Only Procassini criterion provided the optimal ρ
value is able to match the performance of the optimal scenario.

The results of the synthetic benchmarks with irregular work-
loads are presented in Fig. 7. Like in the previous benchmarks, the
same values of ρ have been considered for Procassini criterion, and
we show the scenario that performed the best.

In the constant experiment presented in Fig. 7a, we see that
the performance of both our criterion and Menon criterion are al-
most unchanged. However, Procassini criterion decreased in perfor-
mance compared to the static experiment. In the linear experiment
(Fig. 7b), the results are similar to the static experiment where
Menon criterion does not re-balance frequently enough, whereas
our criterion and Procassini criterion follow the behavior of the
optimal strategy.

In the sub-linear experiment (Fig. 7c), Menon criterion im-
proves its performance, whereas Procassini criterion’s performance
decreases. Our criterion performs on par with both Menon crite-
rion and the optimal scenario. It is worth noticing that during the
slow-down around iteration 300, our criterion stops re-balancing
while the optimal scenario only decreases the load balancing time
220
interval. This suggests that our criterion is able to adapt its behav-
ior to the current situation. This phenomenon is also visible in the
last experiment. However, there, the optimal scenario does not re-
balance at all. Finally, in the auto-correct experiment (Fig. 7d), we
remark that Procassini criterion is the only criterion able to detect
that re-balancing the application is not necessary. Nevertheless,
our criterion reduces its load balancing time interval, drastically
improving its performance compared to Menon criterion.

To understand the difference in performance among those cri-
teria in a better way, we show in Fig. 8 the relative performance
of our criterion, Menon criterion, and Procassini criterion com-
pared to the optimal scenario. The relative performance is defined
as Tcriteria/Tσ ∗ . We see that out of the three criteria we studied
Procassini criterion is the best provided the optimal value of ρ .
However, not every scientist can afford the effort to find the op-
timal ρ before executing his/her application, which is not needed
with our criterion and Menon’s like criteria. Moreover, the perfor-
mance of both Menon criterion and our criterion are really close
to the optimal scenario in these experiments. Finally, Menon cri-
terion performs better in the irregular workload than in the static
workload situations.

To confirm these hypotheses, we propose a numerical study of
all the criteria presented in Section 3 on YALBB, a home-made load

A. Boulmier, N. Abdennadher and B. Chopard Journal of Parallel and Distributed Computing 169 (2022) 211–225

Fig. 7. Results of the synthetic benchmarks with irregular workloads for Menon criterion [19], our criterion, and Procassini criterion [27] with an optimally tuned parameter
ρ against the optimal scenario σ ∗ . Four sources of load imbalance are considered: (i) constant, (ii) linear with time, (iii) sublinear with time, and (iv) linear with time and
self-correcting every 17 iterations. Parameters used in this benchmark are summarized in Table 2. U is defined in Equation (20).

Fig. 8. Relative performance of the our criterion, Menon criterion, and Procassini criterion against the optimal scenario in the static workload and irregular workload synthetic
benchmarks. The relative performance is defined as Tcriteria/Tσ ∗ .
balancing benchmark based on a N-body simulation with a short-
range force.

6.2. Numerical study with YALBB

We carried out three experiments involving 40,000 particles
and hundreds of millions of interactions with “YALBB” to evaluate
221
the load balancing criteria presented in Section 3. The experiments
were conducted with a standard Lennard-Jones interaction. The
inner data structure uses the well-known cell lists algorithm for
managing particles neighborhood. In these experiments, we used
Zoltan [6] as a load balancing library for partitioning and manag-
ing the related data. Fig. 9 shows an example of 40,000 particles
distributed among 4 processing elements using the Hilbert space-

A. Boulmier, N. Abdennadher and B. Chopard Journal of Parallel and Distributed Computing 169 (2022) 211–225

Table 3
Physical parameters for the three numerical experiments.

Parameter Contraction Expansion Expansion and Contraction

Box size (x,y,z) (3.15, 3.15, 3.15)

Number of particles 40,000

σLJ 0.7

εLJ 1.0

Initial temperature 3.0

Time-step 2e-5 8.4e-5 1.2e-4
Fig. 9. Example of a sphere of uniformly distributed 40,000 particles. Particles are
distributed to 4 processing elements using the Hilbert Space Filling Curve. The par-
ticles are colored according to the rank of their attributed processing element.

filling curve algorithm available in Zoltan. The experiments were
executed on “Yggdrasil” the University of Geneva’s cluster (Intel
Xeon Gold 6240 CPU @ 2.60 GHz).

