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Abstract— More electrification in the mobility and building 

sectors, as well as increased electricity generation from 

distributed renewable energy sources such as household 

photovoltaic systems, are two of the most promising paths toward 

a more environmentally sustainable energy system. Electric 

power distribution system operators (DSOs) must improve the 

network’s observability in this context to address a variety of 

technical and market-related concerns, including local network 

congestion, flexibility exchanges, and resource allocation. To 

achieve this goal, DSOs are installing smart meters at end-users’ 

locations, as well as measuring devices and monitoring systems on 

low and medium-voltage networks. Despite the fact that smart 

meters are an important part of this transformation, privacy laws 

prevent data from being used for anything other than normal 

operation and billing without the consent of end-users. We 

present a model for dealing with differentially private data from 

smart meters. After that, we present an optimization problem for 

pricing such differentially private smart meters data, taking into 

account the value generated for the DSO through state 

estimation. Using real-anonymous smart meter data from a DSO 

in Switzerland, we evaluate the effectiveness of our suggested 

mechanism for buying such differentially private data.  

Index Terms— Data pricing, distribution network, smart meter, 

privacy. 

I. INTRODUCTION

In recent decades, smart meters have gradually replaced 
conventional meters.  The smart meters were designed with the 
purpose of automatically reading and billing end-users’ 
consumption [1]. However, thanks to the large number of time-
series collected and the advancement of data-analytics tools, a 
broader range of applications are now envisaged [2]. They 
enable distribution system operators (DSOs) to efficiently 
operate the network for accommodating increasing renewable 
energy penetration and significant growth in the electric 
mobility sector. These new potential applications are consistent 
with the digitalization goals in distribution networks outlined 
by the European network of transmission system operators for 
electricity (ENTSO) for collaboration between transmission 
system operators (TSOs) and DSOs [3].  

Some of these applications cannot be executed on the smart 
meter's edge. To apply a centralized algorithm, we must transfer 
the data to a remote server. One such application is state 
estimation. DSOs can employ state estimation to use the 

network’s unused flexibility and, as a result, engage in the 
flexibility markets [4]. It is worth mentioning that involvement 
of DSOs in flexibility markets is restricted by legislation in 
some networks, whilst other entities known as aggregators only 
have the option of selling flexibility in distribution network [5]. 

A review of distribution system state estimation may be 
found in [6] and [7]. A suitable state estimation technique has 
been proposed in [8] to maximize the accuracy of the estimation 
based on data from smart meters. In [9], a cloud-based 
architecture has been proposed for centralizing smart meter 
data, allowing DSOs to combine various services based on a 
distributed state estimate algorithm. Other in-field 
measurement devices, such as smart meters, can be included to 
improve the estimation result. A near-optimal placement of 
several in-field measuring devices has been found in [10] and 
[11], improving the conventional state estimation results. 

The studies stated above do not take into account the fact 
that smart meter data contains sensitive information about end-
users, including as occupancy and consumption patterns [12]. 
There are various approaches for forecasting such information 
from historical data, such as those outlined in [13], [14], and 
[15]. To overcome this issue, data privacy must be addressed 
from both a regulatory and a technical standpoint [16] and [17]. 
In Switzerland, article 8 of the power supply regulation [18] is 
designed to protect the privacy of end-users with relation to 
measurement systems and information processing. A directive 
for the security of data from measurement and smart systems 
was also released in 2018 [19]. As a result, in each distribution 
network company, there are few trusted people who has access 
to historical measurement of smart meters data and they are 
obliged not to use that data for purposes other than billing and 
normal operation of the network [20].  

There are numerous approaches to resolve the conflict of the 
end-users and DSO. The first approach legitimate applications 
(like those outlined in [21]) that helps the entire network and 
not just the DSO or a third party. The second approach is based 
on anonymization of smart meter data, which prohibits the DSO 
from anticipating the behavior of each end-user individually. In 
[22], an anonymization mechanism has been developed for 
sending sensitive smart meter data to a third-party, who does a 
network simulation and analysis for the DSO. However, each 
end-user assessed by a smart meter has a distinct assessment of 
the cost of privacy loss, which the anonymization techniques do 
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not address. The third approach for dealing with the 
aforementioned issue is based on a differential privacy 
framework that may be used to model the privacy valuation 
functions of different end-users. The value of sharing 
differentially private smart meter data has been assessed in [23]. 
A differential privacy compliant algorithm has been created in 
[24] to ensure that the smart meters data privacy is preserved.  

