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Parallel iterative applications often suffer from load imbalance, one of the most critical performance 
degradation factors. Hence, load balancing techniques are used to distribute the workload evenly to 
maximize performance. A key challenge is to know when to use load balancing techniques. In general, 
this is done through load balancing criteria, which trigger load balancing based on runtime application 
data and/or user-defined information. In the first part of this paper, we introduce a novel, automatic 
load balancing criterion derived from a simple mathematical model. In the second part, we propose a 
branch-and-bound algorithm to find the load balancing iterations that lead to the optimal application 
performance. This algorithm finds the optimal load balancing scenario in polynomial time while, to 
the best of our knowledge, it has never been addressed in less than an exponential time. Finally, we 
compare the performance of the scenarios produced by state-of-the-art load balancing criteria relative 
to the optimal load balancing scenario in synthetic benchmarks and parallel N-body simulations. In the 
synthetic benchmarks, we observe that the proposed criterion outperforms the other automatic criteria. 
In the numerical experiments, we show that our new criterion is, on average, 4.9% faster than state-
of-the-art load balancing criteria and can outperform them by up to 17.6%. Moreover, we see in the 
numerical study that the state-of-the-art automatic criteria are at worst 26.43% slower than the optimum 
and at best 10% slower.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Parallel iterative applications often exhibit an irregular compu-
tational scheme that may create load imbalance over time. Load 
imbalance is a major performance degradation factor. For that pur-
pose, dynamic load balancing mechanisms are used throughout 
the application execution to keep processing elements’ workloads 
evenly distributed and their communications minimized. Those 
mechanisms involve two separate questions how and when to load 
balance [25]. “How to load balance” is related to finding the al-
gorithm that divides the computational domain (partitioning algo-
rithm) into several pieces that are distributed (mapping algorithm) 
on the available processing elements while minimizing their com-
munications. “When to load balance” defines the particular itera-
tions (i.e., a scenario) at which the load balancing mechanism (i.e., 
using the partitioning and mapping algorithm) is required. Their 
goal is to minimize the application wall time.
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“How to load balance” has been explored by several authors 
over the years leading to various partitioning and mapping algo-
rithms. In particular, the partitioning algorithm consists of solving 
a balancing graph partitioning problem, which is known to be NP-
Complete [10]. Hence, heuristics have been developed, exhibiting 
good balancing capabilities for various types of problems. Among 
the most famous, recursive coordinate bisection (RCB) [30], space-
filling curves (SFC) [1], recursive spectral bisection [33], and METIS 
(multilevel k-way) [14] can be mentioned. For more sophisticated 
techniques, we suggest the reader to refer to [8,7,9]. However, it is 
difficult for scientists to know how well a particular technique will 
perform on their own problem. Moreover, due to the complexity of 
modern algorithms and the lack of “plug and play” libraries, scien-
tists often use the most famous load balancing techniques, which 
may not be optimal for their problem. In addition, we pointed out 
in a previous work that researchers should not select a load bal-
ancing technique only based on its capability to correct imbalance 
but also during how many iterations it keeps a low level of im-
balance [3]. This further increases the difficulty to select the most 
optimal technique. To overcome this challenge, researchers have 
proposed algorithms to select automatically the most suitable load 
balancing techniques based on application data [24,18,2].
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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“When to load balance” is a challenging problem that involves 
finding the iterations at which a parallel iterative application 
should trigger its load balancing mechanisms to maximize per-
formance. Herein, we refer to the optimal load balancing scenario 
as the sequence of iterations where the load balancing is applied 
such that the application wall time is minimized. As the load bal-
ancing itself has a cost (compute the new partition and migrate 
the data), one (most of the time) can not simply re-balance every 
iteration because the load balancing cost C overcomes the perfor-
mance gain. To find the optimal scenario for analysis purposes, one 
straightforward way is to try every load balancing scenario and 
keep the one that yields the best performance. However, this is 
unfeasible in practice, even for a small number of iterations. In-
deed, for an application comprising of γ iterations, the number of 
scenarios is 2γ .

In the literature, load balancing criteria have been proposed to 
decide whether the load balancing mechanism should be triggered 
or not. A load balancing criterion is a condition based on applica-
tion information and/or user data. One of the most straightforward 
criteria re-balances the application every T iterations enabling the 
correction of recurring imbalance. However, this is inefficient when 
load imbalance exhibits a non-periodic pattern. Some more so-
phisticated criteria use mathematical models taking into account 
collected data, such as the unbalancing pace (i.e., workload in-
crease rate), the load balancing cost, the expected scalability, the 
maximum authorized imbalance, and others. For instance, Marquez 
et al. [4] propose to apply the load balancing algorithm when at 
least one of the processing elements is below (respectively above) 
a pre-defined workload lower bound (respectively upper bound). 
Procassini et al. [27] predict the time per iteration post load bal-
ancing using an estimation of the efficiency’s improvement and 
trigger the re-balancing mechanism when the increase in time 
per iteration is greater than the load balancing cost. Menon et 
al. [19] propose to re-balance the application when the cumulative 
load imbalance (i.e., the sum of the current imbalance over time) 
overcomes the load balancing cost. Pearce et al. [24] perform a 
cost-benefit analysis of the load balancing process. They use a load 
model to estimate both the cost of load balancing with various al-
gorithms and the benefit of correcting the imbalance. They activate 
the load balancing mechanism if its benefit is greater than its cost. 
Finally, the wide choice of criteria makes the choice of a suitable 
criterion difficult due to the lack of rigorous comparative stud-
ies. Worse, because it is hard to find the optimal load balancing 
scenario among all the possible candidates, there is no clue how 
far the performance of the scenario produced by a load balanc-
ing criterion is from the optimal scenario’s performance. Therefore, 
finding the optimal scenario and quantifying its performance is an 
important and challenging task.

This paper introduces a load balanced application theoretical 
model to derive a novel, automated load balancing criterion that 
performs at worse on par with state-of-the-art load balancing cri-
teria. Moreover, we propose a new method derived from the A∗
algorithm [11] to find the iterations at which the load balancing 
mechanism must be used to obtain optimal performances. This 
method can be applied to real applications and synthetic bench-
marks built with our theoretical model. Then, we use the optimal 
scenario to evaluate the performance of several state-of-the-art 
load balancing criteria on various synthetic benchmarks. Such a 
study provides insights into the performance gap between state-of-
the-art criteria and the optimum. Finally, we implement our novel 
algorithm in an N-body simulation and discuss the difference of 
performance and behavior between state-of-the-art load balancing 
criteria and the optimal scenario. The result of our efforts also in-
cludes two implementations of our novel algorithm. The first is a 
standalone package for studying optimal scenarios within synthetic 
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benchmarks, and the second is an implementation for real appli-
cations.

Section 2 proposes a definition of the load balancing deci-
sion problem and introduces the challenges to solve it. Section 3
presents the background works related to load balancing crite-
ria. Section 4 introduces a model for parallel applications with 
dynamic load balancing and shows how to derive a novel, fully 
automatic load balancing criterion based on the past and current 
behavior. Section 5 presents an efficient algorithm to find the opti-
mal load balancing scenario. Section 6 assesses the performance of 
load balancing criteria with respect to the optimal scenario in syn-
thetic benchmarks and within a parallel N-body simulation. Sec-
tion 7 concludes this work and proposes insight for future works.