The first experiment consisted of a uniformly distributed sphere
of particles expanding in a vacuum. The second experiment simu-
lated the compression of a bigger uniformly distributed sphere of
particles in a vacuum. The third experiment was a combination of
both, one after the other, starting with the expansion phase. While
in expansion, the particles were attracted to the sphere’s center
by a force proportional to the earth’s gravity. Hence, after a few
iterations, the sphere started to compress again. The results are
obtained over one sequence of expansion-compression of the gas.
The physical parameters used in our numerical study are shown
in Table 3. The number of interactions to compute over time is
shown in Fig. 10 for each experiment. As we can see in this figure,
the amount of interactions (i.e., the density of particles) varies a lot
over the execution of the experiment changing the requirement for
load balancing. At the beginning of the expansion simulations, al-
most every particle interacts with all the others, this huge density
decreases rapidly after the beginning of the simulation, drastically
changing the workload of many processing elements. The reverse
situation appears in the contraction simulation where there is al-
most no interaction at the beginning of the code execution, but
a very high density is observed towards the end. In these experi-
ments, we used the Hilbert Space Filling curve algorithm available
in the Zoltan load balancing library [6].

The results of the three experiments are presented in Fig. 11.
We executed the code 5 times for each experiment, and we report
the median parallel time for each criterion. As we can observe,
state-of-the-art load balancing criteria can achieve close to opti-
mal performance. However, for Procassini criterion and Marquez
criterion, the user has to find the optimal value of the parameter
(ρ or ξ), which is not something everybody can afford. This is why
automatic criteria seem to be the best fit for most situations, even
though a ρ value between 1.0 and 1.25 seems to work the best for
222
Procassini criterion. Furthermore, as we can see in Table 4, criteria
with an extra parameter often have non-consistent results across
experiments. Also, the penalty for using a sub-optimal value can be
huge, and there is no rule of thumb to find the right value except
testing many of them. Finally, we see that our criterion performs,
on average, 6.79% faster than the studied load balancing criteria
with a standard deviation of 0.08. In particular, our criterion is
12.47% faster than Zhai criterion in the expansion-contraction ex-
periment and 6.95% faster than Menon criterion in the contraction
experiment.

Among Menon’s like criteria, the Zhai criterion seems to be the
less stable one. Even though it outperforms Menon criterion in one
experiment, the Zhai criterion produced a run considerably slower
in the other two experiments. The reason for this result is likely
to be due to the evaluation phase P = 100 proposed by Zhai et al.
in their paper [37] that may be well fitted for the contraction ex-
periment and not in the others. However, the study of the impact
of the evaluation phase on the performance of the Zhai criterion is
out of the scope of this paper and could be the subject of another
work. Finally, these results involving Menon’s like criteria suggest
that different implementation of the same idea behind load bal-
ancing criteria might significantly impact performance.

Finally, we observe that our criterion performs on par with
Menon criterion and outperforms it in the expansion and contrac-
tion simulation. Menon criterion seems to perform better when the
application exhibits an irregular workload, as seen in the synthetic
benchmarks. It could be why the gap between the two criteria is
much closer in the numerical experiment than in the synthetic
benchmark. Overall, our criterion and Menon criterion seem to
be the most stable criteria. The optimum is faster than Menon
criterion by 36.80% and 32.09% faster than our criterion in the
contraction experiment, 19.17% and 18.60% faster in the expan-
sion experiment, and 16.33% and 18.03% faster in the expansion-
contraction experiment.

The present study is not enough to conclude that our criterion
is better than Menon criterion, even though our criterion outper-
forms Menon criterion up to 6.9%. In comparison, it was slower
by only at most 2.0%. However, it suggests that they are both
excellent alternatives. In particular, our numerical study indicates
that these two criteria often perform almost optimally. Therefore,
we encourage scientists to use our branch-and-bound algorithm to
compare the performance of available load balancing criteria to as-
sess which criterion is the most suited for their type of problem.