Note that even if privacy is ensured and sharing such data 
could benefit everyone, data owners (i.e., the monitored end-
users) may be unwilling to disclose their differentially private 
smart meter data. Furthermore, if we analyze the alternatives, 
such as installing extra in-filed measurement devices in the 
network rather than purchasing such private data, extra 
measurement devices will have impacts on end-users’ privacy.  

In this paper, we first present a model of differential private 
smart meter data. Then, an optimization problem is introduced 
for pricing private data of smart meters while taking into 
account the benefits for the DSO to have a better network state 
estimation. Furthermore, the cost suffered by end-users as a 
result of losing their privacy has been considered. Importantly, 
the proposed mechanism preserves the end-users’ right to 
decide whether or not to share their data, even when their 
privacy is maintained at a predetermined level. 

The rest of this paper is organized as follows: Section II 
presents the mathematical formulation of the models for 
network and end-users’ privacy. Section III proposes problem 
and its solution by formulating the network’s state estimation 
problem and the optimization problem for pricing private smart 
meter data. Section III also includes an algorithm for solving 
the described optimization problem. Section IV contains a case 
study, followed by a conclusion in Section V.  

II. MATHEMATICAL FORMULATION OF MODEL 

Consider a distribution network with nodes and lines 
denoted by 𝑙 ∈ 𝐿. The node below line 𝑙 is denoted by 𝑙, while 

the node above line 𝑙 is marked by 𝑙(𝑢𝑝). Each end-user is 
identified by 𝑑 ∈ 𝐷 and has active and reactive consumption 
𝑝𝑑𝑡  and 𝑞𝑑𝑡 at time 𝑡 ∈ 𝑇. It is worth mentioning that end-user 
𝑑 could be a prosumer, implying that 𝑝𝑑𝑡  could be negative 
during production hours.  

Fig. 1 displays an example of distribution network. The 
network is assumed to be radial, and the series and shunt 
impedances of lines are assumed to be known and equal to 
(𝑟𝑙 + j ⋅ 𝑥𝑙) and (2 ⋅ j ⋅ 𝑏𝑙) for each line 𝑙. The slack node, 
denoted by 𝑙 = 0, is the point at which the distribution network 
connects to the transmission system.  

The goal of DSO is to estimate the state of the network, 
including (𝑢𝑙𝑡 , 𝑝𝑙𝑡 , 𝑞𝑙𝑡)𝑙∈𝐿,𝑡∈𝑇, where 𝑢𝑙𝑡, 𝑝𝑙𝑡 , and 𝑞𝑙𝑡  are the 

voltage of the node 𝑙 and the active/reactive power of the line 𝑙 
at downstream, respectively. To that purpose, the DSO has two 
options for improving the network observability:  

1. The DSO might install the potential measurement device 

𝑚 ∈ 𝑀 at a cost of 𝑐 to measure the voltage, active, and 

reactive power of the associated branch and node with an 

error of 𝛿𝑚
(𝑢)

, 𝛿𝑚
(𝑝)

, and 𝛿𝑚
(𝑞)

. We employ the binary variable 

𝑣𝑚, where 𝑣𝑚 = 1  if the potential measurement device m 

is installed and 𝑣𝑚 = 0 otherwise.  

2. The DSO may request that end-users disclose their private 

data with the privacy-level (1 − 𝜖), including their 

consumption 𝑝𝑑𝑡  and 𝑞𝑑𝑡. Instead, the DSO must pay in 

order to compensate the privacy of end-user 𝑑. The concept 

of privacy-level (1 − 𝜖) is defined in the next section, and 

the method of acquiring end-users’ private data with 

privacy-level (1 − 𝜖) is discussed. We employ the binary 

variable 𝑤𝑑, where 𝑤𝑑 = 1 if the end-user accepts the 

DSO’s offer and discloses his private data with privacy-

level (1 − 𝜖) and otherwise 𝑤𝑑 = 0. 