2. The load balancing decision problem

Consider an iterative parallel application (e.g., N-body, compu-
tational fluid dynamics, etc.) comprising of γ iterations. Computing 
such an application in parallel on P processing elements requires 
distributing its workload among the processing units used for 
the computation while minimizing communications. The time per 
time-step is equal to the time of the slowest (or most loaded) pro-
cessing element due to synchronization mechanisms at the end of 
each iteration. To maximize efficiency, the workload attributed to 
each processing element must be roughly equal at each iteration. 
This is achieved through load balancing algorithms that mitigate 
the load imbalance penalty. For parallel applications that do not 
exhibit a dynamic nature, only one load balancing is required at 
the beginning of its execution. This is usually called static load bal-
ancing. In contrast, when the processing elements’ workload is not 
the same from iteration to iteration, several load balancing steps 
may be required. This is known as dynamic load balancing. We 
call the set of iterations at which the load balancing algorithm is 
used the “load balancing scenario”. The processing elements must 
coordinate and take a load balancing decision at each iteration (re-
balancing or not) to create a scenario. This decision process leads 
to 2γ possible scenarios where γ is the number of iterations. The 
dynamic load balancing decision problem consists of finding the 
optimal scenario, minimizing the application wall time.

Definition 2.1 (Dynamic load balancing decision problem). Given an 
application comprising of γ iterations and P processing elements, 
find the set of iterations σ ∗ (i.e., the scenario) at which the load 
balancing mechanism must be activated such that the application 
wall time is minimized.

This decision problem is an optimization problem in which we 
look for

σ ∗ = argmin
σ∈S

T (σ ), (1)

where T (σ ) is a function returning the application wall time given 
a load balancing scenario and σ is a particular scenario among the 
2γ possible ones (S). Note that T (σ ) can either be modeled by an 
equation or computed by the application code itself (i.e., actually 
measured on a computer).

Solving this problem is non-trivial as the load balancing benefit 
usually depends on the application’s future behavior, the moment 
at which the load balancing is applied, and the success of the data 
partitioning. Let us imagine an application where the load imbal-
ance is ephemeral. Molecular dynamic applications may see such 
behaviors. For instance, the particle density across the computa-
tional domain can change periodically due to some forces. Therein, 
it is unclear whether re-distributing the particles would be ben-
eficial due to the load balancing cost. To accurately answer this 
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question, one would have to predict that such behavior happens. 
This implies that the application is predictable (in the long term), 
which appears to be unfeasible [24]. Therefore, load balancing de-
cisions can only be built on strong and reliable metrics based on 
prior data.

Asking whether re-balancing the workload is required or not 
depends on multiple factors. In the literature, scientists base their 
decision on load balancing criteria that employ various metrics 
such as the parallel efficiency, the load imbalance, the iteration 
index, the min/max workload, and others. Usually, a parallel ap-
plication needing load balancing capability would implement a 
criterion to decide when to redistribute the workload among the 
processing elements attributed to the computation of the applica-
tion. A criterion is essentially an equation that must be evaluated 
each time a load balancing decision must be taken. Note that while 
being unaware of system perturbations (e.g., cache misses, OS in-
terrupts, or temporary system faults or malfunctions [21]) that can 
alter the time-per-iteration of some processing elements, load bal-
ancing criteria implicitly take them into account because their de-
cision making is based on load imbalance metrics. Hence, if some 
perturbations exacerbate the load imbalance, the load balancing 
criterion will execute the load balancing algorithm to improve the 
situation. Bear in mind that it is the task of the load balancing al-
gorithm to take care of producing the most suited partitioning by, 
for instance, ensuring that slower processing elements facing per-
turbations (e.g., cache contention, off-chip bus saturation, NUMA 
effects) get less work. However, some open questions remain to 
be answered, for instance: (i) how to build a perturbation aware 
load balancing technique?; and (ii) how does a load balancing al-
gorithm would work in conjunction with advanced software and 
hardware techniques, such as dynamic concurrent throttling (DCT), 
dynamic voltage and frequency scaling (DVFS), or, more challeng-
ing, a combination of both [22]?. How would the algorithm ensure 
that the produced partitions are well balanced and take into ac-
count the overhead of such techniques [29]. These questions, de-
spite being challenging and interesting, are not addressed in the 
present paper and are left for future works. For a review of load 
imbalance metrics, we suggest the reader to refer to [28]. We de-
fine the criteria that use local information as local criteria, whereas 
the other criteria are considered as global criteria. Local informa-
tion is a data that is related to a single processing element, such 
as the current processing element workload, the processing ele-
ment workload increase rate, etc. In contrast, global information 
concerns all processing elements, such as the time per iteration, 
the average workload, or the load balancing cost. In the next sec-
tion, we dig into more details in the various load balancing criteria 
proposed over time by researchers.

3. Background works

In the literature, scientists often use straightforward load 
balancing criteria while it is well known that without fine-
tuning, they provide poor performance [24,19]. For instance, Fatte-
bert et al. [7], Offenhäuser [23], and Lieber et al. [16] chose to load 
balance their application respectively every 100, 1000, and 180 it-
erations while Ishiyama et al. [13] re-balanced every iteration. The 
rationales behind these choices are manifold. Some argue that the 
load balancing cost is negligible compared to load imbalance [13], 
while others use application knowledge to tune their criterion. 
More recently, Miller et al. [20] performed a study to improve 
the load balancing in their particle-in-cell code. In this study, they 
proposed a new shared-memory load balancing strategy, that they 
apply every 20 and 40 solver iterations, that improves the perfor-
mance of their application by a factor 2 compared to a no load 
balancing approach. Another work performed by Prät et al. [26]
focused on improving the performance of an adaptive mesh refine-
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ment based molecular dynamic application using multi-threading, 
vectorization friendly data-structure, and dynamic load balancing. 
In their work, the authors claim to outperform LAAMPS by a factor 
1.38 on a micro-jetting scenario and by 2.6 in a steady scenario. 
They achieve these levels of performance with the RCB algorithm 
applied every 500 timesteps.

Unfortunately, all these previous works do not study their load 
balancing triggering strategy. Hence, it is hard to know if they are 
effective (or not) and why. Moreover, we will see later in this pa-
per that a bad load balancing criterion can suffer from a huge 
performance penalty compared to the optimal scenario. Indeed, 
it is likely that many of the load balancing calls are unnecessary, 
ill-timed, or worse, the application may still suffer from load im-
balance. For that purpose, researchers have tried to develop more 
sophisticated and generic criteria that provide better overall per-
formance.

Marquez et al. [4] have proposed a load balancing criterion 
based on an acceptable workload variation range for agent-based 
simulations. The idea is to trigger the load balancing mechanism 
if any agent’s workload goes outside of a comfort zone defined by 
a minimal acceptable workload Wmin and a maximal acceptable 
workload Wmax. In other words, when the following condition is 
true:

W p < Wmin or Wmax < W p ∃p = 1..P . (2)

This criterion is considered local as the formula uses the local 
workload of processing element W p . The formula proposed by 
Marquez et al. can be implemented using a “tolerance factor” ξ , 
which specifies how far a single processing element can get away 
from the average workload. Then, Equation (2) can be rewritten

W p <
(1 − ξ)

P

P∑
1

W p or
(1 + ξ)

P

P∑
1

W p < W p . (3)

Indeed, the tolerance factor has to be tuned by hand as the value 
may differ from application to application, making it difficult to 
find a good value for this parameter. Moreover, within a single ap-
plication, the tolerance factor that provides the best performance 
may change over time. Unfortunately, an automatic selection of the 
acceptable workload range has never been proposed.