7. Conclusion

In the present paper, we proposed a review of state-of-the-art
load balancing criteria and we introduced a novel fully automatic
criterion based on a simple mathematical model inspired from
the literature. We tried to classify these criteria as a function of
their requirements and the information (external or not) required
to compute the load balancing decision. Secondly, we proposed a
branch-and-bound method for computing the set of load balanc-

A. Boulmier, N. Abdennadher and B. Chopard Journal of Parallel and Distributed Computing 169 (2022) 211–225

Fig. 10. The number of particle interactions to compute at each iteration (i.e., application workload) of the three experiments carried out in the numerical study. Each
experiment is composed of 40,000 particles. The first experiment computes a sphere of uniformly distributed particles that contracts on the effect of an external force. The
second experiment computes a sphere of uniformly distributed particles that expands. The third experiment starts by expanding the sphere and then the sphere contracts.

Fig. 11. Comparison of the median performance of each criterion (among 5 executions) in the numerical experiments relative to the optimal scenario σ ∗ .
ing steps leading to the optimal performance of a given applica-
tion. Besides, we provide two implementations of this algorithm.
The first implementation in LBOPT [35] the package related to the
synthetic benchmarks and the second, in YALLB [34] the package
related to the N-body solver we used in the numerical experi-
ments. Afterward, we studied the performance of state-of-the-art
load balancing criteria and our new criterion on synthetic bench-
marks (modeled via our simple mathematical model) and on a
parallel N-body solver.

We observed that our novel criterion outperforms automatic
state-of-the-art criteria in synthetic benchmarks. However, we
pointed out that the performance difference was tighter in the
irregular total workload scheme compared to the static total work-
load scheme. We also identified that modeling the impact of the
load balancing method on the load imbalance growth is challeng-
ing. This is a topic that is worth the research effort and will be
targeted for future work.
223
We saw that the gain of our criterion with respect to the other
criteria is smaller in our N-body numerical experiments due to
system perturbations and uncertainties about the load imbalance
function. However, we remarked that fully automatic criteria have
more reliable results, only at most 36.80% (Menon criterion) slower
than the optimal scenario. In particular, a run with our criterion is
never more than 32.08% slower than the optimum. Our criterion
can outperform Menon criterion by up to 6.9%, while it is outper-
formed by up to a marginal 2.0% in the worst case. We also noticed
that our criterion is, on average, 6.79% faster than the other load
balancing criteria with. All these experiments suggest that our cri-
terion is a very good alternative to other automatic load balancing
criteria, offering almost optimal performance.

Of course, to further confirm the aforementioned observations,
we plan to test our new criterion on production codes. The first
step will be to integrate our re-balancing strategy in Palabos [15],
a parallel Lattice-Boltzmann solver. Then, we will investigate more

A. Boulmier, N. Abdennadher and B. Chopard Journal of Parallel and Distributed Computing 169 (2022) 211–225

Table 4
Summary of the performance results for the three numerical experiments. The median performance and the
median absolute deviation of each criterion are reported from the data gathered during 5 executions. For the
criteria with an extra parameter, we reported the performance of the best parameter.

Experiment Criterion Median [s] Median Absolute Deviation

Contraction σ ∗ 19.35 0.08
Menon et al. 30.62 0.18
Our criterion 28.49 0.42
Zhai et al. (P = 100) 24.89 0.25
Procassini et al. (ρ∗ = 1.25) 30.34 1.64
Marquez et al. (ξ∗ = 4.00) 33.51 0.37

Expansion σ ∗ 19.77 0.10
Menon et al. 24.46 0.56
Our criterion 24.29 0.36
Zhai et al. (P = 100) 27.20 0.57
Procassini et al. (ρ∗ = 1.00) 27.66 0.73
Marquez et al. (ξ∗ = 0.90) 26.88 0.49

Expansion and Contraction σ ∗ 24.68 0.12
Menon et al. 29.50 0.49
Our criterion 30.11 0.30
Zhai et al. (P = 100) 34.42 0.93
Procassini et al. (ρ∗ = 1.00) 36.09 2.66
Marquez et al. (ξ = 1.50) 32.63 1.32
complex load imbalance growth. For instance, we plan to add ran-
dom bias to the load imbalance growth to simulate perturbations
coming from various sources, such as system characteristics. The
last step is to improve our understanding about the impact of the
partitioning method on the load imbalance growth. It is mandatory
to have benchmarks that better reproduce the behavior of real ap-
plications.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

We want to thank Olivier Belli for his help in proofreading the
paper.