 

 

 

 

 

 

 

 

Figure 1. The example of distribution network. 

A. Distflow Model 

The Distflow model [22] is a load-flow model that does not 
rely on voltage angle and follows an iterative pattern that works 
well with radial networks. It is also compatible with the PI 
model of lines and may be used to any network topology [23] 
(Fig. 2).  The investigated network is assumed radial, with a 
slack-bus at the transformation node.  

The variables are computed in two steps: first, the power 
flow in the lines is computed from the bottom-up using the 
backward-Distflow equation (1), and then the square voltage 
magnitude of the nodes from the slack bus to the end-nodes is 
computed using the forward-Distflow equation (2). These 
calculations are carried out in loop until the convergence is 
achieved.  

𝑝𝑙𝑡
(𝑢𝑝)

= 𝑟𝑙 ⋅
(𝑝𝑙𝑡)2 + (𝑞𝑙𝑡)2

(𝑢𝑙)2 + ∑ 𝑝𝑑𝑡

𝑑∈𝐷𝑙

+ ∑ 𝑝
𝑙′𝑡

(𝑢𝑝)

𝑙′∈𝐿𝑙

, ∀𝑙 (1.a) 

𝑞𝑙𝑡
(𝑢𝑝)

= 𝑥𝑙 ⋅
(𝑝𝑙𝑡)2 + (𝑞𝑙𝑡)2

(𝑢𝑙)2 + ∑ 𝑞𝑑𝑡

𝑑∈𝐷𝑙

+ ∑ 𝑞
𝑙′𝑡

(𝑢𝑝)

𝑙′∈𝐿𝑙

 

                                                −2 ⋅ (𝑢𝑙𝑡)2 ⋅ ∑ 𝑏𝑙′

𝑙′∈𝐿𝑙∪{𝑙}

, ∀𝑙 

(1.b) 

(𝑢𝑙𝑡)2 = (𝑢𝑙𝑡
(𝑢𝑝)

)
2

− 2 ⋅ (𝑟𝑙 ⋅ 𝑝𝑙𝑡 + 𝑥𝑙 ⋅ 𝑞𝑙𝑡) + (𝑟𝑙
2 + 𝑥𝑙

2)

⋅
(𝑝𝑙𝑡)2 + (𝑞𝑙𝑡)2

(𝑢𝑙)2 , ∀𝑙 
(2) 

where 𝐷𝑙  is the set of end-users connected to node 𝑙, and 𝐿𝑙 is 
the set of lines downstream of line 𝑙.  
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Figure 2. Pi model of a line and notations used in the Distflow. 
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B. Privacy-Level of End-Users 

We must evaluate and define end-user’s privacy since 
historical consumption data of end-users can give considerable 
amounts of personal information about an individual. When 
defining privacy for smart meter data, we must consider what 
specific information an end-user want to keep private, which in 
this case is (𝑝𝑑𝑡)𝑡∈𝑇 and (𝑞𝑑𝑡)𝑡∈𝑇. Although data aggregation 
and anonymization give some additional privacy protection, 
they do not guarantee that an end-user cannot be recognized or 
that information will not be disclosed. Differential privacy, on 
the other hand, is defined as a set of techniques by which we 
assure that an end-user 𝑑 cannot be individually recognized. 
While the advantages of sharing such private data will be 
realized in differential privacy setting, the data will not be 
shared explicitly. Even by utilizing data analytics and machine-
learning approaches, one cannot determine an end-user's 
consumption [27]. 