Procassini et al. [27] use a different strategy to automatically 
load balance HPC applications. Their global criterion redistributes 
the workload whether the performance improvement due to load 
balancing plus the load balancing cost is greater than a fraction of 
the current time per iteration. In other words, the load balancing 
mechanism is triggered at iteration t when the following condition 
is true:

TwithLB(t) + C < ρ ∗ TwithoutLB(t), (4)

where TwithLB(·) is the iteration time after load balancing, C is the 
load balancing cost in seconds, ρ is the desired increase in perfor-
mance post load balancing, and TwithoutLB(·) is the iteration time 
before load balancing. In their paper, they used ρ = 0.9. However, 
the same idea can be generalized for any ρ ∈R>0. Procassini et al. 
estimate the time per iteration post load balancing by decreasing 
the current time per iteration proportionally to the expected in-
crease in performance due to load balancing. This reads

TwithLB(t) = εpre(t)

εpost(t)
∗ TwithoutLB(t), (5)

where εpost (resp. εpre) is the parallel efficiency post (resp. pre) 
load balancing step. While the parallel efficiency post load balanc-
ing has to be estimated based on prior data, the efficiency before 
load balancing is computed with
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Table 1
Summary of available load balancing criteria. Note that the periodic criterion belongs to the common knowledge of load balancing. Tracking back its origin is complicated.

Name User defined parameters Required data Type Foundation Developed for Decision

Periodic Load balancing period T - Global - Any simulations Every T it.

Marquez et al. [4] Tolerance factor ξ - PEs workload Local Experiments Agent-based simulations Equation (2)

Procassini et al. [27] Desired performance improvement 
post load balancing ρ

- Efficiency 
- Load Balancing Cost

Global Experiments Monte-Carlo Transport Equation (4)

Menon et al. [19] - - Imbalance Increase Rate 
- Load Balancing Cost

Global Theory Any simulations Equation (19)

Zhai et al. [36] Evaluation phase P - Imbalance Increase Rate 
- Load Balancing Cost

Global Experiments Any simulations Equation (8)

Our criterion - - Imbalance time [5]
- Load Balancing Cost

Global Theory Any simulations Equation (24)
εpre(t) = Tseq(t)

P ∗ Tpar(t)
. (6)

The presence of the factor ρ , which must be fixed by hand, makes 
the tuning of this criterion for optimal performance difficult. Note 
that Lieber et al. [16] also implemented an “auto-mode” into their 
application (FD4), which employs a simple cost-benefit analysis of 
the load balancing process. The criterion utilized therein is analog 
to Equation (4), except that they use ρ = 1 and they estimate the 
time post-load balancing using data collected from previous load 
balancing steps.

Menon et al. [19] have shown that the optimal load balancing 
scenario for a parallel iterative application, where the maximum 
and average load can be modeled linearly with time, is a fixed re-
balancing frequency. The load balancing time interval τ is equal to 
the amount of iteration required by the cumulative load imbalance 
to reach the load balancing cost C . When the workload increase 
rate is constant, it can be computed by the following formula:

τ =
√

2C

α
, (7)

where C is the load balancing cost in seconds and α is the differ-
ence in the time-per-iteration increase rate between the “slowest” 
processing element and the average time-per-iteration increase 
rate. They derived this global criterion by minimizing the time 
with respect to the load balancing time interval. Like the criterion 
proposed by Procassini et al. [27], the information used therein is 
measured and updated throughout application execution. For in-
stance, the load balancing cost C has to be estimated while the 
maximum and average workload increase rates are measured at 
runtime. We refer to criteria analog to Menon criterion as Menon’s 
like criteria.

Zhai et al. [37] have used Menon criterion to improve the 
performance of CMT-nek. CMT-Nek is a compressible multiphase 
turbulence application, which enhances the physics of the CE-
SAR Nek5000 application. In particular, they proposed to compute 
the cumulative time-per-iteration degradation D during applica-
tion execution and to trigger a load balancing call when it has 
reached the load balancing cost C or after τ iterations, as sug-
gested by Menon, leading to this global load balancing criterion:

D ≥ C or i ≡ 0 mod τ , (8)

where i is the current iteration index and the cumulative time-
per-iteration degradation D from the last load balancing iteration 
LBp up to the current iteration t is computed using
214
D =
t∑

i=LB p

(
Tmedian(i, i − 2) − Tavg(P )

)
, (9)

where Tavg(P ) is the average time per time-step over an user-
defined evaluation phase P and Tmedian(i, i −2) is the median time 
per time-step among the three last iterations.

Recently, Mayr et al. [17] have proposed a new load balancing 
criterion for simulations of contact problems using Mortar meth-
ods. Therein, they measure two specific quantities Kt and Kc that 
must not cross their respective user-defined threshold νt and νc . 
Kt is defined as the ratio of the largest by the smallest mortar eval-
uation time, whereas Kc is defined as the ratio of the largest by 
the smallest number of elements in the contact zone. In the case 
where νt or νc is crossed, the load balancing algorithm is executed. 
Despite that this strategy seems to work well on their problem 
compared to a static approach, this work lacks from showing that 
the proposed load balancing criterion is close to the optimal solu-
tion or outperforms other criteria for contact problems. Note that 
this load balancing criterion will not be used in our experiments 
later in the paper due to its tight link to the simulations of contact 
problems.

Finally, the literature lacks rigorous load balancing criteria com-
parison studies, which would be hard to perform due to the ab-
sence of algorithms capable of computing the optimal scenario. 
Indeed, researchers may think that a load balancing criterion is 
performing well even though it is, in fact, far from the optimal 
solution. Therefore, the present work proposes to fill this gap by 
systematically comparing several state-of-the-art load balancing 
criteria against the optimal load balancing scenario. The optimal 
load balancing scenario is computed in polynomial time using our 
novel algorithm presented in Section 5. Also, one difficulty for HPC 
developers regarding load balancing is to choose the good load bal-
ancing criteria. Indeed, all the criteria available in the literature 
bring confusion and only a few are backed up by a strong theory. 
We summarize the load balancing criteria described above in Ta-
ble 1 to ease the choice of HPC researchers. This table details what 
we find to be the most useful properties of load balancing crite-
ria. In addition, in Section 5, we propose an efficient branch-and-
bound algorithm for finding the optimal load balancing scenario to 
compare load balancing criteria relative to the optimum and help 
the selection of load balancing criteria.

4. A workload-aware load balancing criterion

To study the performance of the scenarios produced by load 
balancing criteria relative to the optimal load balancing scenario’s 
performance, we propose a mathematical framework for comput-
ing the CPU time of load balanced parallel applications inspired by 
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t a
Menon’s work [19]. First, let us consider a parallel execution on 
P processors characterized by two functions, μ(t) and m(t). The 
function μ(t) gives at each iteration t the average load (i.e., the to-
tal load on the P processors divided by P ), whereas m(t) gives the 
load of the slowest (or most loaded) processor at iteration t . Note 
that here, μ(t) and m(t) are expressed with units of time. Further-
more, let us assume that executing the load balancing mechanism 
always leads to perfect load balancing.

Second, let us define Tpar the parallel time on γ iterations given 
by

Tpar =
γ∫

0

m(t) dt =
γ∫

0

m(t) − μ(t) dt +
γ∫

0

μ(t) dt. (10)

Note that this equation has been greatly inspired from the model 
of Menon et al. [19], however, herein we relax the assumption that 
m(t) and μ(t) are represented by line equations. Let us now di-
vide the interval [0, γ ] in n pieces [si, si+1] with s0 = 0, si+1 > si

and sn = γ . Moreover, we assume that load balancing steps are 
performed at iterations si for i = 0, 1, ...n − 1 and they take an ad-
ditional time C . Hence, Equation (10) becomes

Tpar =
n−1∑
i=0

( si+1∫
si

u∗
i (t)dt + C

) +
γ∫

0

μ(t) dt, (11)

where u∗
i (t) is the imbalance time metric proposed by DeRose 

et al. [5] defined as

u∗
i (t) = m(t) − μ(t) for t ∈ [si, si+1]. (12)

Also, we point out that load balancing is done at s0 but not at the 
end of the execution (i.e., at sn). Obviously, m(t) resets to μ(t) after 
every load balancing step if the load is perfectly balanced. Thus, 
always u∗

i (si) = 0. To increase the readability of Equation (11), let 
us express it with the following change of variables

τi = si+1 − si ui(x) = u∗
i (t − si). (13)

Equation (11) now becomes

Tpar =
n−1∑
i=0

( τi∫
0

ui(x)dx + C
) +

γ∫
0

μ(t) dt. (14)

Remark 1. In general, ui(x) is unpredictable because it depends 
on si and the load balancing technique itself. Indeed, the domain 
decomposition used by the load balancing mechanism affects the 
load imbalance growth. In section 6.1, we give a possible solution 
to this challenge when we use our model as a framework for syn-
thetic benchmarks.