Appendix A. Optimal scenario finding algorithm

Algorithm 1: Optimal Load Balancing Scenario Searching
Algorithm.

Input: numIter: the number of iterations to compute, priorityQueue: a
priority queue

1 foundLb[i] = 0∀i = 1..K ;
// root node

2 cNode = Node(iter=0, LB=true, cost=0.0, appState, lbState, prev=∅);
3 while cNode.iter < numIter do
4 if cNode.LB then
5 foundLB[cNode.iter] = true;
6 end
7 dontLBNode, doLBNode = cNode.getChildren();
8 if not foundLB[doLBNode.iter] then

// Measurement of cost (i.e., time) with a
theoretical model or a real application

9 doLBNode.computeCost();
10 replaceOrInsertNode(priorityQueue, doLBNode);
11 end
12 dontLBNode.computeCost();
13 insert(priorityQueue, dontLBNode);
14 cNode = priorityQueue.pop();
15 end
224
Appendix B. Replace or insert algorithm

Algorithm 2: replaceOrInsertNode(priorityQueue, doLBN-
ode): void.

Input: priorityQueue: the priority queue, doLBNode: the load balancing
node to insert or replace

1 for node ∈ priorityQueue do
2 if node.iter == doLBNode.iter and node.LB == true then
3 if node.cost > doLBNode.cost then
4 priorityQueue.remove(node);
5 priorityQueue.insert(doLBNode);
6 end
7 return;
8 end
9 end

10 priorityQueue.insert(doLBNode);

References

[1] R. Borrell, G. Oyarzun, D. Dosimont, G. Houzeaux, Parallel SFC-based mesh par-
titioning and load balancing, in: Proceedings of ScalA 2019: 10th Workshop
on Latest Advances in Scalable Algorithms for Large-Scale Systems - Held in
Conjunction with SC 2019: The International Conference for High Performance
Computing, Networking, Storage and Analysis, Institute of Electrical and Elec-
tronics Engineers Inc., 2019, pp. 72–78.

[2] A. Boulmier, I. Banicescu, F. Ciorba, N. Abdennadher, An autonomic approach
for the selection of robust dynamic loop scheduling techniques, in: Proceedings
- 2017 IEEE 16th International Symposium on Parallel and Distributed Comput-
ing, ISPDC 2017, 2017.

[3] A. Boulmier, F. Raynaud, N. Abdennadher, B. Chopard, On the benefits of antici-
pating load imbalance for performance optimization of parallel applications, in:
Proceedings - IEEE International Conference on Cluster Computing, ICCC, vol.
2019-September, Institute of Electrical and Electronics Engineers Inc., 2019.

[4] Márquez Claudio, Eduardo César, Joan Sorribes, A load balancing schema for
agent-based spmd applications, in: Proceedings of the International Conference
on Parallel and Distributed Processing Techniques and Applications (PDPTA),
2013.

[5] L. DeRose, B. Homer, D. Johnson, Detecting application load imbalance on high
end massively parallel systems, in: Lecture Notes in Computer Science (In-
cluding Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), in: LNCS, vol. 4641, Springer Verlag, 2007, pp. 150–159.

[6] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, C. Vaughan, Zoltan data man-
agement services for parallel dynamic applications, Comput. Sci. Eng. 4 (2)
(2002) 90–97.

[7] J.-L. Fattebert, D.F. Richards, J.N. Glosli, Dynamic load balancing algorithm for
molecular dynamics based on Voronoi cells domain decompositions, Comput.