Differential privacy presents a mathematical framework to 
define the likelihood of being identified when looking at the 
entire announced dataset. Given a set of 𝑑 ∈ 𝐷 end-users, a 
randomized mechanism 𝑀 is (1 − 𝜖)-differentially private if, 
for all conceivable situations of reported 𝑝 = (𝑝𝑑𝑡)𝑑∈𝐷,𝑡∈𝑇, �⃗� =
(𝑞𝑑𝑡)𝑑∈𝐷,𝑡∈𝑇, 𝑝′ = (𝑝𝑑𝑡

′ )𝑑∈𝐷,𝑡∈𝑇, and �⃗�′ = (𝑞𝑑𝑡
′ )𝑑∈𝐷,𝑡∈𝑇, 𝑝 and 

𝑝′ differ only in one element and �⃗� and �⃗�′ also differ in one 
element, we get:  

Prob( 𝑝|𝑀( 𝑝)) ≤ exp(𝜖) ⋅ Prob(𝑝′ |𝑀( 𝑝)), (3.a) 

Prob( �⃗�|𝑀( �⃗�)) ≤ exp(𝜖) ⋅ Prob(�⃗�′ |𝑀( �⃗�)), (3.b) 

where 1 − 𝜖 denotes the differential privacy-level  of end-users 
if the mechanism 𝑀 is used, i.e., the smaller 𝜖, the more private 
𝑀 [23].  

One mechanism for achieving (1 − 𝜖)-privacy is to 
introduce a Laplacian noise to each end-user load profile 
separately. For active and reactive power, the injected 

Laplacian noise is 𝑛𝑑𝑡
(𝑝)

~𝐿 (0, 𝑏𝑡
(𝑝)

) and 𝑛𝑑𝑡
(𝑞)

~𝐿 (0, 𝑏𝑡
(𝑞)

), 

where 𝑏𝑡
(𝑝)

 and 𝑏𝑡
(𝑞)

 are scaling factors. It should be noted that 

the noises must be mutually independent for all 𝑑 ∈ 𝐷, time 𝑡 ∈

𝑇, and active/reactive power profiles. The Laplacian noise 𝑛𝑑𝑡
(𝑝)

 

and 𝑛𝑑𝑡
(𝑞)

 injections can ensure (1 − 𝜖) differential privacy if the 

relationship between 𝜖 and 𝑏𝑡
(𝑝)

, 𝑏𝑡
(𝑞)

 is satisfied as shown 

below.  

𝑏𝑡
(𝑝)

=
max
∀d∈D

(𝑝𝑑𝑡) − min
∀d∈D

(𝑝𝑑𝑡)

𝜖 ⋅ |𝐼|
, 

(4.a) 

𝑏𝑡
(𝑞)

=
max
∀d∈D

(𝑞𝑑𝑡) − min
∀d∈D

(𝑞𝑑𝑡)

𝜖 ⋅ |𝐼|
, 

(4.b) 

where |𝐼| is the number of end-users in the network.  

C. Privacy Cost of End-Users 

Prospect theory better depicts the end-user’s behavior under 
uncertainty settings than expected utility theory, which is a 
commonly used modeling approach in economics. According 
to prospect theory, a person judges an outcome based on 
subjective impression due to psychological loss and risk 
preference [28]. 

 

In our problem, privacy is likewise seen as an unpredictable 
metric for end-users. In [28], the following cost function has 
been suggested. 

PrivacyCost(𝜖) = 𝜆 ⋅ 𝜖𝛽 , (5) 

where 𝜆 captures the loss aversion level, and 0 ≤ 𝛽 ≤ 1 
describes for convexity of the cost function to the risk aversion 
level. We can investigate different levels of risk aversion in 
end-users by varying the parameters 𝜆 and 𝛽. A statistical study 
would be helpful to determine these parameters for a specific 
population. 

D. Acceptance Rate of End-Users 

The DSO attempts to estimate the network's state at each 
time instant. To accomplish this purpose, he may pay each end-
user 𝑐𝑜𝑚𝑝 (𝜖) for releasing his private information with a 
privacy-level of 1 − 𝜖. In fact, the DSO will only get the noisy 

version of smart meter data, i.e., 𝑝𝑑𝑡 + 𝑛𝑑𝑡
(𝑝)

 and 𝑞𝑑𝑡 + 𝑛𝑑𝑡
(𝑞)

, to 

undertake state estimation. The DSO needed this information in 
order to participate in the flexibility markets. 

