
Vol.:(0123456789)

Machine Learning (2022) 111:1431–1521
https://doi.org/10.1007/s10994-022-06144-5

1 3

Lipschitzness is all you need to tame off‑policy generative
adversarial imitation learning

Lionel Blondé1 · Pablo Strasser1 · Alexandros Kalousis1

Received: 1 August 2020 / Revised: 18 January 2022 / Accepted: 27 January 2022 /
Published online: 4 April 2022
© The Author(s) 2022

Abstract
Despite the recent success of reinforcement learning in various domains, these approaches
remain, for the most part, deterringly sensitive to hyper-parameters and are often riddled
with essential engineering feats allowing their success. We consider the case of off-policy
generative adversarial imitation learning, and perform an in-depth review, qualitative and
quantitative, of the method. We show that forcing the learned reward function to be local
Lipschitz-continuous is a sine qua non condition for the method to perform well. We then
study the effects of this necessary condition and provide several theoretical results involv-
ing the local Lipschitzness of the state-value function. We complement these guarantees
with empirical evidence attesting to the strong positive effect that the consistent satisfac-
tion of the Lipschitzness constraint on the reward has on imitation performance. Finally,
we tackle a generic pessimistic reward preconditioning add-on spawning a large class of
reward shaping methods, which makes the base method it is plugged into provably more
robust, as shown in several additional theoretical guarantees. We then discuss these through
a fine-grained lens and share our insights. Crucially, the guarantees derived and reported in
this work are valid for any reward satisfying the Lipschitzness condition, nothing is spe-
cific to imitation. As such, these may be of independent interest.

Keywords Imitation learning · Reinforcement learning · Lipschitz-continuity · Generative
adversarial networks · Deep learning

1 Introduction

Imitation learning (IL) (Bagnell 2015) sets out to design artificial agents able to adopt a
behavior demonstrated via a set of expert-generated trajectories. Also referred to as “teach-
ing by showing” (Schaal 1997), IL can replace tedious tasks such as manual hard-coded
agent programming, or hand-crafted reward design “reward shaping” (Ng et al. 1999) for

Editor: Scott Sanner.

 * Lionel Blondé
 lionel.blonde@gmail.com

1 University of Geneva, Geneva School of Business Administration - HES-SO, Geneva, Switzerland

http://orcid.org/0000-0002-1993-3121
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06144-5&domain=pdf

1432 Machine Learning (2022) 111:1431–1521

1 3

the agent to be trained via reinforcement learning (RL) (Sutton and Barto 1998). Besides,
in contrast with the latter, imitation learning does not necessarily involve agent-environ-
ment interactions. This feature is particularly appealing in real-world domains such as
robotics (Atkeson and Schaal 1997; Schaal 1997; Ratliff et al. 2007; Billard et al. 2008),
where the artificial agent is physically implemented with expensive hardware, and the envi-
ronment contains enough external entities (e.g. humans, other artificial agents, other costly
devices) to raise safety concerns (Ha et al. 2020; Kahn 2016; Ray et al. 2019; Held et al.
2017). When controls are provided in the demonstrations [or recovered via inverse dynam-
ics from the available kinematics (Hanna and Stone 2017)], we can treat said controls as
regression targets, and learn a mimicking policy with a simple, supervised approach. This
interaction-free approach (simulated or physical, real-world interactions), called behavioral
cloning (BC), has enabled the success of various endeavors in robotic manipulation and
locomotion (Ratliff et al. 2007; Wang et al. 2017), in autonomous driving—with the first
self-driving vehicle (Pomerleau 1989, 1990) thirty years ago and more recently with (Gu
et al. 2020) using Waymo’s open dataset (Sun et al. 2019)—and also in grand challenges
like AlphAGo (Silver et al. 2016) and AlphAStAr (Vinyals et al. 2019). Due to its concep-
tual simplicity, we expect BC to still be a part of the pipeline for the most ambitious enter-
prises going forward, especially as open datasets get slowly released.

Despite its practical advantages, BC is extremely data-hungry w.r.t. the amount of
expert demonstrations it needs to yield robust, high-fidelity policies. Besides, unless cor-
rective behavior is present in the dataset (e.g. in autonomous driving, how to drive back
onto the road), the policy learned via BC will not be able to internalize this behavior.
Once in a situation from which it can not recover, there will be a permanent covariate
shift between its current observations and the demonstrated ones. The controls learned in
a supervised manner on the expert dataset are therefore useless, due to the distributional
shift. As a result, the agent’s errors will compound, a phenomenon coined by Ross and
Bagnell (2010) as compounding errors. In Sect. 6.2.3, we stress how the latter echoes the
compounding variations phenomenon, exhibited as part of the theoretical contributions of
this work. To address the shortcomings of BC, Abbeel and Ng (2004) proposes to harness
the innate credit assignment (Sutton and Barto 1998) capabilities of RL, by first trying to
learn the cost function underlying the demonstrated behavior [inverse RL (Ng et al. 2000)],
before using this cost to optimize a policy via RL. The succession of inverse RL and RL
is called apprenticeship learning (AL) (Abbeel and Ng 2004), and can, by design, yield
policies that can recover from out-of-distribution situations thanks to RL’s built-in tem-
poral abstraction mechanisms. Cost learning however is incredibly tedious, and successful
approaches end up requiring coarse relaxations to avoid being deterringly computation-
ally-expensive (Abbeel and Ng 2004; Syed and Schapire 2008; Syed et al. 2008; Ho et al.
2016). Ultimately, as noted by Ziebart et al. (2008), setting out to recovering the cost signal
under which the expert demonstrations are optimal (base assumption of inverse RL) is an
ill-posed objective—echoing the reward shaping considerations from Ng et al. (1999). In
line with this statement, generative adversarial imitation learning (GAIL) (Ho and Ermon
2016) departs from the typical AL pipeline, and replaces learning the optimal cost (“opti-
mal” in the inverse RL sense) by learning a surrogate cost function. GAIL does so by lev-
eraging generative adversarial networks (Goodfellow et al. 2014), as the name hints. The
method is described in greater detail in Sect. 3. Due to the RL step it involves (like any
AL method), GAIL suffers from poor sample-efficiency w.r.t. the amount of interactions
it needs to perform with the environment. This caveat has since been addressed, nota-
bly by transposition to the off-policy setting, concurrently in SAM (Blondé and Kalousis
2019) and DAC (Kostrikov et al. 2019) (cf. Sect. 4). Both adversarial IL methods leverage

1433Machine Learning (2022) 111:1431–1521

1 3

actor-critic architectures, consequently suffering from a greater exposure to instabilities.
These weaknesses are mitigated with various complementary techniques, and cautious
hyper-parameter tuning.

In this work, we set out to first conduct a thorough theoretical and empirical investi-
gation into off-policy generative adversarial imitation learning, to pinpoint which are the
techniques that are instrumental in performing well, and shed light over which are ones that
can be discarded or disregarded without decrease in performance. Ultimately, we would
like to exhibit the techniques that are sufficient for the method to achieve peak performance.
Virtually every algorithmic design choice made in this work is supported by an ablation
study reported in the Appendix. We start by describing the base off-policy adversarial imi-
tation learning method at the core of this work in Sect. 4. We then undertake diagnoses
of the various issues that arise from the combination of bilevel optimization problems at
the core of the investigated model in Sect. 5. A key contribution of our work consists in
showing that enforcing a Lipschitzness constraint on the learned surrogate reward is a nec-
essary condition for the method to even learn anything—in our consumer-grade, compu-
tationally affordable hardware setting. We study it closely, providing empirical evidence
of the importance of this constraint through detailed ablation results in Sect. 5.5. We fol-
low up on this empirical evidence with theoretical results in Sect. 6.1, characterizing the
Lipschitzness of the state-action value function under said reward Lipschitzness condition,
and discuss the obtained variation bounds subsequently. Crucially, we show that without
variation bounds on the reward, a phenomenon we call compounding variations can cause
the variations of the state-action value to explode. As such, the theoretical results reported
in Sect. 6.1—and discussed in Sect. 6.2—corroborate the empirical evidence exhibited in
Sect. 5.5. Note, the theoretical results reported in this work are valid for any reward satisfy-
ing the condition, they readily transfer to the general RL setting and are not specific to imi-
tation. The theoretically-grounded Lipschitzness condition, implemented as a gradient pen-
alty, is in practice a local Lipschitzness condition. We therefore investigate where (i.e. on
which samples, on which input distribution) the local Lipschitzness regularization should
be enforced. We propose a new interpretation of the regularization scheme through an RL
perspective, make an intuitively grounded claim on where to enforce the constraint to get
the best results, and corroborate our claim empirically (cf. Sect. 6.3). Crucially, we show
that the consistent satisfaction of the Lipschitzness constraint on the reward is a strong
predictor of how well the mimicking agent performs empirically (cf. Sect. 6.4). Finally, we
introduce a generic pessimistic reward preconditioner which makes the base method it is
plugged into provably more robust, as attested by its companion guarantees (cf. Sect. 6.5).
Again, these guarantees are not not specific to imitation and can be of independent interest
for the RL community. Among the reported insights, we give an illustrative example of how
the simple technique can further increase the robustness of the method it is plugged into.

2 Related work

Off-policy generative adversarial imitation learning, which is the object of this work,
involves learning a parametric surrogate reward function, from expert demonstrations. By
design (Ho and Ermon 2016; Blondé and Kalousis 2019; Kostrikov et al. 2019), this signal
is learned at the same time as the policy, and is therefore subject to non-stationarities (cf.
Sect. 5.2). This reward regime is reminiscent of the reward corruption phenomenon (Ever-
itt et al. 2017; Romoff et al. 2018), which posits that the real-world rewards are imperfect

1434 Machine Learning (2022) 111:1431–1521

1 3

(e.g. uncontrolled task specification change, sensor defects, reward hacking) and must
therefore be treated as such, i.e. non-stationary at the very least. Despite being learned and
therefore liable to non-stationary behavior, our reward is internal—as opposed to outside
the agent’s and practitioner’s scope—and is therefore fully observable, as well as control-
lable via the practitioner-specified algorithmic design. The reward corruption can conse-
quently be acted upon, and more easily mitigated than if it originated from a black box
reward originating from the unknown environment.