http://refhub.elsevier.com/S0743-7315(22)00168-X/bibB5C4DB17CFE07E970E3B59176E622C7Fs1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bibB5C4DB17CFE07E970E3B59176E622C7Fs1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bibB5C4DB17CFE07E970E3B59176E622C7Fs1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bibB5C4DB17CFE07E970E3B59176E622C7Fs1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bibB5C4DB17CFE07E970E3B59176E622C7Fs1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bibB5C4DB17CFE07E970E3B59176E622C7Fs1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bibFC3B863ED6DE6CADC27D6F6A521A7751s1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bibFC3B863ED6DE6CADC27D6F6A521A7751s1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bibFC3B863ED6DE6CADC27D6F6A521A7751s1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bibFC3B863ED6DE6CADC27D6F6A521A7751s1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib0700BF2BDF7A22401B7240C7F962C04Fs1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib0700BF2BDF7A22401B7240C7F962C04Fs1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib0700BF2BDF7A22401B7240C7F962C04Fs1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib0700BF2BDF7A22401B7240C7F962C04Fs1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib719C44F63D8A8B8254E4BB996BDA172Fs1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib719C44F63D8A8B8254E4BB996BDA172Fs1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib719C44F63D8A8B8254E4BB996BDA172Fs1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib719C44F63D8A8B8254E4BB996BDA172Fs1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib4FBAA46CAA8000E8C6E7AB5A490B5B83s1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib4FBAA46CAA8000E8C6E7AB5A490B5B83s1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib4FBAA46CAA8000E8C6E7AB5A490B5B83s1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib4FBAA46CAA8000E8C6E7AB5A490B5B83s1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib4D28EA48F17C936ED83765CC96C5D9D3s1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib4D28EA48F17C936ED83765CC96C5D9D3s1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib4D28EA48F17C936ED83765CC96C5D9D3s1

A. Boulmier, N. Abdennadher and B. Chopard Journal of Parallel and Distributed Computing 169 (2022) 211–225
Phys. Commun. 183 (2012) 2608–2615, https://doi .org /10 .1016 /j .cpc .2012 .07.
013.

[8] F. Fleissner, P. Eberhard, Parallel load-balanced simulation for short-range inter-
action particle methods with hierarchical particle grouping based on orthogo-
nal recursive bisection, Int. J. Numer. Methods Eng. 74 (4) (2008) 531–553,
https://doi .org /10 .1002 /nme .2184.

[9] M. Furuichi, D. Nishiura, Iterative load-balancing method with multigrid level
relaxation for particle simulation with short-range interactions, Comput. Phys.
Commun. 219 (2017) 135–148, https://doi .org /10 .1016 /j .cpc .2017.05 .015.

[10] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W.H. Freeman & Co., New York, USA, 1979.

[11] P.E. Hart, N.J. Nilsson, B. Raphael, A formal basis for the heuristic determination
of minimum cost paths, IEEE Trans. Syst. Sci. Cybern. 4 (2) (1968) 100–107.

[12] E. Horowitz, S. Sahni, Fundamentals of Computer Algorithms, Computer
Software Engineering Series, Pitman, 1978, https://books .google .ch /books ?id =
n8c8PgAACAAJ.

[13] T. Ishiyama, K. Nitadori, J. Makino, 4.45 Pflops astrophysical N-body simulation
on K computer - the gravitational trillion-body problem, in: International Con-
ference for High Performance Computing, Networking, Storage and Analysis, SC,
2012.

[14] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning
irregular graphs, SIAM J. Sci. Comput. 20 (1) (1998) 359–392, https://doi .org /
10 .1137 /S1064827595287997.

[15] J. Latt, O. Malaspinas, D. Kontaxakis, A. Parmigiani, D. Lagrava, F. Brogi, M.B.
Belgacem, Y. Thorimbert, S. Leclaire, S. Li, F. Marson, J. Lemus, C. Kotsalos, R.
Conradin, C. Coreixas, R. Petkantchin, F. Raynaud, J. Beny, B. Chopard, Pala-
bos: parallel lattice Boltzmann solver, Comput. Math. Appl. 81 (2021) 334–350,
https://doi .org /10 .1016 /j .camwa .2020 .03 .022.

[16] M. Lieber, W.E. Nagel, Highly scalable SFC-based dynamic load balancing and
its application to atmospheric modeling, Future Gener. Comput. Syst. 82 (2018)
575–590, https://doi .org /10 .1016 /j .future .2017.04 .042.

[17] M. Mayr, A. Popp, Dynamic load balancing for large-scale mortar contact for-
mulations, PAMM 20 (1) (2021) e202000196, https://doi .org /10 .1002 /PAMM .
202000196, https://onlinelibrary.wiley.com /doi /full /10 .1002 /pamm .202000196.