The proposed mechanism is as follows. Each end-user has 
the choice to accept or reject the offer after it is presented to 
him. If end-user 𝑑 rejects the offer, his net payoff is equal to 
𝑥𝑑 = 0; otherwise, if he accepts the offer, his net payoff is:  

𝑥𝑑 = comp(𝜖) − PrivacyCost(𝜖). (6) 

We do not know how much privacy loss each end-user 
costs, thus neither DSO nor end-user can anticipate 𝑥𝑑 exactly. 
When we obtain an estimate of each end-user's cost based on 
statistical analysis of the parameters 𝜆 and 𝛽 in (5), we need a 
probabilistic function to estimate how probable it is that end-
user 𝑑 will accept the offer, i.e., 𝑤𝑑 = 1. We will use the 
Sigmoid function (shown in Fig. 3) to demonstrate this aspect 
of end-user’s behavior. 

 
Figure 3. Basic Sigmoid function. 

Prob{𝑤𝑑 = 1} =
1

1 + 𝑒−𝑐1.(𝑥𝑑−𝑐2) 
,   (7) 

where 𝑐1 and 𝑐2 are parameters that can be estimated 
statistically. 

In brief, we can change the parameters 𝛽, 𝛿, 𝑐1 and 𝑐2 to 
simulate various end-users’ reactions to the DSO's suggested 
offer for collecting smart meter data.  

III. PRIVATE SMART METER DATA PRINCING PROBLEM 

AND PROPOSED SOLUTION ALGORITHM 

Using acquired smart meter data and in-field measurements, 
the DSO will determine the state of the distribution network. 



 

Here, we first describe a state estimation algorithm. However, 
the DSO requires private smart meter data in order to perform 
this algorithm. In the following part, we will provide an 
optimization problem for pricing smart meter data. Because the 
proposed optimization problem cannot be solved using standard 
solvers, we describe a heuristic iterative algorithm in the final 
part of this section for finding an accurate solution to the 
proposed optimization problem.  

A. State Estimation Algorithm 

In this section, we describe a state estimation algorithm 
based on the Distflow model presented in Section II.A. The 
shunt capacitance of the lines is taken into account in the 
Distflow model under consideration.  

The goal of the state estimation algorithm is to calculate the 
flowing power of all lines and voltage magnitudes of all nodes, 
namely 𝑠 = (𝑝𝑙𝑡 , 𝑞𝑙𝑡 , 𝑢𝑙𝑡)𝑙∈𝐿,𝑡∈𝑇 . To reach this aim, we define 

the vector �⃗� = ((𝑢0𝑡)2, (𝑝𝑑𝑡 , 𝑞𝑑𝑡)𝑑∈𝐷,𝑡∈𝑇). Using the weighted-

least-square (WLS) estimation method and a set of 

measurements 𝑧 = (𝑝𝑚𝑡 , 𝑞𝑚𝑡  , (𝑢𝑚𝑡)2)𝑚∈𝑀,𝑡∈𝑇, we have: 

𝑧 = ℎ(�⃗�) + error,   (7) 

where 𝑚 ∈ 𝑀 is the measuring device's index, 𝑝𝑚𝑡 , 𝑞𝑚𝑡, and 
(𝑢𝑚𝑡)2 are the active power, reactive power, and square of 
voltage magnitude measured by the measurement device 𝑚, 
ℎ(�⃗�) is a function between �⃗� and 𝑧 based on the Distflow 
distribution network model, and error is measurement noise. It 
should be noted that the vector 𝑧 contains both real 
measurements from measuring devices 𝑚 ∈ 𝑀 and pseudo-
measurements acquired by DSO offers specified in Section 
II.C.  

We can use an iterative method with update (8) to tackle the 
state estimation problem. 