The demonstrations on the other hand are available from the very beginning, and do
not change as the policy learns. In that respect, our approach differs from observational
learning (Borsa et al. 2017), where the policy learns to imitate another by observing it
itself learn in the environment—and therefore does not strictly qualify as an expert at the
task. Observational learning draws clear parallels with the teacher-student scheme in policy
distillation (Rusu et al. 2015). While our reward is changing since the policy changes and
due to the inherent learning dynamics of function approximators, in observational learning,
the reward would be changing also due to the expert still learning, causing a distributional
drift.

Multi-armed bandits (Robbins 1952) have received a lot of attention in recent years to
formalize and model problems of sequential decision making under uncertainty. In the con-
text of this work, the most appropriate variants of bandits are stateful contextual multi-
armed bandits. As the name hints, such models formalize decision making specific to given
situations (i.e. contexts, states), in which the situations are i.i.d.-sampled. We consider the
case of reinforcement learning, where the situations are entangled, along with the deci-
sions themselves, in a Markov decision process (cf. Sect. 3). In particular, non-stationary
reward channels in Markov decision processes have been studied extensively (cf. Sect. 5.2).
Among these, adversarial bandits (Auer et al. 1995) can be seen as the archetype or worst-
case reward corruption scenario, in which an adversary—possibly driven by malevolent
intents—decides on the reward given to the agent. In these models, the common way to
deal with non-stationary reward processes is to assume the reward variations in time are
upper-bounded, either per-decision or over longer time periods. We give a comprehensive
account of sequential decision making under uncertainty in non-stationary Markov deci-
sion processes in Appendix 2. By contrast, our theoretical guarantees are built on the prem-
ise that the reward function’s variations are bounded over the input space by assuming that
the reward function is locally Lipschitz-continuous over it. We make the same assumption
on the dynamics of the multi-stage decision process, as well as on the control policy. While
our theoretical results ultimately characterize the value function’s robustness in terms
of Lipschitz-continuity, (Fonteneau et al. 2010, 2013) start from the same assumptions,
propose an estimator of the expected return, and derive bounds on its bias and variance.
Derived in the offline RL setting, their bounds increase as the “dispersion” of the offline
dataset increases. As such, our findings and dicussions carried out in Sect. 6.2 echo their
work.

Several works have recently attempted to address the overfitting problem GAIL suffers
from. This is due to the discriminator being able to trivially distinguish agent-generated
samples from expert-generated ones, which occurs when the learning dynamics of the
adversarial game are not properly balanced. As such, the gist of said techniques is to either
weaken the discriminator directly or make its classification task harder, which unsurpris-
ingly exactly coincides with the typical techniques used to cope with overfitting in (binary)
classification. These techniques are, in no particular order: reducing the discriminator’s
capacity—by plugging the classifier on top of an independent perception stack (e.g. ran-
dom features, state-action value convolutional layers) (Reed et al. 2018), smoothing the

1435Machine Learning (2022) 111:1431–1521

1 3

positive labels with uniform random noise (Blondé and Kalousis 2019), adopting a posi-
tive-unlabeled classification objective (instead of the traditional positive-negative one) (Xu
and Denil 2019), using a gradient penalty [originally from (Gulrajani et al. 2017)] regular-
izer (Blondé and Kalousis 2019; Kostrikov et al. 2019), leveraging an adaptive information
bottleneck in the discriminator network (Peng et al. 2018), enriching the expert dataset via
task-specific data augmentation (Zolna et al. 2019). In this work, we do not propose a new
regularization technique. Instead, we perform an in-depth analysis of the simplest tech-
niques—in terms of conceptual simplicity, implementation time, number of parameters,
and computational cost (Hernandez and Brown 2020)—and ultimately find that the gradi-
ent penalty regularizer achieves the best trade-off.

A large-scale empirical study of adversarial imitation learning (Orsini et al. 2021),
released very recently, considers a wide range of hyper-parameter settings, reporting results
for more than 500k trained agents. The authors conclude that their study adds nuances to
ours (this work). In particular, they argue that while the regularization techniques that urge
the reward to be Lipschitz-continuous indeed do improve the performance (hence corrobo-
rating what we show in the first investigation of our work; cf. Sect. 5.5), more traditional
regularizers (e.g. weight decay, dropout) can often perform similarly. In this work, we align
the notion of smoothness with the Lipschitz-continuity of a function approximator, and are
therefore focusing, from Sect. 5.5 onward, on gradient penalization because it explicitly
enforces the reward to be smooth. More importantly, reward Lipschitzness is among the
premises of our theoretical guarantees. In the results reported in (Orsini et al. 2021), the
discriminator regularization schemes that can perform on par with schemes enforcing Lip-
schitz-continuity explicitly [gradient penalization (Gulrajani et al. 2017), and spectral nor-
malization (Miyato et al. 2018)], which are always the top performers, are: dropout (Sriv-
astava et al. 2014), weight decay (Loshchilov and Hutter 2017), and mixup (Zhang et al.
2017) (performing data augmentation). Regularization schemes such as dropout, weight
decay, and data augmentation are less often seen through the lens of smoothness regu-
larization than through the lens of generalization, despite generalization being among the
beneficial effects of smoothness (Rosca et al. 2020). Used in the last layer, weight decay
(Loshchilov and Hutter 2017) punishes spikes in elements of the weight matrix by limiting
its norm, hence not allowing the output of the network to change too much. Dropout (Sriv-
astava et al. 2014) applies masks over hidden activations, making the network return simi-
lar outputs when inputs only differ slighly. When using data augmentation [e.g. in mixup
(Zhang et al. 2017)], the network is forced to be close-to-invariant to purposely crafted var-
iations of the input. These regularizers do not enforce Lipschitzness over the input space as
explicitly as gradient penalties and spectral normalization do; nevertheless, they do encour-
age Lipschitzness implicitly, making the predictor more robust as a result. Specifically, as
noted in Gouk et al. (2021), when a neural function approximator is trained with dropout,
the Lipschitz constant of each layer is multiplied by 1 − r , where r is the dropout rate. It
is also noted in Cisse et al. (2017) that using weight decay regularization at the last layer
controls the Lipschitz constant of the network. All in all, the methods reported by Orsini
et al. (2021) as performing the best are the ones enforcing Lipschitz-continuity over the
input space explicitly, and these can be matched by regularization schemes that encourage
Lipschitzness over the input space implicitly. As such, these results are complementary
to the ones we report in our first investigation in Sect. 5.5, where we found that direct,
explicit gradient penalization exceeds the performance of other evaluated regularizers. As
we report, not constraining the Lipschitzness of the discriminator yields the worst results
among the evaluated alternatives. Keeping the Lipschitz constant of the discriminator in
check seems essential. Perhaps more importantly, the empirical investigation we conduct

1436 Machine Learning (2022) 111:1431–1521

1 3

in Sect. 5.5, and that is complemented by Orsini et al. (2021), motivates the derivation of
our novel theoretical guarantees. Through these, we provide insights as to why keeping the
Lipschitz constant of the reward in check seems to play such an important role in the stabil-
ity of the value in off-policy adversarial IL. The considerable computational budget spent
in Orsini et al. (2021) attests to how challenging the tackled problem is.

Hafner et al. (2011) advocate for the use of a smooth reward signal in RL. Lange et al.
(2012) presents it as one key method to make learning values in offline RL less tedious.
Sharp changes in reward value are hard to represent and internalize by the action-value
neural function approximator. Using a smooth reward surrogate derived from the original
“jumpy” reward signal such that the trends are preserved but the crispness is attenuated
proved instrumental empirically. Our observation about reward Lipschitz-continuity being
a crucial component of our off-policy imitation learning pipeline is in line with the sugges-
tion of Hafner et al. (2011). On top of providing empirical evidence of its benefits, we also
provide a number of theoretical results characterizing what the reward smoothness does on
the value function smoothness.

Finally, we point out that local Lipschitz-continuity conditions are also found in the
adversarial robustness literature. Notably, Finlay et al. (2018) encourages Lipschitzness
via gradient regularization, as is done in our work. Similarly, Hardt et al. (2015) derives
bounds under a Lipschitz-continuity assumption on the loss.

3 Background

Setting In this work, we address the problem of an agent whose goal is, in the absence of
extrinsic reinforcement signal (Singh et al. 2009), to imitate the behavior demonstrated by
an expert (Bagnell 2015), expressed to the agent via a pool of trajectories. The agent is
never told how well she performs or what the optimal actions are, and is not allowed to
query the expert for feedback.

Preliminaries The intrinsic behavior of the decision maker is represented by the policy
�� , modeled by a neural network with parameter � , mapping states to probability distribu-
tions over actions. Formally, the conditional probability density over actions that the agent
concentrates at action at in state st is denoted by ��(at|st) , for all discrete timestep t ≥ 0 .
We model the environment the agent interacts with as an infinite-horizon, memoryless,
and stationary Markov Decision Process (MDP) (Puterman 1994) formalized as the tuple
� ∶= (S,A, p, �0, u, �) . S ⊆ ℝ

n and A ⊆ ℝ
m are respectively the state space and action

space. p and �0 define the dynamics of the world, where p(st+1|st, at) denotes the stationary
conditional probability density concentrated at the next state st+1 when stochastically tran-
sitioning from state st upon executing action at , and �0 denotes the initial state probability
density. u denotes a stationary reward process that assigns, to any state-actions pairs, a
real-valued reward rt distributed as rt ∼ u(⋅|st, at) . Finally, � ∈ [0, 1) is the discount factor.
We make the MDP episodic by positing the existence of an absorbing state in every trace
of interaction and enforcing � = 0 to formally trigger episode termination once the absorb-
ing state is reached. Since our agent does not receive rewards from the environment, she is
in effect interacting with an MDP lacking a reward process r. Our method however encom-
passes learning a surrogate reward parameterized by a deterministic function approximator
such as a neural network with parameter � , denoted by r� , and whose learning procedure
will be reported subsequently. Consequently, our agent effectively interacts with the aug-
mentation of the previous MDP defined as �∗ ∶= (S,A, p, �0, r�, �) . A trajectory �� is a

1437Machine Learning (2022) 111:1431–1521

1 3

trace of �� in �∗ , succession of consecutive transitions (st, at, rt, st+1) , where rt∶=r�(st, at) .
A demonstration is the set of state-actions pairs (st, at) extracted from a trajectory collected
by the expert policy �e in � . The demonstration dataset D is a set of demonstrations.