[18] H. Menon, Adaptive Load Balancing for HPC Applications, Ph.D. thesis, Univer-
sity of Illinois Urbana-Champaign, 2016.

[19] H. Menon, N. Jain, G. Zheng, L. Kalé, Automated load balancing invocation
based on application characteristics, in: 2012 IEEE International Conference on
Cluster Computing, 2012, pp. 373–381.

[20] K.G. Miller, R.P. Lee, A. Tableman, A. Helm, R.A. Fonseca, V.K. Decyk, W.B.
Mori, Dynamic load balancing with enhanced shared-memory parallelism for
particle-in-cell codes, Comput. Phys. Commun. 259 (2021) 107633, https://
doi .org /10 .1016 /J .CPC .2020 .107633.

[21] A. Mohammed, F.M. Ciorba, Sil: an approach for adjusting applications to het-
erogeneous systems under perturbations, in: Euro-Par 2018: Parallel Processing
Workshops, Springer International Publishing, Cham, 2019, pp. 456–468.

[22] A. Navarro Muñoz, A.F. Lorenzon, E. Ayguadé Parra, V. Beltran Querol, Com-
bining dynamic concurrency throttling with voltage and frequency scaling on
task-based programming models, in: 50th International Conference on Paral-
lel Processing, ICPP 2021, Association for Computing Machinery, New York, NY,
USA, 2021.

[23] P. Offenhäuser, Load-balance strategies for CFD-codes on HPC systems, in: Pro-
ceedings of the 7th GACM Colloquium on Computational Mechanics for Young
Scientists from Academia and Industry, OPUS, Stuttgart, Germany, 2017.

[24] O. Pearce, T. Gamblin, B.R. de Supinski, M. Schulz, N.M. Amato, Quantifying
the effectiveness of load balance algorithms, in: Proceedings of the 26th ACM
International Conference on Supercomputing - ICS ’12, ACM Press, New York,
New York, USA, 2012, p. 185.

[25] O.T. Pearce, M.L. Adams, B.R. De Supinski, L. Rauchwerger, V.E. Taylor, Load Bal-
ancing Scientific Applications, Ph.D. thesis, Texas A&M University, 2014.

[26] R. Prat, T. Carrard, L. Soulard, O. Durand, R. Namyst, L. Colombet, AMR-
based molecular dynamics for non-uniform, highly dynamic particle simula-
tions, Comput. Phys. Commun. 253 (2020) 107177, https://doi .org /10 .1016 /J .
CPC .2020 .107177.

[27] R.J. Procassini, M.J. O’brien, J.M. Taylor, Load Balancing of Parallel Monte Carlo
Transport Calculations, Tech. Rep., International Topical Meeting on Mathemat-
ics and Computation, Supercomputing, Reactor physics and Nuclear and Bio-
logical Applications, Avignon, France, 2004.

[28] F.A. Rodrigues, Study of load distribution measures for high-performance ap-
plications, Ph.D. thesis, Federal University of Rio Grande do Sul, 2016, https://
lume .ufrgs .br /handle /10183 /149593.

[29] J. Schwarzrock, M.G. Jordan, G. Korol, C.C. d. Oliveira, A.F. Lorenzon, M. Beck
Rutzig, A.C.S. Beck, Dynamic concurrency throttling on numa systems and data
migration impacts, Des. Autom. Embed. Syst. 25 (2) (2021) 135–160.

[30] H.D. Simon, S.H. Teng, How good is recursive bisection?, SIAM J. Sci. Comput.
18 (5) (1997) 1436–1445, https://doi .org /10 .1137 /S1064827593255135.

[31] T. Tomczak, R.G. Szafran, Sparse geometries handling in lattice Boltzmann
method implementation for graphic processors, IEEE Trans. Parallel Distrib.
Syst. 29 (8) (8 2018), https://doi .org /10 .1109 /TPDS .2018 .2810237.

[32] Top500, https://www.top500 .org /lists /top500 /2020 /11/, November 2020.
[33] R. Van Driessche, D. Roose, An improved spectral bisection algorithm and its

application to dynamic load balancing, Parallel Comput. 21 (1) (1995) 29–48,
https://doi .org /10 .1016 /0167 -8191(94)00059 -J.