Derivation of Menon criterion. To derivate the criterion from Menon e
using Equation (14) we need to set ui(x) as a linear equation such 
as

ui(x) = u(x) = αx. (15)

Then, Equation (14) reads

Tpar = γ

τ

( τ∫
0

αxdx + C
) +

γ∫
0

μ(t) dt. (16)

Note that we obtain here the same equation as in the paper of 
Menon et al. [19]. The optimal value of τ is then obtained by solv-
ing and isolating τ in
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l. [19]

∂Tpar

∂τ
= 0. (17)

That is,

∂Tpar

∂τ
= 0

− γ

τ 2

(ατ 2

2
+ C

) + γ

τ
ατ = 0

α

2
− C

τ 2
= 0

τ =
√

2C

α

(18)

It is worth noticing that for this value of τ , one has

τ∫
0

u(t)dt = ατ 2

2
= C . (19)

In other words, the load balancing mechanism must be used when 
the load imbalance metric u(t) = m(t) −μ(t) accumulated over the 
iterations reaches the load balancing cost C . For the sake of sim-
plicity, this quantity reads

U =
τ∫

0

u(t)dt. (20)

Remark 2. In this case, where ui(x) = u(x) = αx, it is possible to 
obtain the optimal value of ρ for Procassini criterion using Equa-
tion (4). If τ is the optimal load balancing interval when u(x) is 
a linear equation, and the load balancing is perfect, the optimal 
value ρτ is

ρτ = TwithLB(τ ) + C

TwithoutLB(τ )
= μ(τ) + C

μ(τ) + u(τ )
. (21)

Therefore, Procassini criterion is equal to Menon criterion provided 
that ui(x) = u(x) = αx and that ρτ is employed. More generally, 
this indicates that for each load imbalance function u(·) there ex-
ists an optimal ρ value. Unfortunately, as u(·) is in general unpre-
dictable, computing ρτ seems highly challenging in practice.

Generalization for any u(t). It is now possible to reformulate this 
result without assuming any particular form of u(t). Starting from 
Equation (14), which now reads

Tpar =
n−1∑
i=0

( τ∫
0

u(x)dx + C
) +

γ∫
0

μ(t) dt. (22)

We obtain the optimal value of τ using the same methodology, 
which is solving and isolating τ in

∂Tpar

∂τ
= − γ

τ 2

( τ∫
0

u(x)dx + C
) + γ

τ
ατ = 0. (23)

The solution of this equation is

τu(τ ) −
τ∫

0

u(x)dx = C, (24)

which leads to a new global load balancing criterion that does not 
make any assumption on the function u(t) that describes the load 
balancing metric over the iterations. This result differs from the 
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Fig. 1. Toy example illustrating the key difference between our criterion and Menon criterion. The left figure shows a load imbalance that correct itself after a hundred 
iterations. The colored area in the left figure shows the criterion value of both criteria at iteration 60. The right figure illustrates the evolution of the criterion value over the 
iterations. A key observation is that Menon criterion will apply the load balancing mechanism at iteration 96 even though it is not needed, whereas our criterion successfully 
detects this situation.
one presented by Menon et al. [19] because now a load balancing 
step is done when the area above the load imbalance curve equals 
the load balancing cost C . To illustrate this, we propose in Fig. 1
a toy example showing the main difference between our criterion 
and Menon criterion and a plot of their value over time. In this 
example, the load imbalance is ephemeral starting at iteration 0
and it grows until iteration 69, then, it decreases until it reaches 
u(100) = 0. In the figure placed on the right, we see that Menon 
criterion applies a load balancing at iteration 96 even though the 
load imbalance is almost completely corrected at this point. In con-
trast, we observe that our criterion is able to detect that such a 
situation does not need load balancing. Finally, the colored area in 
the left figure shows the criterion value of both criteria at iteration 
60. We see that, unlike Menon criterion, our criterion corresponds 
to the area between the load imbalance curve and u(τ ).

To have a better idea of the performance improvement we 
might gain by using this criterion, we propose, in Section 6, a com-
parative study of the criteria presented in Section 3 on synthetic 
benchmarks and real N-body simulations. In the next section, we 
present an efficient algorithm for finding the optimal load balanc-
ing scenario, which we will use to rank the load balancing criteria 
as a function of their relative performance compared to the opti-
mum.

Remark 3. Following the development of our theoretical model, it 
clearly appears that the exact solution of this problem can only be 
obtained using an exhaustive search. Indeed, we observed that this 
problem is recursive as the load balancing time intervals si, si+1
(i.e., the solution) are part of the input data. This seems to prevent 
us from finding an analytical solution.

5. Finding the optimal load balancing scenario

It is essential to know the performance of the optimal load 
balancing scenario to analyze the performance of the scenario pro-
duced by load balancing criteria. To find this optimum, we need an 
efficient way to look for the optimal scenario among all the pos-
sible ones. Unfortunately, the number of possible scenarios grows 
exponentially with the number of iterations to compute (i.e., γ ). 
For that reason, it is impossible to use brute force algorithms even 
for a small number of iterations.

To overcome this problem, we can organize the scenarios in a 
tree to use efficient tree search algorithms. Indeed, the load bal-
ancing decision problem fits well in a binary tree because a deci-
sion (using or not the load balancing mechanism) must be made 
at each iteration. The vertices represent the state of the application 
(balanced or not). The edges e represent the process of going from 
an iteration to another (i.e., computing the iteration and applying, 
or not, the load balancing algorithm). The edge cost C (e) repre-
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Fig. 2. The load balancing decision problem organized as a binary tree. “Y” (respec-
tively “N”) means that the application is balanced (respectively not balanced) at the 
given iteration. In other words, left edges apply load balancing while right edges do 
not.

sents the CPU time for going from an iteration to the next. Fig. 2
shows how load balancing decisions are organized as a binary tree.

A load balancing scenario is defined as a path from the root 
(iteration 0) to a leaf node (iteration γ ). The cost of a path p from 
the root node to any subsequent node, C (p), is the sum of the 
edge costs that belong to the path, which reads

C (p) =
∑
e∈p

C (e). (25)

As mentioned in Equation (1), the optimal scenario is the one that 
minimizes the path cost among all scenarios, minimizing the ap-
plication wall time.

5.1. Load balancing tree pruning

To reduce the tree size and the complexity of the search, we 
propose two steps: (i) to merge redundant load balancing nodes 
and (ii) to prune edges that belong to sub-optimal paths. We as-
sume that the load balancing mechanism is independent of previ-
ous load balancing decisions in these two steps. This means that 
the workload of the processing units post load balancing does not 
depend on previous decisions but only on current information. Af-
terward, we apply the A∗ algorithm proposed by Hart et al. [11], in 
which we include these two optimizations, to find the optimal load 
balancing scenario. Note that the algorithm proposed herein has 
no practical uses in production, but is rather dedicated for anal-
ysis purposes because it requires some iterations to be executed 
multiple times.