Objective Building on the reward hypothesis at the core of reinforcement learning
(any task can be defined as the maximization of a reward), to act optimally, our agents
must be able to deal with delayed signals and maximize the long-term cumulative
reward. To address credit assignment, we use the concept of return, the discounted sum of
rewards from timestep t onwards, defined as R�

t ∶=
∑+∞

k=0
�krt+k∶=

∑+∞

k=0
�kr�(st+k, at+k)

in the infinite-horizon regime. By taking the expectation of the return with respect
to all the future states and actions in �∗ , after selecting at in st and following �� thereafter,
we obtain the state-action value (Q-value) of the policy �� at (st, at) :
Q�� (st, at)∶=�st+1∼p(⋅|st ,at),at+1∼�� (⋅|st+1),…[R

�
t] (abbrv. �>t

𝜋𝜃
[R

𝛾
t]). At state st , a policy �� that

picks at verifying:

therefore acts optimally looking onwards from st . Ultimately, an agent acting optimally at
all times maximizes V�� (s0)∶=�a0∼�� (⋅|s0)[Q

�� (s0, a0)] for any given start state s0 ∼ �0 . In
fine, we can now define the utility function [also called performance objective (Silver et al.
2014)] to which our agent’s policy �� must be solution of: �� = argmax

�∈Π
U0(�) where

Ut(�)∶=V
�(st) and Π is the search space of parametric function approximators, i.e. deep

neural networks.
Generative adversarial imitation learning GAIL (Ho and Ermon 2016) trains a binary

classifier D� , called discriminator, where samples from �e are positive-labeled, and those
from �� are negative-labeled. It borrows its name from Generative Adversarial Networks
(Goodfellow et al. 2014): the policy �� plays the role of generator and is optimized to fool
the discriminator D� into classifying its generated samples (negatives), as positives. As
such, the prediction value indicates to what extent D� believes �� ’s generations are com-
ing from the expert, and therefore constitutes a good measure of mimicking success. GAIL
does not try to recover the reward function that underlies the expert’s behavior. Rather, it
learns a similarity measure between �e and �� , and uses it as a surrogate reward function.
We say that �� and D� are “trained adversarially” to denote the two-player game they
are intricately tied in: D� is trained to assert with confidence whether a sample has been
generated by �� , while �� receives increasingly greater rewards as D� ’s confidence in said
assertion lowers. In fine, the surrogate reward measures the confusion of D� . In this work,
the neural network function approximator modeling D� uses a sigmoid as output layer acti-
vation, i.e. D� ∈ [0, 1] . The exact zero case is bypassed numerically for log ◦D� to always
exist, by adding an infinitesimal value 𝜖 > 0 to D� inside the logarithm. The same numeri-
cal stability trick is used for log ◦(1 − D�) to avoid the exact one case (cf. reward formula-
tions in Sect. 4).

4 Comprehensive refresher on the sample‑efficient adversarial mimic

Building on TRPO (Schulman et al. 2015), GAIL (Ho and Ermon 2016) inherits its pol-
icy evaluation subroutine, consisting in learning a parametric estimate of the state-value
function V� ≈ V�� via Monte-Carlo estimation over samples collected by �� . While it uses
function approximation to estimate V�� , hoping it generalizes better than a straight-forward

at = argmax
a∈A

Q�� (st, a)

1438 Machine Learning (2022) 111:1431–1521

1 3

non-parametric Monte-Carlo estimate (discounted sum), we will reserve the term actor-
critic for architectures in which the state-value V�� (⋅) or Q-value Q�� (⋅, ⋅) is learned via
Temporal-Difference (TD) (Sutton 1988). This terminology choice is adopted from Sut-
ton and Barto (1998) (cf. Chapter 13.5). A critic is used for bootstrapping, as in the TD
update rule (whatever the bootstrapping degree is). As such, TRPO is not an actor-critic,
while algorithms learning their value via TD, such as DDPG (Silver et al. 2014; Lillicrap
et al. 2016), are actor-critic architectures. Albeit hindered from various weaknesses (cf.
Sect. 5.1), and forgetting for a moment that it is combined with function approximation
(Sutton et al. 1999; Silver et al. 2014), the TD update is able to propagate information
quicker as the backups are shorter and therefore do not need to reach episode termina-
tion to learn, in contrast with Monte-Carlo estimation. That is without even involving ficti-
tious, memory, or experience replay mechanisms (Lin 1992). By design, TD learning is
less data-hungry (w.r.t. interactions in the environment), and involving replay mechanisms
(Lin 1992; Lillicrap et al. 2016; Wang et al. 2016) significantly adds on to its inherent
sample-efficiency. Based on this line of reasoning, SAM (Blondé and Kalousis 2019)
and DAC (Kostrikov et al. 2019) addressed the deterring sample-complexity of GAIL by,
among other improvements [cf. (Blondé and Kalousis 2019; Kostrikov et al. 2019)], using
an actor-critic architecture to replace TRPO for policy evaluation and improvement. SAM
(Blondé and Kalousis 2019) uses DDPG (Lillicrap et al. 2016), whereas DAC (Kostrikov
et al. 2019) uses TD3 (Fujimoto et al. 2018). Both were released concurrently, and both
report significant improvements in sample-efficiency (up to two orders of magnitude).
Standing as the stripped-down model that brought sample-efficiency to GAIL, we take
SAM as base. Albeit described momentarily in the body of this work, we urge the reader
eager to understand every single aspect of the laid out algorithm to also refer to the section
in which we describe the experimental setting, cf. Sect. 5.5.

We now lay out the constituents of SAM (Blondé and Kalousis 2019), and how their
learning procedures are orchestrated. The agent’s behavior is dictated by a deterministic
policy �� , the critic Q� assigns Q-values to actions picked by the agent, and the reward
r� assesses to what degree the agent behaves like the expert. As usual, � , � , and � denote
the respective parameters of these neural function approximatiors. To explore when car-
rying out rollouts in the environment, �� is perturbed both in parameter space by adaptive
noise injection in � (Plappert et al. 2018; Fortunato et al. 2017), and action space by add-
ing the temporally-correlated response of an Ornstein–Uhlenbeck noise process (Uhlen-
beck and Ornstein 1930; Lillicrap et al. 2016) to the action returned by �� . Formally, in
state st , action at is sampled from ��(⋅|st)∶=��+�(st) + �t , where � ∼ N(0, �2

a
) (�a adapts

conservatively such that |��+�(st) − ��(st)| remains below a certain threshold), and where
�t is the response of the Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein 1930) �OU
at timestep t in the episode, such that �t∶=�OU(t, �b) . Note, �OU is reset upon episode
termination. As a first minor contribution, we carried out an ablation study on explora-
tion strategies, and report the results in Appendix 9. While the utility of temporally-cor-
related noise is somewhat limited to dynamical systems, both parameter noise and input
noise injections have proved beneficial in generative modeling with GANs [(Zhao et al.
2017) and (Arjovsky and Bottou 2017), respectively]. As in GAIL (Ho and Ermon 2016)
(described earlier in Sect. 3), the discriminator D� is trained via an adversarial training
procedure (Goodfellow et al. 2014) against the policy �� . The surrogate reward r� used to
augment MDP � into �∗ is derived from D� to reflect the incentive that the agent needs
to complete the task at hand. In the tasks we consider in this work (simulated robotics
environments (Brockman et al. 2016), based on the MuJoCo (Todorov et al. 2012) physics
engine, and described in Table 1) an episode terminates either (a) when the agent fails to

1439Machine Learning (2022) 111:1431–1521

1 3

complete the task according to an task-specific criterion hard-coded in the environment,
or (b) when the agent has performed a number of steps in the environments that exceeds
a predefined hard-coded timeout, which we left to its default value—with the exception of
HalfCheetah, in which (a) does not apply. Due to (a), the agent can decide to truncate
its return by triggering its own failure, and decide to “cut its losses” when it is penalized
too heavily for not succeeding according to the task criterion. Always-negative rewards
[e.g. per-step “ −1 ” reward to urge to agent to complete the task quickly (Kaelbling 1993)]
can therefore make the agent give up and trigger termination the earliest possible, as this
would maximize its return. On the other hand, always-positive rewards can make the agent
content with its sub-optimal actions which would prevent it from pursuing higher rewards,
as long as it remains alive. This phenomenon has been dubbed survival bias in (Kostrikov
et al. 2019). Notably, this discussion highlights the tedious challenge that reward shaping
(Ng et al. 1999) usually represents to practitioners when designing a new task. Stemming
from their generator loss counterparts in the GAN literature, the minimax (saturating)
reward variant is r�∶= − log(1 − D�) , and the non-saturating reward variant is log(D�) .
The minimax reward is always positive, the non-saturating reward is always negative, and
the sum of the two can take positive and negative values. We found empirically that using
the minimax reward, despite being always positive, yielded by far the best results compared
to the sum of the two variants. The performance gap is reduced in the HalfCheetah
task which was expected since it is the only task in which the agent can not trigger an early
termination. We report these comparative results in Appendix 6. Crucially, these results
show that the base method considered in this work can already successfully mitigate sur-
vival bias, without requiring additional reward shaping. In summary, we use the formula-
tion r�∶= − log(1 − D�) , unless stated otherwise explicitly.

We also adopt the mechanism introduced in Kostrikov et al. (2019) that wraps the
absorbing transitions (agent-generated and expert-generated) to enable the discriminator
to distinguish between terminations caused by failure and terminations triggered by the

Table 1 State and action
dimensions, n and m, of the
studied environments from the
MuJoCo (Todorov et al. 2012)
simulated robotics benchmark
from OpenAI Gym (Brockman
et al. 2016)

abbrv. IDP for InvertedDoublePendulum, the continuous con-
trol counterpart of Acrobot. In the last column, we report both the
mean � and standard deviation � (formatted as �(�) in the table) of the
expert’s returns, aggregated across the set of 10 demonstrations used
in this work

Environment State dim. n Action dim. m Expert return �(�)

IDP 11 1 9339.966(1.041)
Hopper 11 3 4111.823(56.81)
Walker2d 17 6 6046.116(13.76)
HalfCheetah 17 6 7613.154(36.25)
Ant 111 8 6688.696(48.83)
Humanoid 376 17 9175.152(98.94)

1440 Machine Learning (2022) 111:1431–1521

1 3

artificially hard-coded timeout. The method enables the discriminator to penalize the agent
for terminating by failure when the expert would, with the same action and in the same
state, terminate by reaching the episode timeout without failing. In such a scenario, without
wrapping the absorbing transitions, the agent perfectly imitates the expert in the eyes of
the discriminator, which is not the case. We use the wrapping mechanism in every experi-
ment. Nonetheless, we omit it from the equations and algorithms for legibility. Giving the
agent the ability to differentiate between terminations that are due to time limits and those
caused by the environment had proved crucial for the decision maker to continue beyond
the time limit. The significant role played by the explicit inclusion of the notion of time in
RL has been established by Harada Harada (1997), yet without much follow-up, until being
revived in Pardo et al. (2018) where the authors demonstrate that a careful inclusion of the
notion of time in RL can meaningfully impact performance.