[34] xetqL/LBOPT: Lightning fast code for computing load balancing scenario from
application parameters, https://github .com /xetqL /LBOPT.

[35] xetqL/yalbb: Yet another load balancing benchmark, https://github .com /xetqL /
yalbb.

[36] K. Zhai, T. Banerjee, D. Zwick, J. Hackl, S. Ranka, Dynamic load balancing for
compressible multiphase turbulence, in: Proceedings of the 2018 International
Conference on Supercomputing - ICS ’18, ACM Press, New York, New York, USA,
2018, pp. 318–327.

[37] K. Zhai, T. Banerjee, D. Zwick, J. Hackl, R. Koneru, S. Ranka, Dynamic load bal-
ancing for a mesh-based scientific application, Concurr. Comput., Pract. Exp.
32 (9) (2020) e5626, https://doi .org /10 .1002 /CPE .5626, https://onlinelibrary.
wiley.com /doi /full /10 .1002 /cpe .5626.

Dr. Anthony Boulmier received his B.A.Sc and his
M.Sc from the University of Applied Sciences Western
Switzerland (HES-SO). He received his Ph.D. in Com-
puter Science from the University of Geneva in 2022.
His work focuses on the performance optimization of
parallel applications through load balancing.

Prof. Nabil Abdennadher received the Diploma in
Engineering (Computer science) from ENSI, Tunisia,
and the Ph.D. degrees in Computer Science from Uni-
versity of Valenciennes (France) in 1988 and 1991,
respectively. He was an assistant professor at the Uni-
versity of Tunis II from 1992 to 1998 and a research
assistant at EPFL from 1999 to 2000. In 2001, he
joined the Depart. of Computer Engineering at the
University of Applied Sciences, Western Switzerland

(HES-SO, HEPIA) as an assistant HES professor. In 2008, he became an as-
sociate HES professor and in 2017 he was promoted to full HES professor.
He is currently head of both the inIT Research Institute and the LSDS re-
search group. His major research interests include high performance and
distributed computing, Internet of Things and urban computing. He is
representative of the Swiss Alliance for Data-Intensive Services in Swiss
Romande, and member of the Editorial Board of the Journal of Reliable
Intelligent Environments.

Prof. Bastien Chopard is full professor at the Uni-
versity of Geneva, and group leader in the Swiss In-
stitute of Bioinformatics. He earned his PhD in theo-
retical physics from the University of Geneva in 1988.
He then spent two years as a postdoc in the labora-
tory for computer science at MIT (Cambridge, USA),
and one year in the Research Center, Juelich (Ger-
many) before joining the computer science depart-
ment at University of Geneva. His main research in-

terests are the modeling and simulation of complex systems. He is in-
ternationally recognized for his work on Cellular Automata and Lattice
Boltzmann methods. He wrote more than 200 scientific articles, present-
ing interdisciplinary research in various fields, such as physics, social and
environmental science, bio-medical applications, numerical and optimiza-
tion methods, parallel computing and multiscale modeling.
225