Redundant nodes merging. As we saw previously in Section 4, re-
gardless of past decisions, the edge cost C (e) for going from itera-
tion i to the next is C +μ(i) if we performed a load balancing step. 
This is because the data partitioning after a load balancing call is 
independent of the previous decisions. This is illustrated in Fig. 3
which shows the processing elements’ workload within the load 
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Fig. 3. The impact of load balancing on workloads within the load balancing tree 
before the merging process. The nodes that share the same data partitioning at the 
same iteration are redundant.

Fig. 4. The load balancing tree after the merging process, now, i paths lead to a 
unique load balancing node (“Y” node) at each iteration, where i is the node’s iter-
ation.

balancing tree. Therein, we see that there is no difference between 
two load balancing nodes (flattened workloads) at the same level 
of the tree. The only thing that distinguishes these nodes is their 
cumulative cost. Therefore, load balancing nodes (i.e., “Y” nodes) at 
the same iteration can be merged.

Sub-optimal path elimination. Merged nodes may have multiple 
paths leading to them, as illustrated in Fig. 4. The idea of sub-
optimal path elimination is to find the shortest path from the root 
(iteration 0) to each load balancing node (merged node) and re-
move the other paths. Indeed, if a load balancing node y is part of 
the final solution, then the shortest path from the root node to y is 
also part of the solution. It is true if and only if the load balancing 
cost C is independent of previous decisions, which is an assump-
tion that we think to be reasonable. Finally, let us assume that the 
load balancing node y is a merged node at iteration i, therefore, y
has i paths leading to it. Then, the shortest path p∗

0→y is obtained 
by solving

p∗
0→y = argmin

pk
0→y ∀k=1..i

C (pk
0→y), (26)

where pk
0→y is the kth path reaching node y. In practice, only 

the last edge of each sub-optimal path is removed because the 
previous edges belong to other paths. Fig. 5 illustrates a possible 
resulting tree after the sub-optimal path elimination process.

Thanks to the pruning process, the size of the load balancing 
tree is drastically reduced. The number of vertices decreases from

V = 2γ − 1 (27)

to

V =
γ −1∑

(i + 1) = γ (γ + 1)

2
(28)
i=0
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Fig. 5. Example of the sub-optimal path elimination process. A dashed edge, from 
a dashed node (“Y” node) to its parent, is removed if it does not belong to the 
shortest path from the root to the node. The total number of edges is reduced from 
exponential to linear in the number of iterations (i.e., the depth).

and the number of edges decreases from

E = 2γ − 2 (29)

to

E = V − 1. (30)

These two optimizations that we include in the A∗ algorithm allow 
us to find the optimal load balancing scenario efficiently.

5.2. Optimal scenario search algorithm

The A∗ algorithm [11] is a well-known path search algorithm. 
It aims at finding the path from a source node to a destination 
with the smallest cost. Besides, A∗ is optimal and complete, which 
means that it will finish and it will find the solution if one exists. 
It is done by keeping a list of paths and extending them, one edge 
at a time until the destination is reached. At each iteration, A∗
extends the path that minimizes the cost equation

f (n) = g(n) + h(n), (31)

where n is a candidate node, g(n) is the total cost to reach that 
node, and h(n) is an optimistic estimation of the path cost from 
n to the destination node (i.e., the solution) [11]. In our case, we 
model g(n) as the time taken by the application to reach a partic-
ular iteration given a load balancing scenario. h(n) represents the 
computation time from a particular iteration to the end of the ap-
plication, given no load imbalance. This mathematically reads

h(n) =
γ∑

j=i

μ( j), (32)

where i corresponds to the node’s iteration (i.e., depth), γ is the 
total number of iterations, and μ(·) refers to the average time per 
iteration. After a path has been extracted from the queue, its chil-
dren are generated and inserted into the list of paths. In practice, 
the whole algorithm is managed by a priority queue where paths 
are inserted, sorted according to their cost f (n), and at each it-
eration the path of least cost is extracted. This algorithm belongs 
to the category of branch-and-bound algorithms given the defini-
tion of Horowitz and Sahni [12] because no path is being extracted 
from the queue before all the children of the current path being 
expanded have been inserted in the queue.

To apply the two optimizations mentioned earlier, we cus-
tomize two parts of the algorithm: (i) how new nodes are in-
serted in the queue (sub-optimal path elimination) and (ii) how 
the queue is kept sorted and clean from redundant nodes (re-
dundant nodes merging). Algorithm 1 shows the pseudo-code for 
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finding the optimal load balancing scenario with our branch-and-
bound algorithm. Our optimizations appear during the expansion 
of the current path (i.e., generation of its children and their inser-
tion in the priority queue), hence, our modified A∗ algorithm still 
belongs to the branch-and-bound category given the definition of 
Horowitz and Sahni [12].

As discussed earlier, load balancing nodes at the same depth 
(i.e., iteration) are redundant. Therefore, instead of inserting load 
balancing nodes directly in the queue, we check if one already ex-
ists at the same iteration and replace it if the new node has a 
lower cumulative edge cost (line 10 in Algorithm 1 and detailed 
in Algorithm 2). However, according to the sub-optimal path elim-
ination process, we must guarantee that we can not insert a load 
balancing node at a given depth if the shortest path has already 
been discovered at this level. To do this, we implemented a lookup 
table in which we map the iteration (i.e., depth) to a boolean. This 
boolean indicates if a load balancing node has already been re-
moved. When a new node has to be inserted, we look up inside 
the table to see if one has already been seen and if it does, we 
discard it.

Even though the aforementioned optimizations allow to re-
trieve the optimal load balancing scenario, they may prune the nth 
best solution. Those solutions may be of interest to measure the 
gap between the optimal and close-to-optimal scenarios. Hence, 
to retrieve them as well, we need to prune fewer paths in the 
sub-optimal path elimination process. To recall, we previously ex-
plained that, in this process, we keep the last edge from a parent 
of a load balancing node only if it belongs to the shortest path 
from the root node to the load balancing node. This constraint has 
to be relaxed to allow the computation of the nth best solution. 
The idea is to keep the last edge from a parent of a load balancing 
node whether they belong at least to its nth shortest path. It has a 
logical meaning; in fact, if we keep all the possible edges, we end 
up with the original algorithm, which is able to retrieve all the so-
lutions ordered by their cumulative edge cost. Note that the time 
to the solution will increase because the size of the tree increases 
as well.

Finally, the last point to discuss is how to find the optimal load 
balancing scenario in a real application when C (e) is measured on 
a real computer and not by an equation. In this setup, the idea 
remains the same as before. However, when a node produces its 
children, we compute the two edge costs by executing the cor-
responding iterations. Indeed, the partition and the state of the 
application (e.g., the position of the particles in space, their veloci-
ties, etc.) must be propagated and updated after each computation. 
To reduce the memory footprint, we propose to use a lookup ta-
ble to store the application states as a function of their iteration. 
Moreover, this is necessary to guarantee that every node at the 
same iteration has the same application state, which is needed for 
results consistency.

We made available an implementation of the optimal load bal-
ancing scenario algorithm in C++ with two different packages:

• LBOPT [34]: This package includes the customized A∗ algo-
rithm and the model presented in Section 3. LBOPT can be 
used to have a first idea of the performance of various load 
balancing criteria that can be modeled using equations.

• YALBB [35]: It implements an N-body simulation with a short-
range force. YALBB eases the benchmarking of load balancing 
algorithms and criteria by separating the physics from the 
code of interest. It employs template meta-programming and 
an extensive use of modern C++ constructs.
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6. Comparison of load balancing criteria

This section proposes a comparison study of four load balanc-
ing criteria present in the literature; moreover, we discuss the pros 
and cons of these criteria. For that purpose, we have two ap-
proaches. First, we used synthetic benchmarks that we modeled 
using the equations presented in Section 4. Therein, we compared 
only global load balancing criteria, and for Menon’s like criteria, 
we implemented only the original Menon criterion. For instance, 
we did not consider the criterion from Marquez et al. [4] be-
cause it involves the local workload from the processing elements. 
These synthetic benchmarks target various types of workload in-
crease rates that create load imbalance over time. They are meant 
to cover as many real-life situations as possible. We studied the 
following schemes where the load imbalance

• Follows a linear growth, a logarithmic growth, and a quadratic 
growth.