By assuming the roles of opponents in a GAN, � and � are tied in a bilevel optimization
problem (as highlighted in Pfau and Vinyals (2016)). Similarly, by defining an actor-critic
architecture, � and � are also tied in a bilevel optimization problem. We notice the dual role
of � , which is intricately tied in both bilevel problems. As such, what SAM (Blondé and
Kalousis 2019) sets out to solve can be dubbed a �-coupled twin bilevel optimization prob-
lem. Note, Q� uses the parametric reward r� as a scalar detached from the computational
graph of the (�,�) bilevel problem, as having gradients flow back from Q� to � would
prevent D� from being learned as intended, i.e. adversarially in the (�,�) bilevel problem.
The information and gradient flows occurring between the components are illustrated in
Fig. 1. As we show via numerous ablation studies in this work, training this �-coupled
twin bilevel system to completion is severely prone to instabilities and highly sensitive to
hyper-parameters. Ultimately, we show that r� ’s Lipschitzness is a sine qua non condition
for the method to perform well, and study the effects of this necessary condition in several
theoretical results in Sect. 6.1.

(a) (b) (c)

Fig. 1 Information flows (plain arrows) and gradient flows (dotted arrows) between modules. Best seen in
color (Color figure online)

1441Machine Learning (2022) 111:1431–1521

1 3

Sample-efficiency is achieved through the use of a replay mechanism (Lin 1992): every
component (every neural network, � , � , and �) is trained using samples from the replay
buffer R (Mnih et al. 2013, 2015), a “first in, first out” queue of fixed retention window, to
which new rollout samples (transitions) are sequentially added, and from which old rollout
samples are sequentially removed. Note however that when a transition is sampled from R ,
its reward component is re-computed using the most recent r� update. Blondé and Kalousis
(2019) and Kostrikov et al. (2019) were the first to train D� with experience replay, in a
non-i.i.d. context (Markovian), for increased learning stability. Borrowing the common ter-
minology, the reward is therefore effectively “learned off-policy”. Let � be the off-policy
distribution that corresponds to uniform sampling over R . � is therefore effectively a mix-
ture of past policy updates [�i−Δ+1,… , �i−1, �i] , where the mixing depends on R ’s retention
window, and the number of collected samples per iteration.

We introduce ��
�∗ , which denotes the discounted state visitation frequency of an arbi-

trary policy � in �∗ . Formally, ��
𝕄∗ (s)∶=

∑+∞

t=0
� tℙ�

𝕄∗ [St = s] , where ℙ�
𝕄∗ [St = s] is the

probability of reaching state s at timestep t when interacting with the MDP �∗ by acting
according to � . Since

∑
s∈S �

�
�
(s) = 1∕(1 − �) , ��

�
 can be seen as a probability distribution

over states up to a constant factor. Due to the presence of the discount factor � , ��
�∗ (s) has

higher value if s is visited earlier than later in the infinite-horizon trajectory. In practice, we
relax the definition to its non-discounted counterpart and to the episodic regime case, as is
usually done. Plus, since every interaction is done in MDP �∗ , we use the shorthand �� .
From this point forward, when states st are sampled uniformly from the replay buffer R—
in effect, following policy �—the expectation over said samples will be denoted as �st∼�

� [⋅].
We now go over how each module (� , � , and �) is optimized in this work. We optimize

� with the binary cross-entropy loss, where positive-labeled samples are from �e , and neg-
ative-labeled samples are from �:

In this work, unless stated otherwise, � is regularized with gradient penalization ℜ�
�(k) ,

subsuming the original formulation proposed in Gulrajani et al. (2017), which was used in
SAM (Blondé and Kalousis 2019) and DAC (Kostrikov et al. 2019):

The regularizer will be the object of several downstream analyses and discussions (cf.
Sects. 5.4 and 6.3). The meaning of � , k and � will be given in Sect. 5.4.

The critic’s parameters � are updated by gradient decent on the TD loss (Sutton 1988),
using the multi-step version (Peng et al. 1996) (“n-step”) of the Bellman target (R.H.S. of
the expected Bellman equation), which has proven beneficial for policy evaluation (Hessel
et al. 2017; Fernando Hernandez-Garcia and Sutton 2019). The loss optimized by the critic
is:

(1)��∶=�st∼�
�e ,at∼�e

[− log(1 − D�(st, at))] + �st∼�
� ,at∼�

[− log(D�(st, at))]

(2)�GP
�

∶=�� + �ℜ�
�
(k)∶=�� + ��st∼�

� ,at∼�
[(‖∇st ,at

D�(st, at)‖ − k)2]

(3)��∶=�st∼�
� ,at∼�

[(Q�(st, at) − Qtarg)2]

1442 Machine Learning (2022) 111:1431–1521

1 3

where the target Qtarg uses softly-updated (Lillicrap et al. 2016) target networks (Mnih et al.
2013, 2015), �′ and �′ , and is defined as:

Finally, since �� is deterministic, its utility value at timestep t is
Ut(��) = V�� (st) = Q�� (st,��(st)) ≈ �st∼�

� [Q�(st,��(st))]=∶U� , where the approximation is
due to the actor-critic design involving the use of function approximators. To maximize its
utility at t, � must take a gradient step in the ascending direction, derived according to the
deterministic policy gradient theorem (Silver et al. 2014):

This last step [Eq. (8)] emerges from the natural assumption that ∀s ∇� s = 0 , since the
analytical form of � ’s dynamics, p, is unknown. To overcome the inherent overestimation
bias (Thrun and Schwartz 1993) hindering Q-Learning and actor-critic methods based on
greedy action selection [e.g. DDPG (Lillicrap et al. 2016)], and therefore suffered by our
critic Q� , we apply the actor-critic counterpart of double-Q learning (van Hasselt 2010)—
analogously, Double-DQN (van Hasselt et al. 2015) for DQN—proposed in Twin-Delayed
DDPG (abbrv. TD3) (Fujimoto et al. 2018). This add-on method, simply called clipped
double-Q learning (abbrv. CD), consists in learning an additional (or “twin”) critic, and
using the smaller of the two associated Q-values in the Bellman target, used in the tempo-
ral-difference error of both critics. For its reported benefits at minimal cost, we also use the
other main add-on proposed in TD3 (Fujimoto et al. 2018) called target policy smoothing.
The latter adds noise to the target action in order for the deterministic policy not to pick
actions with erroneously high Q-values, as such input noise injection effectively smooths
out the Q landscape along changes in action. Target policy smoothing (or target smoothing,
abbrv. TS) draws strong inspiration from the SARSA (Sutton and Barto 1998) learning
update since it uses a perturbation of the greedy next-action in the learning update rule,
which makes the method more robust against noisy inputs and therefore potentially safer in
a safety-critical scenario. Note, while value overfitting primarily impedes policies that are
deterministic by design, stochastic policies that prematurely collapse to their mode (Schul-
man et al. 2015) are deterministic in effect and as such are impeded too. In particular, fit-
ting the value estimate against an expectation of similar bootstrapped target value estimates
forces similar actions to have similar values, which corresponds—by definition—to making
the Q-function locally Lipschitz-continuous. As such, the induced smoothness over Q is to
be understood in terms of local Lipschitz-continuity (or equivalently, local Lipschitzness),

(4)Qtarg∶=

n−1∑
k=0

�kr�(st+k, at+k) + �nQ�� (st+n,��� (st+n)) ▶Bellman target

(5)
(��,��) ← (1 − �)(��,��) + �(�,�) 0 ≤ � ≤ 1 ▶target networks update

(6)∇� Ut(��) ≈ ∇� U�

(7)= ∇� �st∼�
� [Q�(st,��(st))]

(8)= �st∼�
� [∇���(st)∇aQ�(st, a)|a=�� (st)

]

1443Machine Learning (2022) 111:1431–1521

1 3

which we define in Definition 1. More generally, the concept of smoothness that is at the
core of the analyses laid out in this work is the concept of Lipschitz-continuity. Interest-
ingly, we show later in Sect. 6.2.4, formally and from first principles, that target policy
smoothing is equivalent to applying a regularizer on Q that induces Lipschitz-continuity
w.r.t. the action input. In addition, we align the notion of robustness of a function approxi-
mator with the value of its Lipschitz constant (cf. Definition 1): a k1-Lipschitz-continuous
function approximator will be characterized as more robust than another k2-Lipschitz-con-
tinuous function approximator if and only if k1 ≤ k2 . As such, in this work, the notions of
smoothness and robustness are both aligned with the notion of Lipschitz-continuity.

Definition 1 (Local k-Lipschitz-continuity) Let f be a function X ⊆ ℝ
n
→ Y ⊆ ℝ

m ,
x ↦ f (x) , and C0 (continuous) over X . We denote the euclidean norms of X and Y by ‖ ⋅ ‖X
and ‖ ⋅ ‖Y respectively, and the Frobenius norm of the ℝm×n matrix space by ‖ ⋅ ‖F . Lastly,
let k be a non-negative real, k ≥ 0 .

(a) f is k-Lipschitz-continuous over X iff, ∀x, x� ∈ X ,

(b) If f is also differentiable, then f is k-Lipschitz-continuous over X iff, ∀x, x� ∈ X ,

 In either case, if the inequality is verified, k is called the Lipschitz constant of f. The sym-
bol ∇ , historically reserved to denote the gradient operator, is here used to denote the Jaco-
bian operator of the vector function f, to maintain symmetry with the notations and appel-
lations used in previous works.