�⃗�(𝑘+1) = �⃗�(𝑘) + (𝐻T ⋅ 𝑊 ⋅ 𝐻)−1 ⋅ 𝐻T ⋅ 𝑊 ⋅ 𝑟(𝑘),   (8) 

where 𝑘 is the iteration index, 𝑟(𝑘) is the difference between the 

measurement and the results of applying the measurement 
function to the computed state vector at each iteration, i.e., 
𝑟(𝑘) = 𝑧 − ℎ(�⃗�), 𝐻 is the Jacobian matrix of ℎ(�⃗�) as defined in 

(9), and 𝑊 is the inverse of the variance matrix formulated in 

(10) for all measurements, where (𝜎𝑧𝑚
)

2
 is the respected 

measurement standard deviation.  

𝐻 = [
𝜕ℎ(�⃗�)𝑧𝑚

𝑥𝑖

]
𝑧𝑚𝑖

   (10) 

𝑊 = [

(𝜎𝑧1
)

2
0 0

0 ⋱ 0

0 0 (𝜎𝑧𝑚
)

2
]   (11) 

Following the convergence of (8), the DSO will calculate 
the state vector 𝑠 using its relationship to vector �⃗� based on the 
Distflow model.  

B. Pricing Private Smart Meter Data 

The DSO tries to estimate the state vector 𝑠 with maximum 

error then 𝛿(max). He will need private information from end-
users and in-field measurements to do so. To collect smart 
meter data, he proposes (𝜖, comp) offers to each end-user 𝑑 ∈

𝐷, with each one is free to accept or reject the offer. If someone 
declines the offer, the DSO will get that end-data user's data 
with a privacy-level of 1. Another option for DSO is to install 
an in-field measurement device 𝑚 ∈ 𝑀, which costs 𝑐.  

The DSO must solve the following optimization problem to 
determine optimal (𝜖, comp) and which measurement device 
𝑚 ∈ 𝑀 is worthy of installation {𝑚|𝑣𝑚 = 1}.  

min
Γ

𝐎𝐛𝐣 =  { ∑ c ⋅ 𝑣𝑚

𝑚∈𝑀

+ ∑ comp ⋅ 𝑤𝑑

𝑑∈𝐷

}   (12.a) 

subject to:  

‖( �̃�𝑙𝑡, �̃�𝑙𝑡, �̃�𝑙𝑡)𝑙∈𝐿,𝑡∈𝑇 − (𝑝𝑙𝑡, 𝑞𝑙𝑡 , 𝑢𝑙𝑡)𝑙∈𝐿 ,𝑡∈𝑇‖
∞

≤ δ(max), (12.b) 

Prob{𝑤𝑑 = 1} =
1

1 + 𝑒−𝑐1.(𝑥𝑑−𝑐2) 
,         ∀𝑑 ∈ 𝐷, (12.c) 

Prob{𝑤𝑑 = 0} = 1 −  Prob{𝑤𝑑 = 1},    ∀𝑑 ∈ 𝐷, (12.d) 

𝑣𝑚 = {0,1},                                                 ∀𝑚 ∈ 𝑀, (12.e) 

where ( 𝑝𝑙𝑡 , �̃�𝑙𝑡 , �̃�𝑙𝑡)𝑙∈𝐿,𝑡∈𝑇 is the estimated state of the network, 

(𝑝𝑙𝑡 , 𝑞𝑙𝑡 , 𝑢𝑙𝑡)𝑙∈𝐿 ,𝑡∈𝑇 is the actual state of network the set Γ of 

decision variables for this problem includes comp, 𝜖, 

(𝑣𝑚)𝑚∈𝑀. 

The proposed optimization problem (12.a)–(12.e) is a non-
convex mixed-integer programming problem that cannot be 
solved precisely. In the section that follows, we offer an 
algorithm for solving this problem.  