• Auto-corrects itself periodically.

We used YALBB to assess the efficiency of load balancing crite-
ria on a real-world problem. We then compared their performance 
against the optimum obtained using the algorithm presented in 
Section 5. We employed several particle distributions and behav-
iors to match as closely as possible our synthetic benchmarks.

6.1. Synthetic benchmarks

Two main pieces of information describe a parallel application. 
First, the total workload associated with the problem itself W (t)
(i.e., the time to compute the application on one processing unit). 
In the case of inherently irregular applications, this workload may 
change over time. Second, the distribution of the total workload 
among the processing elements (i.e., load imbalance) is used for 
the computation I(t). From those two pieces of information, we 
compute m(t) and μ(t), which we use in Equation (10), to com-
pute the application parallel time. To recall, Equation (10) reads

Tpar =
γ∫

0

m(t) dt =
γ∫

0

m(t) − μ(t) dt +
γ∫

0

μ(t) dt. (33)

Using W (t), we can retrieve the average workload μ(t) given a 
number of processing elements, whereas, we can compute m(t)
using the load imbalance I(t) and μ(t) using the well-known per-
cent imbalance metric [24]

I(t) = m(t)

μ(t)
− 1,

m(t) = [I(t) − 1]μ(t).

For that purpose, we have to define the function W (t) and I(t)
and how they behave over time.

The first function, W (t), gives at each iteration the total amount 
of work to do (expressed in units of time). It reads

W (t) = W0 +
t∑

i=1

ω(i), (34)

where W0 is the initial application workload and ω(t) is a function 
giving the difference of application workload between two itera-
tions. Hence, the average workload μ(t) is expressed as μ(t) =
W (t)/P . The second function, I(t), gives at each iteration the load 
imbalance, hence it is expressed as
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Table 2
Parameters used to define the synthetic benchmarks. Two types of situations have been 
considered. The first one (top side of the table) considers benchmarks with a static work-
load and irregular workload distribution. In contrast, the second one (bottom side of the 
table) targets a benchmark with an irregular workload and an irregular workload distri-
bution. All workloads are expressed in time units.

ω(t) ι(t − LBprevious) W0 P C γ

0 0.1 52 ∗ P 10,649,600 W0 ∗ P ∗ 102 600

0 1/(0.4 ∗ t + 1) 52 ∗ P 10,649,600 W0 ∗ P ∗ 102 600

0 0.02 ∗ t 52 ∗ P 10,649,600 W0 ∗ P ∗ 102 600

0 −(0.1 ∗ (t%17)) + 0.8 52 ∗ P 10,649,600 W0 ∗ P ∗ 102 600

sin πt
180 0.1 52 ∗ P 10,649,600 W0 ∗ P ∗ 102 600

sin πt
180 1/(0.4 ∗ t + 1) 52 ∗ P 10,649,600 W0 ∗ P ∗ 102 600

sin πt
180 0.02 ∗ t 52 ∗ P 10,649,600 W0 ∗ P ∗ 102 600

sin πt
180 −(0.1 ∗ (t%17)) + 0.8 52 ∗ P 10,649,600 W0 ∗ P ∗ 102 600
I(t) =
{

I(t − 1) + ι(t − LBprevious) if t > LBprevious,

0 otherwise,
(35)

where LBprevious is the previous iteration at which the load bal-
ancing mechanism has been used and ι(t) is a function returning 
the difference in load imbalance between two iterations. Typically, 
I(t) ∈ [0, P − 1], hence, in practice, a particular attention as to be 
given to not trespass those bounds. Now, by setting ω(·), ι(·), W0, 
P , and the number of iterations γ , we can compute m(t) and μ(t)
for each iteration and use Equation (10) to compute the parallel 
time of the application.

Remark 4. Here, we make a strong assumption on the shape of 
the load imbalance curve after load balancing. Indeed, in practice, 
the load balancing mechanism involving data partitioning will in-
fluence the load imbalance growth. It is impossible to know the 
load imbalance function after load balancing without a deep un-
derstanding about the partitioning algorithm impact on the prob-
lem to solve, which is extremely challenging to incorporate into 
a mathematical model. Herein, we decide to use ι(t − LBprevious), 
which means that each time a load balancing is performed, the 
load imbalance pattern is repeated. Another possibility could have 
been to set the y-intercept to 0 (i.e., shift the function ι(·) down) 
after each load balancing step. However, this solution was diffi-
cult to implement without providing any clear benefits. Finally, we 
think that this subject is worth a research effort and will be tar-
geted in future works.

The parameters used in the synthetic benchmarks are summa-
rized in Table 2. The initial workload (expressed in time units) 
is proportional to a 2D Lattice-Boltzmann computational fluid dy-
namic problem with 109 D2Q9 cells per processing unit with a 
performance of 1 Gflops [31]. The number of processing units is 
equal to the number of cores available in the supercomputer “Sun-
way TaihuLight” [32]. We studied two types of situations. First, we 
targeted benchmarks with a static workload (i.e., the global work-
load is always the same) but with a workload distribution that 
changes over time. Then, we focused on the same benchmarks but 
with an irregular workload that increases/decreases over time. The 
static workload benchmarks target applications that suffer from 
load imbalance due to the parallelization. The irregular workload 
benchmarks target applications with varying workload per time-
step, and where the load imbalance comes from both the problem 
in itself and the parallelization.

Finally, we use our C++ implementation of our branch-and-
bound algorithm presented in Section 5 (LBOPT), in which we 
employ m(t) and μ(t) (derived from W (t) and I(t)) to compute 
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the parallel time to reach any node in the tree and find the opti-
mal load balancing scenario σ ∗ .

The results of the synthetic benchmarks for static applications 
are shown in Fig. 6. For Procassini criterion, we tried 5000 values 
of ρ between 0.5 and 50.0; however, for readability, we decided 
only to show the scenario that performed the best. The upper 
figure shows the simulated parallel time that we obtained using 
the model presented in Section 4. The lower figure indicates the 
growth of the cumulative time-per-time-step U (defined in Equa-
tion (20)), and the horizontal bar gives the value of C in order to 
track how the criteria differ from Menon criterion given by Equa-
tion (19). We use this figure to compare the behavior of the load 
balancing criteria.

In the constant experiment (Fig. 6a), both Menon criterion and 
our criterion behave like the optimal strategy. In other words, 
their load balancing time interval is similar to σ ∗ . Still, they differ 
marginally at the end of the simulation. It is important to remark 
that depending on when the last load balancing step happens, and 
it may be preferable to delay or schedule some load balancing calls 
earlier, as we can observe in Fig. 6a. Indeed, wasting a call at the 
very end of a simulation is useless. However, to take such a deci-
sion, one may need to foresee the future and detect if, given the 
current criterion, a call would appear near the end. Obviously, only 
the solution from our branch-and-bound algorithm is able to see 
that, as it tests “all” the possible solutions. Procassini criterion with 
a ρ value of 19.43 seems optimal. Note that we also tried to use 
ρτ (defined in Equation (21)) for Procassini criterion. We observed 
that Procassini criterion performs the load balancing steps at the 
exact same iteration as Menon and our criterion, as suggested in 
Remark 2. Finally, this experiment fits well the hypothesis of both 
our criterion and Menon criterion, and thus they behave optimally, 
as shown in Section 4.