(c) Let X be a subspace of X , X ⊆ X . f is said locally k-Lipschitz-continuous over X ⊆ X
iff, for all x ∈ X , there exists a neighborhood Ux of x such that f is k-Lipschitz-contin-
uous over Ux.

Based on Definition 1(b) the gradient penalty in Eq. (2), effectively enforces local
Lipschitz-continuity over the support of the � distribution (described later in cf.
Sect. 5.4), a subspace of the state-action joint space.

Unless specified otherwise, we use both the clipped double-Q learning and target policy
smoothing add-on techniques in all the experiments reported in this work. We ran an abla-
tion study on both techniques to illustrate their respective benefits, and support our algo-
rithmic design choice to use them. We report said ablations in Appendix 4.

We describe the inner workings of SAM in Algorithm 1.1
Since our agent learns a parametric reward—differentiable by design—along with a deter-

ministic policy, we could, in principle, use the gradient �st∼�
� [∇���(st)∇ar�(st, a)|a=�� (st)

]
[constructed by analogy with Eq. (8)] to update the policy. (Blondé and Kalousis 2019)

‖f (x) − f (x�)‖Y ≤ k ‖x − x�‖X

‖∇ f (x)‖F ≤ k

1 The symbols “ ” and “ ” appearing in front of line numbers in Algorithm 1 are related to the distributed
learning scheme used in this work, which we describe in Sect. 5.5.

1444 Machine Learning (2022) 111:1431–1521

1 3

raised the question of whether one should use this gradient and answered in the nega-
tive: while the gradient in Eq. (8) guides the policy towards behaviors that maximize the
long-term return of the agent, effectively trying to address the credit assignment problem,
the gradient involving r� in place of Q� is myopic, and does not encourage the policy to
think more than one step ahead. It is obvious that back-propagating through Q� , literally
designed to enable the policy to reason across longer time ranges, will be more helpful to
the policy towards solving the task. The authors therefore discard the gradient involving
r� . Nonetheless, we set out to investigate whether the latter can favorably assist the gradi-
ent in Eq. (8) in solving the task, when both gradients are used in conjunction. Drawing a
parallel with the line of work using unsupervised auxiliary tasks to improve representation
learning in visual tasks (Jaderberg et al. 2016; Shelhamer et al. 2016; Mirowski et al. 2016;
Doersch et al. 2015), we define the gradient �st∼�

� [∇���(st)∇aQ�(st, a)|a=�� (st)
] as the main

gradient, and �st∼�
� [∇���(st)∇ar�(st, a)|a=�� (st)

] as the auxiliary gradient, which we denote
by gm and ga respectively. Based on our previous argumentation, allowing the myopic ga to
take the upper hand over gm could have a disastrous impact on solving the task: combining
the gm and ga must be done conservatively. As such, we use the auxiliary gradient only if
it amplifies the main gradient. We measure the complementarity of the main and auxiliary
tasks by the cosine similarity between their respective gradients, �(gm, ga)) , as done in Du
et al. (2018), and assemble the new composite gradient gc∶=gm +max(0,�(gm, ga)) ga . By
design, ga is added to gm only if the cosine similarity between them, �(gm, ga)) , is posi-
tive, and will, in that case, be scaled by said cosine similarity. If the gradients are collinear,
they are summed: gc = gm + ga . If they are orthogonal or if the similarity is negative, ga
is discarded: gc = gm . Our experiments comparing the usage of gc and gm (cf. Fig. 12 in
Appendix 3) show that using the composite gradient gc does not yield any improvement
over using only gm . By monitoring the values taken by �(gm, ga)) , we noticed that the
cosine similarity was almost always negative, yet close to 0, hence gc = gm , which trivially
explains why the results are almost identical.

5 Lipschitzness is all you need

This section aims to put the emphasis on what makes off-policy generative adversarial
imitation learning challenging. When applicable, we propose solutions to these chal-
lenges, supported by intuitive and empirical evidence. In fine, as the section name
hints, we found that—in our experimental and computational setting, described at
the beginning of Sect. 5.5—forcing the local Lipschitzness of the reward is a sine
qua non condition for good performance, while also being sufficient to achieve peak
performance.

1445Machine Learning (2022) 111:1431–1521

1 3

1446 Machine Learning (2022) 111:1431–1521

1 3

5.1 A deadlier triad

In recent years, several works (Fujimoto et al. 2018; Fu et al. 2019; Achiam et al. 2019) have
carried out in-depth diagnoses of the inherent problems of Q-learning (Watkins 1989; Watkins
and Dayan 1992)—and bootstrapping-based actor-critic architectures by extension—in the
function approximation regime. Note, while the following issues directly apply to DQN (Mnih
et al. 2013, 2015), which even introduces additional difficulties (e.g. target networks, replay
buffer), we limit the scope of this section to Q-learning, to eventually make our point. Q-learn-
ing under function approximation possesses properties that, when used in conjunction, make
the algorithm brittle, prone to unstable behavior, as well as tedious to bring to convergence.
Without caution, the algorithm is bound to diverge. These properties constitute the deadly
triad (Sutton and Barto 1998; van Hasselt et al. 2018): function approximation, bootstrapping,
and off-policy learning.

Since the method we consider in this work per se follows an actor-critic architecture, it
possesses all three properties, and is therefore inclined to diverge and suffer from instabilities.
Additionally, since the learned reward r� is: (a) defined from binary classifier predictions—
discriminator’s predicted probabilities of being expert-generated—estimated via function
approximation, (b) learned at the same time as the policy, and (c) learned off-policy—with the
negative samples coming from the replay distribution � , the method we study consequently
introduces an extra layer of complication in the deadly triad. We now go over the three points
and explain to what extent they each exacerbate the divergence-inducing properties that form
the deadly triad.

To tackle point (a), we introduce explicit residuals to represent the various sources of
error involved in temporal-difference learning, and illustrate how these residuals accumulate
over the course of an episode. We will use the shorthand �[⋅] for expectations for the sake
of legibility. We take inspiration from Eq. (12) in Fujimoto et al. (2018), where a bias term
is introduced in the TD error due to the function approximation of the Q-value, as the Bell-
man equation is never exactly satisfied in this regime. Borrowing the terminology from the
statistical risk minimization literature, while the original bias suffered by the TD error was
due to the estimation error caused by bootstrapping, function approximation is responsible
for an extra approximation error contribution. The sum of these two errors is represented with
the residual �� . Let us now consider D�(s, a) , the estimated probability that a sample (s, a) is
coming from expert demonstrations. Formally, D�(s, a) = ℙ�[EXPERT(s, a)] , where the event
is defined as EXPERT(s, a)∶=“s ∼ ��e ∧ a ∼ �e” , and where ℙ� denotes the probability esti-
mated with the approximator � . In the same vein, we distinguish the error contributions: the
approximation error is caused by the choice of function approximatior class (e.g. two-layer
neural networks with hyperbolic tangent activations), and the estimation error is due to the
gap between the estimations of our classifier and the predictions of the Bayes classifier—the
classifier with the lowest misclassification rate in the chosen class. This gap can be written as
|D�(st, at) − BAYES(st, at)| , where BAYES(s, a) = ℙBAYES[EXPERT(s, a)] , by analogy with the
previous notations. In fine, we introduce the residual �� that represents the contribution of both
errors in the learned reward r� , hence:

(9)Q�(st, at) = r�(st, at) − ��(st, at) + ��[Q�(st+1, at+1)] − ��(st, at)

(10)= [r�(st, at) − ��(st, at) − ��(st, at)] + ��[Q�(st+1, at+1)]

1447Machine Learning (2022) 111:1431–1521

1 3

where Δ�,�(st, at)∶=r�(st, at) − ��(st, at) − ��(st, at).
As observed in Fujimoto et al. (2018) when estimating the accumulation of error due to

function approximation in the standard RL setting, the variance of the state-action value is
proportional to the variance of both the return and the Bellman residual �� . Crucially, in
our setting involving the learned imitation reward r� , it is also proportional to the variance
of the residual �� , containing contributions of both the approximation error and estimation
error of r� . As a result, the variance of the estimate also suffers from a critically stronger
dependence on � (cf. ablation study in Appendix 7). Intuitively, as we propagate rewards
further (higher �k value), their induced residual error triggers a greater increase in the vari-
ance of the Q-value estimate. In addition to its effect on the variance, the additional resid-
ual also clearly impacts the overestimation bias (Thrun and Schwartz 1993) it is afflicted
by, which further advocates the use of dedicated techniques such as Double Q-learning
(Fujimoto et al. 2018; van Hasselt 2010), as we do in this work (cf. Sect. 4). All in all,
by introducing an extra source of approximation and estimation error, we further burden
TD-learning.

Moving on to points (b)—the reward is learned at the same time as the policy—and
(c)—the reward is learned off-policy using samples from the replay policy �—we see that
each statement allow us to qualify the reward r� as a non-stationary process. Conceptually,
by considering a additive decomposition of the reward r� into a stationary rSTAT

�
 and a non-

stationary contribution rNON-STAT
�

 , we see that following an accumulation analysis similar
to the previous one shows that the variance of the state-action value is proportional to the
variances of each contribution. While the variance of rSTAT

�
 can be important and therefore

can have a considerable impact on the variance of the Q-value estimate, it can usually be
somewhat tamed with online normalization techniques and mitigated with techniques ena-
bling the agent to cope with rewards of vastly different scales [e.g. pop-Art (van Hasselt
et al. 2016)]. We show later that such methods do not help when the underlying reward
is non-stationary (cf. Sect. 5.2 for empirical results). The variance of the non-stationary
contribution rNON-STAT

�
 , indeed is, due to its continually-changing nature, untameable with

these regular techniques relying on the usual stationarity assumption—unless additional
dedicated mechanisms are integrated (e.g. change point detection techniques). Naturally,
the non-stationary contribution also has an effect on the bias of the estimation, and a for-
tiori on its overestimation bias [as with (a)]. We note that the argument made in the context
of Q-learning by Fu et al. (2019) naturally transfers to the TD-learning objective optimized
in this work: the objective is non-stationary, due to (i) the moving target problem—caused
by using bootstrapping to learn an estimate that is updated every iteration and (ii) the dis-
tribution shift problem—caused by learning the Q-value estimate off-policy using � , effec-
tively being a mixture of past policies, which changes every iteration. Point (i) is a source
of non-stationarity since the target of the supervised objective is moving with the predic-
tion as iterations go by, due to using bootstrapping. Fitting the current estimate against the
target defined from this very estimate is an ordeal, and (b) makes the task even harder by

(11)= Δ�,�(st, at) + ��[Q�(st+1, at+1)]

(12)= Δ�,�(st, at) + ��[Δ�,�(st+1, at+1) + ��[Q�(st+2, at+2)]]

(13)= �

[+∞∑
k=0

�k Δ�,�(st+k, at+k)

]

1448 Machine Learning (2022) 111:1431–1521

1 3

having the reward move too, given it is also learned, at the same time. The target of the
TD objective therefore now has two moving pieces, one from bootstrapping (i), one from
reward learning (b). The distribution shift problem (ii), stemming from the Q-value being
learned off-policy, is naturally worsened by the reward being estimated off-policy (c).
Note, although both the reward and Q-value are learned with samples from � , the actual
mini-batches used to perform the gradient update of each estimate might be different in
practice. As such, the TD error would be optimized using samples from a mixture of past
policies that is different from the mixture under which the reward is learned, and then use
this reward trained under a different effective distribution in the Bellman target. All in all,
by introducing a extra sources of non-stationarity (b) and (c), we further burden the non-
stationarity of TD-learning (i) and (ii).