C. Algorithm of Finding Solution 

We build an iterative algorithm inspired by [26] to solve the 

aforementioned optimization problem. Consider 𝜁(𝑖) =

((𝑣𝑚
(𝑖)

)
𝑚∈𝑀

, comp, ϵ), which is the solution at iteration 𝑖. In 

each iteration, we have the budget c, which can be associated to 
installing a measurement device or increasing payment to the 
end-users. The problem of each iteration is as below: 

min
𝜁(𝑖)

𝐉(𝜁(𝑖))  (13.a) 

subject to:  

𝜁(𝑖) ≫ 𝜁(𝑖−1) (13.b) 

𝐎𝐛𝐣 (�⃗⃗�
(𝑖)

) − 𝐎𝐛𝐣 (�⃗⃗�(𝑖−1)) ≤ 𝑐 (13.c) 

where ≫ is used for element-wise vector comparison, 𝐉(𝜁(𝑖)) = 

min(𝛿(𝑚𝑎𝑥), ‖( 𝑝𝑙 , �̃�𝑙 , �̃�𝑙)𝑙∈𝐿 − (𝑝𝑙 , 𝑞𝑙 , 𝑢𝑙)𝑙∈𝐿‖∞), ( 𝑝𝑙 , �̃�𝑙 , �̃�𝑙)𝑙∈𝐿 is 

estimated based on 𝜁(𝑖). 

The above algorithm continues until it converges or (13.c) 
is not feasible. The final solution includes the offers of DSO for 
pricing private smart meter data. 

IV. CASE STUDY 

The performance of the suggested approach for collecting 
private smart meter data is discussed in the following using a 
medium voltage and low voltage distribution network. The 
network includes 52 nodes connected by two main transformers 



 

(Fig. 4).  The link between nodes 2 to 0 and 2 to 5 are medium-
voltage/low-voltage transformers, whereas the others are 
cables.  

 
Figure 4. The distribution network under consideration. 

This case study network is located in a residential area of 
the city Geneva and possesses:  

- 52 nodes, 49 lines, and 2 MV/LV transformer, 

- 58 smart-meters installed (over 89 meters, so 65% of the 
consumer are covered): Active and reactive power are 
available with an average over period of 15 minutes, 

- 31 conventional meters, in which the annual active power 
data of these meters is available, and 

- 43200 kWh active power consumption monthly. 

The 15-minute data of end-users with smart meters is 
collected here during a period of 79 days, from 17/01/2020 to 
04/04/2020. Because of privacy concerns, the data is 
anonymized from the beginning and is randomly assigned to 
different end-users. As a result, we do not have access to each 
end-user's actual data. 

The cost of installing one in-field measurement instrument 
is estimated to be $10,000. The parameters 𝜆, 𝛽, 𝑐1, and 𝑐2 are 
considered equal to 500, 0.5, 0.1, and 10, respectively. Fig. 5 
depicts the privacy cost for various lambda values.  

 
Figure 5. Sensitivity of privacy cost to the value of 𝛽. 

We determine the final solution of the proposed algorithm 
after only three iterations with a budget of $30,000 to have a 
maximum error of state estimation, δ(max), of less than 2%. The 
final solution is privacy-level (1 − 𝜖) = 0.7788, comp =
420.37$, and just one measuring device installed at node 9. 
Figs. 6.a and 6.b show the sensitivity of the resulted 𝜖 and comp 
to the parameters of privacy cost, i.e., 𝜆 and 𝛽.  

 
Figure 6. Sensitivity of resulted (a) 𝜖 and (b) compensation to the selected 

parameters for privacy cost. 

Figs. 7.a and 7.b show the actual and state estimation results 
for voltage level and line loading at time “2020-01-28 
18:45:00”, which is the maximum network loading. As we can 
see, the biggest inaccuracy will occur during the estimation of 
voltage levels of nodes adjacent to loads.   

 

 
Figure 7. The (a) actual and (b) estimated voltage level and line loading for 

maximum network loading. 

V. CONCLUSION  

In this paper, we present an algorithm for valuing private 
data from smart meters. Smart meter data is used in 
differentially private format with artificial added noise for 
reasons other than normal network operation. We propose an 
optimization problem that prices smart meter data, optimizes 
privacy-level, and places measurement devices based on 
estimated privacy cost for end-users and measurement device 
installation cost. Because the proposed optimization problem is 
non-convex, an algorithm to find an estimated result is 
proposed. The proposed algorithm is evaluated on an 
exemplary distribution network in Geneva, Switzerland.  

 

(a) 

(b) 
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