In the linear experiment (Fig. 6b), our criterion and Procassini 
criterion with a ρ value of 15.5 behave like the optimal scenario 
and therefore are very close in terms of performance. However, we 
notice that Menon criterion does not follow the same load balanc-
ing time interval as the optimal scenario, leading to a performance 
loss of approximately 10%. In particular, we remark that Menon 
criterion does not re-balance frequently enough.

In the sublinear experiment (Fig. 6c), the opposite situation 
appears (compared to the linear experiment). Herein, Menon crite-
rion re-balance too often, wasting valuable resources. It is expected 
behavior as we observed in Section 4 that this criterion is optimal 
only if the load imbalance growth is constant, which is not the 
case in the sublinear experiment nor in the linear experiment.

In the auto-correct experiment (Fig. 6d), we see that neither 
our criterion nor Menon criterion can understand that no load 
balancing is required because the load imbalance corrects itself pe-
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Fig. 6. Results of the synthetic benchmarks with static workloads for Menon criterion [19], our criterion, and Procassini criterion [27] against the optimal scenario σ ∗ . 
Four sources of load imbalance are considered: (i) constant, (ii) linear with time, (iii) sublinear with time, and (iv) linear with time and self-correcting every 17 iterations. 
Parameters used in this benchmark are summarized in Table 2. U is defined in Equation (20).
riodically. Nevertheless, our criterion is able to detect up to five 
auto-correcting patterns in a row. For that reason, in this exper-
iment, our criterion is far better in terms of performance than 
Menon criterion. Only Procassini criterion provided the optimal ρ
value is able to match the performance of the optimal scenario.

The results of the synthetic benchmarks with irregular work-
loads are presented in Fig. 7. Like in the previous benchmarks, the 
same values of ρ have been considered for Procassini criterion, and 
we show the scenario that performed the best.

In the constant experiment presented in Fig. 7a, we see that 
the performance of both our criterion and Menon criterion are al-
most unchanged. However, Procassini criterion decreased in perfor-
mance compared to the static experiment. In the linear experiment 
(Fig. 7b), the results are similar to the static experiment where 
Menon criterion does not re-balance frequently enough, whereas 
our criterion and Procassini criterion follow the behavior of the 
optimal strategy.

In the sub-linear experiment (Fig. 7c), Menon criterion im-
proves its performance, whereas Procassini criterion’s performance 
decreases. Our criterion performs on par with both Menon crite-
rion and the optimal scenario. It is worth noticing that during the 
slow-down around iteration 300, our criterion stops re-balancing 
while the optimal scenario only decreases the load balancing time 
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interval. This suggests that our criterion is able to adapt its behav-
ior to the current situation. This phenomenon is also visible in the 
last experiment. However, there, the optimal scenario does not re-
balance at all. Finally, in the auto-correct experiment (Fig. 7d), we 
remark that Procassini criterion is the only criterion able to detect 
that re-balancing the application is not necessary. Nevertheless, 
our criterion reduces its load balancing time interval, drastically 
improving its performance compared to Menon criterion.

To understand the difference in performance among those cri-
teria in a better way, we show in Fig. 8 the relative performance 
of our criterion, Menon criterion, and Procassini criterion com-
pared to the optimal scenario. The relative performance is defined 
as Tcriteria/Tσ ∗ . We see that out of the three criteria we studied 
Procassini criterion is the best provided the optimal value of ρ . 
However, not every scientist can afford the effort to find the op-
timal ρ before executing his/her application, which is not needed 
with our criterion and Menon’s like criteria. Moreover, the perfor-
mance of both Menon criterion and our criterion are really close 
to the optimal scenario in these experiments. Finally, Menon cri-
terion performs better in the irregular workload than in the static 
workload situations.

To confirm these hypotheses, we propose a numerical study of 
all the criteria presented in Section 3 on YALBB, a home-made load 
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Fig. 7. Results of the synthetic benchmarks with irregular workloads for Menon criterion [19], our criterion, and Procassini criterion [27] with an optimally tuned parameter 
ρ against the optimal scenario σ ∗ . Four sources of load imbalance are considered: (i) constant, (ii) linear with time, (iii) sublinear with time, and (iv) linear with time and 
self-correcting every 17 iterations. Parameters used in this benchmark are summarized in Table 2. U is defined in Equation (20).

Fig. 8. Relative performance of the our criterion, Menon criterion, and Procassini criterion against the optimal scenario in the static workload and irregular workload synthetic 
benchmarks. The relative performance is defined as Tcriteria/Tσ ∗ .
balancing benchmark based on a N-body simulation with a short-
range force.

6.2. Numerical study with YALBB

We carried out three experiments involving 40,000 particles 
and hundreds of millions of interactions with “YALBB” to evaluate 
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the load balancing criteria presented in Section 3. The experiments 
were conducted with a standard Lennard-Jones interaction. The 
inner data structure uses the well-known cell lists algorithm for 
managing particles neighborhood. In these experiments, we used 
Zoltan [6] as a load balancing library for partitioning and manag-
ing the related data. Fig. 9 shows an example of 40,000 particles 
distributed among 4 processing elements using the Hilbert space-
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Table 3
Physical parameters for the three numerical experiments.

Parameter Contraction Expansion Expansion and Contraction

Box size (x,y,z) (3.15, 3.15, 3.15)

Number of particles 40,000

σLJ 0.7

εLJ 1.0

Initial temperature 3.0

Time-step 2e-5 8.4e-5 1.2e-4
Fig. 9. Example of a sphere of uniformly distributed 40,000 particles. Particles are 
distributed to 4 processing elements using the Hilbert Space Filling Curve. The par-
ticles are colored according to the rank of their attributed processing element.

filling curve algorithm available in Zoltan. The experiments were 
executed on “Yggdrasil” the University of Geneva’s cluster (Intel 
Xeon Gold 6240 CPU @ 2.60 GHz).

The first experiment consisted of a uniformly distributed sphere 
of particles expanding in a vacuum. The second experiment simu-
lated the compression of a bigger uniformly distributed sphere of 
particles in a vacuum. The third experiment was a combination of 
both, one after the other, starting with the expansion phase. While 
in expansion, the particles were attracted to the sphere’s center 
by a force proportional to the earth’s gravity. Hence, after a few 
iterations, the sphere started to compress again. The results are 
obtained over one sequence of expansion-compression of the gas. 
The physical parameters used in our numerical study are shown 
in Table 3. The number of interactions to compute over time is 
shown in Fig. 10 for each experiment. As we can see in this figure, 
the amount of interactions (i.e., the density of particles) varies a lot 
over the execution of the experiment changing the requirement for 
load balancing. At the beginning of the expansion simulations, al-
most every particle interacts with all the others, this huge density 
decreases rapidly after the beginning of the simulation, drastically 
changing the workload of many processing elements. The reverse 
situation appears in the contraction simulation where there is al-
most no interaction at the beginning of the code execution, but 
a very high density is observed towards the end. In these experi-
ments, we used the Hilbert Space Filling curve algorithm available 
in the Zoltan load balancing library [6].

The results of the three experiments are presented in Fig. 11. 
We executed the code 5 times for each experiment, and we report 
the median parallel time for each criterion. As we can observe, 
state-of-the-art load balancing criteria can achieve close to opti-
mal performance. However, for Procassini criterion and Marquez 
criterion, the user has to find the optimal value of the parameter 
(ρ or ξ ), which is not something everybody can afford. This is why 
automatic criteria seem to be the best fit for most situations, even 
though a ρ value between 1.0 and 1.25 seems to work the best for 
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Procassini criterion. Furthermore, as we can see in Table 4, criteria 
with an extra parameter often have non-consistent results across 
experiments. Also, the penalty for using a sub-optimal value can be 
huge, and there is no rule of thumb to find the right value except 
testing many of them. Finally, we see that our criterion performs, 
on average, 6.79% faster than the studied load balancing criteria 
with a standard deviation of 0.08. In particular, our criterion is 
12.47% faster than Zhai criterion in the expansion-contraction ex-
periment and 6.95% faster than Menon criterion in the contraction 
experiment.