https://doi.org/10.1016/j.cpc.2012.07.013
https://doi.org/10.1016/j.cpc.2012.07.013
https://doi.org/10.1002/nme.2184
https://doi.org/10.1016/j.cpc.2017.05.015
http://refhub.elsevier.com/S0743-7315(22)00168-X/bibB8B4995332D62B114BF69671632C4A9Ds1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bibB8B4995332D62B114BF69671632C4A9Ds1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bibE3ED81CB8D682225D9A7B8033065ABADs1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bibE3ED81CB8D682225D9A7B8033065ABADs1
https://books.google.ch/books?id=n8c8PgAACAAJ
https://books.google.ch/books?id=n8c8PgAACAAJ
http://refhub.elsevier.com/S0743-7315(22)00168-X/bibC44DDDA04CB5B27AF8DE9AED4660BFE1s1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bibC44DDDA04CB5B27AF8DE9AED4660BFE1s1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bibC44DDDA04CB5B27AF8DE9AED4660BFE1s1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bibC44DDDA04CB5B27AF8DE9AED4660BFE1s1
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1016/j.camwa.2020.03.022
https://doi.org/10.1016/j.future.2017.04.042
https://doi.org/10.1002/PAMM.202000196
https://doi.org/10.1002/PAMM.202000196
https://onlinelibrary.wiley.com/doi/full/10.1002/pamm.202000196
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib1C9D274DCE060CF3FBA919915521E5BCs1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib1C9D274DCE060CF3FBA919915521E5BCs1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib28C0BB92D3FBC9CAD1A75E7D2C966109s1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib28C0BB92D3FBC9CAD1A75E7D2C966109s1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib28C0BB92D3FBC9CAD1A75E7D2C966109s1
https://doi.org/10.1016/J.CPC.2020.107633
https://doi.org/10.1016/J.CPC.2020.107633
http://refhub.elsevier.com/S0743-7315(22)00168-X/bibA1B740EE14BA17C5210118A2E03981DEs1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bibA1B740EE14BA17C5210118A2E03981DEs1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bibA1B740EE14BA17C5210118A2E03981DEs1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bibC9D1B2D4FACF3B59CC69AC5738293A9Cs1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bibC9D1B2D4FACF3B59CC69AC5738293A9Cs1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bibC9D1B2D4FACF3B59CC69AC5738293A9Cs1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bibC9D1B2D4FACF3B59CC69AC5738293A9Cs1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bibC9D1B2D4FACF3B59CC69AC5738293A9Cs1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib9891EA216A0A8CE3AEBFEE2FAC4DF8E7s1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib9891EA216A0A8CE3AEBFEE2FAC4DF8E7s1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib9891EA216A0A8CE3AEBFEE2FAC4DF8E7s1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bibBB1E313375C033D079CFE752EA335658s1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bibBB1E313375C033D079CFE752EA335658s1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bibBB1E313375C033D079CFE752EA335658s1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bibBB1E313375C033D079CFE752EA335658s1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib7AB91A74DC07CD9F6E4F40EBF3F68956s1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib7AB91A74DC07CD9F6E4F40EBF3F68956s1
https://doi.org/10.1016/J.CPC.2020.107177
https://doi.org/10.1016/J.CPC.2020.107177
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib72896A3169FFA9672B5220105A77E98Es1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib72896A3169FFA9672B5220105A77E98Es1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib72896A3169FFA9672B5220105A77E98Es1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib72896A3169FFA9672B5220105A77E98Es1
https://lume.ufrgs.br/handle/10183/149593
https://lume.ufrgs.br/handle/10183/149593
http://refhub.elsevier.com/S0743-7315(22)00168-X/bibD1F05C42008B7465B5983ECAE304FA42s1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bibD1F05C42008B7465B5983ECAE304FA42s1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bibD1F05C42008B7465B5983ECAE304FA42s1
https://doi.org/10.1137/S1064827593255135
https://doi.org/10.1109/TPDS.2018.2810237
https://www.top500.org/lists/top500/2020/11/
https://doi.org/10.1016/0167-8191(94)00059-J
https://github.com/xetqL/LBOPT
https://github.com/xetqL/yalbb
https://github.com/xetqL/yalbb
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib87BD2592F3A8C9DAB24B3A5FF659C502s1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib87BD2592F3A8C9DAB24B3A5FF659C502s1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib87BD2592F3A8C9DAB24B3A5FF659C502s1
http://refhub.elsevier.com/S0743-7315(22)00168-X/bib87BD2592F3A8C9DAB24B3A5FF659C502s1
https://doi.org/10.1002/CPE.5626
https://onlinelibrary.wiley.com/doi/full/10.1002/cpe.5626
https://onlinelibrary.wiley.com/doi/full/10.1002/cpe.5626

	Optimal load balancing and assessment of existing load balancing criteria
	1 Introduction
	2 The load balancing decision problem
	3 Background works
	4 A workload-aware load balancing criterion
	5 Finding the optimal load balancing scenario
	5.1 Load balancing tree pruning
	5.2 Optimal scenario search algorithm

	6 Comparison of load balancing criteria
	6.1 Synthetic benchmarks
	6.2 Numerical study with YALBB

	7 Conclusion
	Declaration of competing interest
	Acknowledgment
	Appendix A Optimal scenario finding algorithm
	Appendix B Replace or insert algorithm
	References