5.2 Continually changing rewards

In a non-stationary MDP, the non-stationarities can manifest in the dynamics (Nilim and
El Ghaoui 2005; Da Silva et al. 2006; Xu and Mannor 2007; Lim et al. 2013; Abdallah and
Kaisers 2016), in the reward process (Even-dar et al. 2005; Dick et al. 2014), or in both
conjointly (Yu and Mannor 2009a, b; Abbasi-Yadkori et al. 2013; Gajane et al. 2018; Pada-
kandla et al. 2019; Yu and Sra 2019; Lecarpentier et al. 2019) (cf. Appendix 2 for a review
of sequential decision making under uncertainty in non-stationary MDPs). In this work, we
focus on the MDP �∗ whose transition distribution p is stationary i.e. not changing over
time. As discussed in Sect. 5.1, the reward process defined by r� is however non-stationary.
In particular, r� is drifting, i.e. gradually changes at an unknown rate, due to the reward
being learned at the same time as the policy, but also due to it being estimated off-policy.
While the former reason is true in the on-policy setting as well, the latter is specific to the
off-policy setting, on which we focus in this work. Indeed, in on-policy generative adver-
sarial imitation learning, the parameter sets � and � are involved in a bilevel optimization
problem (cf. Sect. 3) and consequently are intricately tied. � is trained via an adversarial
procedure opposing it to � in a zero-sum two-player game. At the same time, � is trained
by policy gradients to optimize �� ’s episodic accumulation of rewards generated by r� . The
synthetically generated rewards perceived by the agent are, in effect, sampled from a sto-
chastic process that incrementally changes over the course of the policy updates, effectively
qualifying r� as a drifting non-stationary reward process.

By moving to the off-policy setting—for reasons laid out earlier in Sect. 4—the zero-
sum two-player game is not opposing r� and �� , but r� and � , where � is the off-policy
distribution stemming from experience replay. As the parameter set � go through gradi-
ent updates, the new policies �� are added to the mixture of past policies � . Crucially, to
perform its parameter update at a given iteration, the policy �� uses transitions augmented
with rewards generated by r� , whose latest update was trying to distinguish between sam-
ples from �e and � (as opposed to �e and �� in the on-policy setting). Since �� is drifting, �
is also drifting based on how experience replay operates. Nevertheless, by being a mixture
of previous policy updates, � potentially drifts less that �� , since, in effect, two consecutive
� distributions are mixing over a wide overlap of the same past policies. In reality however,
� corresponds to uniformly sampling a mini-batch from the replay buffer. Consecutive �
can therefore be uncontrollably distant from each other in practice, making the distribu-
tional drift of the reward more tedious to deal with than in the on-policy setting. Using
large mini-batches and distributed multi-core architectures somewhat levels the playing
field though.

1449Machine Learning (2022) 111:1431–1521

1 3

The adversarial bilevel optimization problem guiding the adaptive tuning of r� for every
�� update is reminiscent of the stream of research pioneered by Auer et al. (1995) in which
the reward is generated by an omniscient adversary, either arbitrarily or adaptively with
potentially malevolent drive (Yu and Mannor 2009a, b; Lim et al. 2013; Gajane et al. 2018;
Yu and Sra 2019). Non-stationary environments are almost exclusively tackled from a the-
oretical perspective in the literature (cf. previous references). Specifically, in the drifting
case, the non-stationarities are traditionally dealt with via the use of sliding windows. The
accompanying (dynamic) regret analyses all rely on strict assumptions. In the switching
case, one needs to know the number of occurring switches beforehand, while in the drift-
ing case, the change variation need be upper-bounded. Specifically, (Besbes et al. 2014;
Cheung et al. 2019a) assume the total change to be upper-bounded by some preset vari-
ation budget, while (Cheung et al. 2019b) assumes the variations are uniformly bounded
in time. Ortner et al. (2019) assumes that the incremental variation [as opposed to total
in (Besbes et al. 2014; Cheung et al. 2019a)] is upper-bounded by a per-change threshold.
Finally, in the same vein, (Lecarpentier et al. 2019) posits regular evolution, by making
the assumption that both the transition and reward functions are Lipschitz-continuous w.r.t.
time. By contrast, our approach relies on imposing local Lipschitz-continuity of the reward
over the input space, which will be described later in Sect. 5.4.

Online return normalization methods—using statistics computed over the entire return
history (reminiscent of sliding window methods) to whiten the current return estimate—
are the usual go-to solution to deal with rewards (and a fortiori returns) whose scale can
vary a lot, albeit still under stationarity assumption. We investigate whether online return
normalization methods and pop-Art (van Hasselt et al. 2016) can have a positive impact
on learning performance, when the process underlying the reward is learned at the same
time as the policy, via experience replay. Given that the reward distribution can drift at
an unknown rate (although influenced by the learning rate used to train �), it is fair to
assume that we might benefit from such methods, especially considering how unstable a
twin bilevel optimization problem can be. On the other hand, as learning progresses, older
rewards are – especially in early training—stale, which can potentially pollute the running
statistics accumulated by these normalization techniques. The results obtained in this abla-
tion study are reported in Appendix 8.

We observe that neither return normalization nor pop-Art provide an improvement over
the baseline. On the contrary, in Hopper and Walker2d, we see that they even yield
significantly poorer performance within the allowed runtime, compared to the base method
using neither return normalization nor pop-Art (cf. Fig. 20). We propose an explanation
of this phenomenon based on the stability-plasticity dilemma (Carpenter and Grossberg
1987). In early training, the policy �� changes at a fast rate and with a high amplitude
when going through gradient updates, due to being a randomly initialized neural function
approximator. The reward r� is in a symmetric situation, but is also influenced by the rate
of change of � , being trained in an adversarial game. In order to keep up with this fast
pace of change in early training, the critic Q�—using the reward r� in its own learning
objective—needs to be sufficiently flexible to accommodate and adapt quickly to these fre-
quent changes. In other words, the critic’s plasticity must be high. Since reward estimates
from r� become stale after a few � updates, we also want our critic to avoid using stale
reward to prevent the degradation of � . This property is referred to as stability in Carpenter
and Grossberg (1987). In fine, the critic must be plastic and stable. Note, using the current
reward update to augment the sample transitions with their reward, as done in this work,
provides the critic with such stability. However, return normalization and pop-Art use stale
running statistics estimates to whiten the state-action values returned by the critic, which

1450 Machine Learning (2022) 111:1431–1521

1 3

prevents both plasticity (values need to change fast with the reward, normalization slows
down this process) and harms stability due to the staleness of the obsolete reward that are
“baked in” the running statistics. The obtained results corroborate the previous analysis
(cf. Appendix 8).

We conclude this section by discussing the reward learning dynamics. While in the tran-
sient regime, the reward process is effectively non-stationary, it gradually becomes station-
ary as it reaches a steady-state regime. Nonetheless, the presence of such stabilization does
not guarantee that the desired equilibrium has been reached. Indeed, as we will discuss in
the next section, adversarial imitation learning has proved to be prone to overfitting. We
now address it.

5.3 Overfitting cascade

Being based on a binary classifier, the synthetic reward process r� is inherently susceptible
to overfitting, and it has been shown (cf. subsequent references) that it indeed does. As
exhibited in Sect. 2, several endeavors have proposed techniques to prevent the learned
reward from overfitting, individually building on traditional regularization methods aimed
to address overfitting in classification. These techniques either make the discriminator
model weaker (Reed et al. 2018; Blondé and Kalousis 2019; Kostrikov et al. 2019; Peng
et al. 2018), or make the classification task harder (Blondé and Kalousis 2019; Xu and
Denil 2019; Zolna et al. 2019), to deter the discriminator from relying on non-salient fea-
tures to trivially distinguish between samples from �e and �� (�e and � in our off-policy
setting, cf. Sect. 5.2).

On a more fundamental level, the ability of deep neural networks to generalize (and a
fortiori to circumvent overfitting) had been attributed to the flatness of the loss landscape
in the neighborhoods of minima of the loss function (Hochreiter and Schmidhuber 1997;
Keskar et al. 2017)—provided the optimization method is a variant of stochastic gradient
descent. While it has more recently been shown that sharp minima can generalize (Dinh
et al. 2017), we argue and show both empirically and analytically that, in the off-policy set-
ting tackled in this work, flatness of the reward function around the maxima—correspond-
ing to the positive samples, i.e. the expert data—is paramount for good empirical perfor-
mance. In other words, we argue that the presence of peaks in the reward function caused
by the discriminator overfitting on the expert data (non-salient features in the worst case) is
the major source of optimization issues occuring in off-policy GAIL. As such, we focus on
methods that address overfitting by inducing flatness in the learned reward function around
expert samples, subject to being peaked on the reward landscape. An obvious candidate to
enforce this desired flatness property is gradient penalty regularization, inducing Lipschitz-
continuity on the reward function r� , over its input space S ×A , which has been described
earlier in Sect. 4, and will be the object of Sects. 5.4 and 6.3.