Among Menon’s like criteria, the Zhai criterion seems to be the 
less stable one. Even though it outperforms Menon criterion in one 
experiment, the Zhai criterion produced a run considerably slower 
in the other two experiments. The reason for this result is likely 
to be due to the evaluation phase P = 100 proposed by Zhai et al. 
in their paper [37] that may be well fitted for the contraction ex-
periment and not in the others. However, the study of the impact 
of the evaluation phase on the performance of the Zhai criterion is 
out of the scope of this paper and could be the subject of another 
work. Finally, these results involving Menon’s like criteria suggest 
that different implementation of the same idea behind load bal-
ancing criteria might significantly impact performance.

Finally, we observe that our criterion performs on par with 
Menon criterion and outperforms it in the expansion and contrac-
tion simulation. Menon criterion seems to perform better when the 
application exhibits an irregular workload, as seen in the synthetic 
benchmarks. It could be why the gap between the two criteria is 
much closer in the numerical experiment than in the synthetic 
benchmark. Overall, our criterion and Menon criterion seem to 
be the most stable criteria. The optimum is faster than Menon 
criterion by 36.80% and 32.09% faster than our criterion in the 
contraction experiment, 19.17% and 18.60% faster in the expan-
sion experiment, and 16.33% and 18.03% faster in the expansion-
contraction experiment.

The present study is not enough to conclude that our criterion 
is better than Menon criterion, even though our criterion outper-
forms Menon criterion up to 6.9%. In comparison, it was slower 
by only at most 2.0%. However, it suggests that they are both 
excellent alternatives. In particular, our numerical study indicates 
that these two criteria often perform almost optimally. Therefore, 
we encourage scientists to use our branch-and-bound algorithm to 
compare the performance of available load balancing criteria to as-
sess which criterion is the most suited for their type of problem.

7. Conclusion

In the present paper, we proposed a review of state-of-the-art 
load balancing criteria and we introduced a novel fully automatic 
criterion based on a simple mathematical model inspired from 
the literature. We tried to classify these criteria as a function of 
their requirements and the information (external or not) required 
to compute the load balancing decision. Secondly, we proposed a 
branch-and-bound method for computing the set of load balanc-
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Fig. 10. The number of particle interactions to compute at each iteration (i.e., application workload) of the three experiments carried out in the numerical study. Each 
experiment is composed of 40,000 particles. The first experiment computes a sphere of uniformly distributed particles that contracts on the effect of an external force. The 
second experiment computes a sphere of uniformly distributed particles that expands. The third experiment starts by expanding the sphere and then the sphere contracts.

Fig. 11. Comparison of the median performance of each criterion (among 5 executions) in the numerical experiments relative to the optimal scenario σ ∗ .
ing steps leading to the optimal performance of a given applica-
tion. Besides, we provide two implementations of this algorithm. 
The first implementation in LBOPT [35] the package related to the 
synthetic benchmarks and the second, in YALLB [34] the package 
related to the N-body solver we used in the numerical experi-
ments. Afterward, we studied the performance of state-of-the-art 
load balancing criteria and our new criterion on synthetic bench-
marks (modeled via our simple mathematical model) and on a 
parallel N-body solver.

We observed that our novel criterion outperforms automatic 
state-of-the-art criteria in synthetic benchmarks. However, we 
pointed out that the performance difference was tighter in the 
irregular total workload scheme compared to the static total work-
load scheme. We also identified that modeling the impact of the 
load balancing method on the load imbalance growth is challeng-
ing. This is a topic that is worth the research effort and will be 
targeted for future work.
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We saw that the gain of our criterion with respect to the other 
criteria is smaller in our N-body numerical experiments due to 
system perturbations and uncertainties about the load imbalance 
function. However, we remarked that fully automatic criteria have 
more reliable results, only at most 36.80% (Menon criterion) slower 
than the optimal scenario. In particular, a run with our criterion is 
never more than 32.08% slower than the optimum. Our criterion 
can outperform Menon criterion by up to 6.9%, while it is outper-
formed by up to a marginal 2.0% in the worst case. We also noticed 
that our criterion is, on average, 6.79% faster than the other load 
balancing criteria with. All these experiments suggest that our cri-
terion is a very good alternative to other automatic load balancing 
criteria, offering almost optimal performance.

Of course, to further confirm the aforementioned observations, 
we plan to test our new criterion on production codes. The first 
step will be to integrate our re-balancing strategy in Palabos [15], 
a parallel Lattice-Boltzmann solver. Then, we will investigate more 
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Table 4
Summary of the performance results for the three numerical experiments. The median performance and the 
median absolute deviation of each criterion are reported from the data gathered during 5 executions. For the 
criteria with an extra parameter, we reported the performance of the best parameter.

Experiment Criterion Median [s] Median Absolute Deviation

Contraction σ ∗ 19.35 0.08
Menon et al. 30.62 0.18
Our criterion 28.49 0.42
Zhai et al. (P = 100) 24.89 0.25
Procassini et al. (ρ∗ = 1.25) 30.34 1.64
Marquez et al. (ξ∗ = 4.00) 33.51 0.37

Expansion σ ∗ 19.77 0.10
Menon et al. 24.46 0.56
Our criterion 24.29 0.36
Zhai et al. (P = 100) 27.20 0.57
Procassini et al. (ρ∗ = 1.00) 27.66 0.73
Marquez et al. (ξ∗ = 0.90) 26.88 0.49

Expansion and Contraction σ ∗ 24.68 0.12
Menon et al. 29.50 0.49
Our criterion 30.11 0.30
Zhai et al. (P = 100) 34.42 0.93
Procassini et al. (ρ∗ = 1.00) 36.09 2.66
Marquez et al. (ξ = 1.50) 32.63 1.32
complex load imbalance growth. For instance, we plan to add ran-
dom bias to the load imbalance growth to simulate perturbations 
coming from various sources, such as system characteristics. The 
last step is to improve our understanding about the impact of the 
partitioning method on the load imbalance growth. It is mandatory 
to have benchmarks that better reproduce the behavior of real ap-
plications.
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Appendix A. Optimal scenario finding algorithm

Algorithm 1: Optimal Load Balancing Scenario Searching 
Algorithm.

Input: numIter: the number of iterations to compute, priorityQueue: a 
priority queue

1 foundLb[i] = 0∀i = 1..K ;
// root node

2 cNode = Node(iter=0, LB=true, cost=0.0, appState, lbState, prev=∅);
3 while cNode.iter < numIter do
4 if cNode.LB then
5 foundLB[cNode.iter] = true;
6 end
7 dontLBNode, doLBNode = cNode.getChildren();
8 if not foundLB[doLBNode.iter] then

// Measurement of cost (i.e., time) with a 
theoretical model or a real application

9 doLBNode.computeCost();
10 replaceOrInsertNode(priorityQueue, doLBNode);
11 end
12 dontLBNode.computeCost();
13 insert(priorityQueue, dontLBNode);
14 cNode = priorityQueue.pop();
15 end
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Appendix B. Replace or insert algorithm

Algorithm 2: replaceOrInsertNode(priorityQueue, doLBN-
ode): void.

Input: priorityQueue: the priority queue, doLBNode: the load balancing 
node to insert or replace

1 for node ∈ priorityQueue do
2 if node.iter == doLBNode.iter and node.LB == true then
3 if node.cost > doLBNode.cost then
4 priorityQueue.remove(node);
5 priorityQueue.insert(doLBNode);
6 end
7 return;
8 end
9 end

10 priorityQueue.insert(doLBNode);
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