Simply put, reward overfitting translates to the presence of peaks on the reward land-
scape. Even in the case where these peaks exactly coincide with the expert data (perfect
classification, the discriminator coincides with the Bayes classifier of the function class),
peaked reward landscapes (i.e. sparse reward setting) can be tedious to optimize over. Cru-
cially, peaks in r� can potentially cause peaks in the state-action value landscape Q� . When
policy evaluation is done via Monte-Carlo estimation, the length of the rollouts likely
attenuates the contribution of individual peaked rewards aggregated during the rollout into
a discounted sum. If the peaks were not predominant in the rollout, the associated empiri-
cal estimate of the value will not be peaked (relative to its neighboring values). By contrast,

1451Machine Learning (2022) 111:1431–1521

1 3

the TD’s bootstrapping-based objective does not attenuate peaks in r� , which consequently
causes peaks in Q� . Note, using multi-steps returns (Peng et al. 1996) can help mitigate the
phenomenon and benefit from the attenuation effect witnessed in the Monte-Carlo estima-
tion described above, hence our usage of multi-step returns in this work (cf. Sect. 4).

Narrow peaks in the state-action value estimate Q� can cause the deterministic policy
�� to itself overfit to these peaks on the Q� landscape. As such overfitting cascades from
rewards to the policy, and hampers policy optimization [cf. Eq. (8)]. Furthermore, peaks
in Q-values can severely hinder temporal-difference optimization since, by design, these
outlying values can appear in either the predicted Q-value or the target Q-value. As such,
echoing the observations and analyses made in Sects. 5.1 and 5.2, bootstrapping makes
the optimization more tedious, when bringing sampled-efficiency to GAIL. These irregu-
larities naturally transfer to the loss landscape, exacerbating the innate irregularity of loss
landscapes when using neural networks as function approximators (Li et al. 2018), making
it harder to optimize over Eq. (3). In fine, peaks on the reward landscape can cascade and
impede both policy improvement and evaluation.

In the next section (Sect. 5.4), we discuss how to enforce Lipschitz-continuity in usual
neural architectures, before going over empirical results corroborating our previous analy-
ses (Sect. 5.5). Ultimately, we show that not forcing Lipschitz-continuity on the learned
surrogate reward yields poor results, making it a sine qua non condition for success.

5.4 Enforcing Lipschitz‑continuity in deep neural networks

Designed to address the shortcomings of the original GAN (Goodfellow et al. 2014), whose
training effectively minimizes a Jensen-Shannon divergence between generated and real
distributions, the Wasserstein GAN (WGAN) (Arjovsky et al. 2017) leverages the Wasser-
stein metric. Specifically, the authors of Arjovsky et al. (2017) use the dual representation
of the Wasserstein-1 metric under a 1-Lipschitz-continuity (cf. Definition 1) assumption
over the discriminator, which allow them to employ the Kantorovich-Rubinstein duality
theorem, to eventually arrive at a tractable loss one can optimize over.

In the Wasserstein GAN (Arjovsky et al. 2017), the weights of the discriminator—
called critic to emphasize that it is no longer a classifier—are clipped. While not equivalent
to enforcing the 1-Lipschitz constraint their model is theoretically built on, clipping the
weights does loosely enforce Lipschitz-continuity, with a Lipschitz constant depending on
the clipping boundaries. This simple technique however disrupts, by its design, the opti-
mization dynamics. As emphasized in Gulrajani et al. (2017), clipping the weights of the
Wasserstein critic can result in a pathological optimization landscape, echoing the analysis
carried out in Sect. 5.3.

In an attempt to address this issue, the authors of Gulrajani et al. (2017) propose to
impose the underlying 1-Lipschitz constraint via another method, fully integrated into the
bilevel optimization problem as a gradient penalty regularization. When augmented with
this gradient penalization technique, WGAN—dubbed WGAN-GP—is shown to yield
consistently better results, enjoys more stable learning dynamics, and displays a smoother
loss landscape (Gulrajani et al. 2017). Interestingly, the regularization technique has
proved to yield better results even in the original GAN (Lucic et al. 2017), despite it not
being grounded on the Lipschitzness footing like WGAN (Arjovsky et al. 2017). In addi-
tion, following in the footsteps of the comprehensive study proposed in Lucic et al. (2017)
and Kurach et al. (2018) shows empirically that the WGAN loss does not outperform the
original GAN consistently across various hyper-parameter settings, and advocates for the

1452 Machine Learning (2022) 111:1431–1521

1 3

use of the original GAN loss, along with the use of spectral normalization (Miyato et al.
2018), and gradient penalty regularization (Gulrajani et al. 2017) to achieve the best results
(albeit at an increased cost in computation in visual domains). In line with these works
(Lucic et al. 2017; Kurach et al. 2018), we therefore commit to the archetype GAN loss
formulation (Goodfellow et al. 2014), as has been laid out earlier in Sect. 4 when describ-
ing the discriminator objective in Eq. (1). We now remind the objective optimized by the
discriminator [cf. Eq. (2)], where the generalized form of the gradient penalty, ℜ�

�(k) , sub-
sumes the original penalty (Gulrajani et al. 2017) as well as variants that will be studied
later in Sect. 6.3:

In Eq. (14), � corresponds to the weight attributed to the regularizer in the objective (cf.
ablation in Sect. 6.3), and ‖ ⋅ ‖ depicts the euclidean norm in the appropriate vector space.
� is the distribution defining where in the input space S ×A the Lipschitzness constraint
should be enforced. � is defined from �e and � . In the original gradient penalty formulation
(Gulrajani et al. 2017), � corresponds to sampling points uniformly in segments2 joining
points from the generated data and real data, grounded on the derived theoretical results
(cf. Proposition 1 in Gulrajani et al. (2017)) that the optimal discriminator is 1-Lipschitz
along these segments. While it does not mean that enforcing such constraint will make the
discriminator optimal, it yields good results in practice. We discuss several formulations
of � in Sect. 6.3, evaluate them empirically and propose intuitive arguments explaining the
obtained results. In particular, we adopt an RL viewpoint and propose an alternate ground
as to why the regularizer has enabled successes in control and search tasks, as reported
in Blondé and Kalousis (2019); Kostrikov et al. (2019). In particular, in Gulrajani et al.
(2017), the 1-Lipschitz-continuity is encouraged by using ℜ�

�(1) as regularizer.
Additionally, in line with the observations done in Gulrajani et al. (2017),

we investigated with (a) replacing ℜ�
�(k) with a one-sided alternative defined as

�st∼�
� ,at∼�

[max(0, ‖∇st ,at
D�(st, at)‖ − k)2] , and (b) ablating online batch normalization of

the state input from the discriminator. The alternative regularizer of (a) encourages the
norm to be lower than k (formally, ‖∇st ,at

D�(st, at)‖ ≤ k) in contrast to the original regu-
larizer that enforces it to be close to k. While the one-sided version describes the notion of
k-Lipschitzness more accurately (cf. Definition 1), it yields similar results overall, as shown
in Appendix 5.1. Crucially, we conclude from these experiments that it is sufficient to have
the norm remain upper-bounded by k, or equivalently, to have D� be Lipschitz-continuous.
In other words, we do not need to impose a stronger constraint than k-Lipschitz-continuity
on the discriminator to achieve peak performance, in the context of this ablation study.
As for (b), online batch normalization of the state input is mostly hurting performance. as
reported in Appendix 5.2. We therefore arrive at the same conclusions as Gulrajani et al.
(2017): (a) we use the two-sided formulation of ℜ�

�(k) described in Eq. (14) since using the
once-sided variant yields no improvement, and (b) we omit the online batch normalization
of the state input in the discriminator since it hurts performance, while still using this nor-
malization scheme in the policy and critic (more details about the technique will be given
when we describe our experimental setting in the next section, Sect. 5.5).

(14)�GP
�

∶=�� + �ℜ�
�
(k)∶=�� + ��st∼�

� ,at∼�
[(‖∇st ,at

D�(st, at)‖ − k)2]

2 The segment joining the arbitrary points x and y in ℝ
d is the set of points defined as

S∶={(1 − �)x + �y | � ∈ [0, 1]} . Sampling a point z ∈ ℝ
d uniformly from S corresponds to sampling

� ∼ unif(0, 1) , before assembling z∶=(1 − �)x + �y.

1453Machine Learning (2022) 111:1431–1521

1 3

5.5 Diagnosing the importance of Lipschitzness empirically in off‑policy
adversarial imitation learning

Before going over the empirical results reported in this section, we describe our experi-
mental setting. Unless explicitly stated otherwise, every experiment—reported in both
this section and Sect. 6.5—is run in the same base setting. In addition, the used hyper-
parameters are made available in Appendix 1.

5.5.1 Environments

In this work, we consider the simulated robotics, continuous control environments built
with the MuJoCo (Todorov et al. 2012) physics engine, and provided to the community
through the OpenAI Gym API (Brockman et al. 2016). We use the following versions
of the environments: v3 for Hopper, Walker2d, HalfCheetah, Ant, Human-
oid, and v2 for InvertedDoublePendulum. For each of these, the dimension n
of a given state s ∈ S ⊆ ℝ

n and the dimension m of a given action a ∈ A ⊆ ℝ
m scale as

the degrees of freedom (DoFs) associated with the environment’s underlying MuJoCo
model. As a rule of thumb, the more complex the articulated physics-bound model is
(i.e. more limbs, joints with greater DoFs), the larger both n and m are. The intrinsic dif-
ficulty of the simulated robotics task scales super-linearly with n and m, albeit consider-
ably faster with m (policy’s output) than with n (policy’s input).

Omitting their respective versions, Table 1 reports the state and action dimensions (n
and m respectively) for all the environments tackled in this work, and are ordered, from
left to right, by increasing state and action dimensions, Humanoid-v3 being the most
challenging. Since we consider, in our experiments, expert datasets composed of at most
10 demonstrations (10 is the default number; when we use 5, we specify it in the cap-
tion), we report return statistics (mean � and standard deviation � , formatted as �(�) in
Table 1) aggregated over the set of 10 deterministically-selected demonstrations (the 10
first in our fixed pool) that every method requesting for 10 demonstrations will receive.
To reiterate: in this work, every single method and variant will receive exactly the
same demonstrations, due to an explicit seeding mechanism in every experiment. The
reported statistics therefore identically apply to every method or variant using 10 dem-
onstrations. By design, this reproducibility asset naturally extends to settings requesting
fewer.

5.5.2 Demonstrations

As in Ho and Ermon (2016), we subsampled every demonstration with a 1/u ratio—an
operation called temporal dropout in Duan et al. (2017). For a given demonstration, we
sample an index i0 from the discrete uniform distribution unif{0, u − 1} to determine the
first subsampled transition. We then take one transition every u transition from the ini-
tial index i0 . In fine, the subsampled demonstration is extracted from the original one of
length l by only preserving the transitions of indices {i0 + ku � 0 ≤ k < ⌊l∕u⌋} . Since the
experts achieve very high performance in the MuJoCo benchmark (cf. last column of
Table 1) they never fail their task and live until the “timeout” episode termination trig-
gered by OpenAI Gym API, triggered once the horizon of 1000 timesteps is reached, in
every environments considered in this work. As such, most demonstrations have a length

1454 Machine Learning (2022) 111:1431–1521

1 3

l ≈ 1000 transitions (sometimes less but always above 950). Since we use the sub-sampling
rate u = 20 , as in Ho and Ermon (2016), the subsampled demonstrations have a length of
�{i0 + ku � 0 ≤ k < ⌊l∕u⌋}� = ⌊l∕u⌋ ≈ 50 transitions.

We wrap the absorbing states in both the expert trajectories beforehand and agent-
generated trajectories at training time, as introduced in Kostrikov et al. (2019). Note, this
assumes knowledge about the nature—organic (e.g. falling down) and triggered (e.g. time-
out flag set at a fixed episode horizon)—of the episode terminations (if any) occurring in
the expert trajectories. Considering the benchmark, it is trivial to individually determine
their natures in our work, which makes said assumption of knowledge weak. We trained
the experts from which the demonstrations were then extracted using the on-policy state-
of-the-art PPO (Schulman et al. 2017) algorithm. We used early stopping to halt the expert
training processes when a phenomenon of diminishing returns is observed in its empirical
return, typically attained by the 20 million interactions mark. We used our own parallel
PPO implementation, written in PyTorch (Paszke et al. 2019), and will share the code upon
acceptance. The IL endeavors presented in this work have also been implemented with this
framework.

5.5.3 Distributed training

The distributed training scheme employed to obtain every empirical imitation learning
result exhibited in this work uses the MPI message-passing standard. Upon launch, an
experiment spins n workers, each assigned with an identifying unique rank 0 ≤ r < n . They
all have symmetric roles, except the rank 0 worker, which will be referred to as the “zero-
rank” worker. The role of each worker is to follow the studied algorithm—SAM (cf. AlGo-
rithM 1) in the experiments reported in this section, and the proposed extension PURPLE
in the experiments reported later in Sect. 6.5. The zero-rank worker exactly follows the
algorithm, while the n − 1 other workers omit the evaluation phase (denoted by the sym-
bol “ ” appearing in front of the line number). The random seed of each worker is defined
deterministically from its rank and the base random seed given as a hyper-parameter by the
practitioner, and is used to (a) determine the behavior of every stochastic entity involved
in the worker’s training process, and (b) determine the stochasticity of the environment it
interacts with.

Before every gradient-based parameter update step—denoted in Algorithm 1 by the
symbol “ ” appearing in front of the line number—the zero-rank worker gathers the gra-
dients across the n − 1 other workers, and aggregates them via an averaging operation, and
sends the aggregate to every worker. Upon receipt, every worker of the pool then uses the
aggregated gradient in its own learning update. Since the parameters are synced across
workers before the learning process kicks off, this synchronous gradient-averaging scheme
ensures that the workers all have the same parameters throughout the entire learning pro-
cess (same initial parameters, then same updates). This distributed training scheme lev-
erages learners seeded differently in their own environments, also seeded differently, to
accelerate exploration, and above all provide the model with greater robustness.

Every imitation learning experiment whose results are reported in this work has been
run for a fixed wall-clock duration—12 or 48 h, as indicated in their respective captions—
due to hardware and computational infrastructure constraints. While the effective running
time appears in the caption of every plot, the latter still depict the temporal progression of
the methods in terms of timesteps, the number of interactions carried out with the envi-
ronment. The reported performance corresponds to the undiscounted empirical return,

1455Machine Learning (2022) 111:1431–1521

1 3

computed using the reward returned by the environment (available at evaluation time),
gathered by the non-perturbed policy �� (deterministic) of the zero-rank worker. Every
experiment uses 16 workers, and can therefore be executed on most desktop consumer-
grade computers. Lastly, we monitored every experiment with the Weights & Biases (Bie-
wald 2020) tracking and visualization tool.

Additionally, we run each experiment with 5 different base random seeds (0–4), raising
the effective seed count per experiment to 80. Each presented plot depicts the mean across
them with a solid line, and the standard deviation envelope (half a standard deviation on
either side of the mean) with a shaded area.

Finally, we use an online observation normalization scheme, instrumental in performing
well in continuous control tasks. The running mean and standard deviation used to stand-
ardize the observations are computed using an online method to represent the statistics of
the entire history of observation. These statistics are updated with the mean and stand-
ard deviation computed over the concatenation of latest rollouts collected by each parallel
worker, making is effectively an online distributed batch normalization (Ioffe and Szegedy
2015) variant.

5.5.4 Empirical results

We now go over our first set of empirical results, whose goal is to show to what extent gra-
dient penalty regularization is needed. The compared methods all use SAM (cf. Sect. 4) as
base.

First, Fig. 2 compares several modular configurations, which are described using the
following handles in the legend. GP means that gradient penalization (GP) (cf. Sect. 5.4)
is used. NoGP means that GP is not used (using �� instead of �GP

�
). Note, NoGP is the only

negative handle that we use, since it it central to our analyses. When any other technique
is not in use, it is simply absent from the handle in the legend. SN means that spectral nor-
malization (SN) (Miyato et al. 2018) is used. SN normalizes the discriminator’s weights to
have a norm close to 1, drawing a direct parallel with GP. In line with what the large-scale
ablation studies on GAN add-ons advocate (Lucic et al. 2017; Kurach et al. 2018), SN is
used in most modern GAN architectures for its simplicity. We here investigate if SN is
enough to keep the gradient in check, or if GP is necessary. LS denotes one-sided uniform
label smoothing, consisting in replacing the positive labels only (hence one-sided), which
are normally equal to 1 (expert, real), by a soft label u, distributed as u ∼ unif(0.7, 1.2) .
We do not consider Variational Discriminator Bottleneck (VDB) (Peng et al. 2018) in our
comparisons since (a) we prefer to focus on stripped-down canonical methods, and (b) the
information bottleneck forced on the discriminator’s hidden representation boils down to
smoothing the labels anyway, as shown recently in Müller et al. (2019).

In Fig. 2, we see that not using GP (NoGP) prevents the agent from learning anything
valuable: the agent barely collects any reward at all. While using SN can improve per-
formance slightly (NoGP-SN), the addition of LS (NoGP-SN-LS) considerably improves
performance over the two previous candidates. Nonetheless, despite the sizable runtime,
all three perform poorly and are a far cry from achieving the same empirical return as the
expert (cf. Table 1). In contrast with Figs. 2, 3 and 4 show to what extent introducing GP
in the off-policy imitation learning algorithm considered in this work impacts performance
positively. The performance gap is substantial—in every environment except the easiest
one considered, InvertedDoublePendulum-v2, as described in Table 1. As soon as
GP is in use, the agent achieves near-expert performance (cf. Table 1). In fine, Fig. 2 shows

1456 Machine Learning (2022) 111:1431–1521

1 3

(b)

(a)

Fig. 2 Evaluation of several methods while not using GP. Legend described in text. Runtime is 12 h

1457Machine Learning (2022) 111:1431–1521

1 3

(a)

(b)

Fig. 3 Evaluation of several methods showing the necessity of GP. Legend described in text. Runtime is
12 h

1458 Machine Learning (2022) 111:1431–1521

1 3

that without GP, neither SN nor LS are enough to enable the agent to mimic the expert with
high fidelity, while Fig. 3 and Fig. 4 show that with GP, extra methods such as LS barely
improve performance. These results support our claim: gradient penalty is, (empirically)
necessary and sufficient to ensure near-expert performance in off-policy generative adver-
sarial imitation learning, in our computational setting.

Fig. 4 Evaluation of several methods showing the necessity of GP. Legend described in text. Runtime is
48 h

Fig. 5 Ablation study on GP in on-policy GAIL. We see that the agent is still able to learn policies achiev-
ing peak performance even without GP, in contrast to the off-policy version of the algorithm. In the most
difficult environment of the MuJoCo suite (cf. Table 1), Humanoid, GP achieves best performance. Runt-
ime is 12 hours

1459Machine Learning (2022) 111:1431–1521

1 3

(a)

(b)

Fig. 6 Evaluation of several alternate reward formulations. Legend described in text. Runtime is 12 hours

1460 Machine Learning (2022) 111:1431–1521

1 3

We also conducted an ablation of GP in the on-policy setting, reported in Fig. 5. We see
that across the range of environments, GP does not assume the same decisive role as in the
off-policy setting. In fact, the agent reaches peak performance earlier without GP in two
challenging environments, Ant and HalfCheetah, out of the five considered. Neverthe-
less, it still allows the agent to attain peak empirical return faster in Hopper, Walker2d,
and perhaps most strikingly, in the extremely complex Humanoid environment. All in all,
while GP can help in the on-policy setting, in is not necessary as in the off-policy setting
studied in this work. In line with the analyses led in Sects. 5.1–5.3, the results of Fig. 5
somewhat corroborate our claim that the presence of bootstrapping in the policy evaluation
objective creates a bottleneck, that can be addressed by enforcing a Lipschitz-continuity
constraint—GP—on the reward learned for imitation.

Figure 6 compares SAM, with and without GP, against several alternate versions of
the objective used to train the surrogate reward for imitation. We introduce the following
new handles to denote these methods. “RED” means that the random expert distillation
(RED) (Wang et al. 2019) method is used to learn the imitation reward, replacing the
adversarial one in SAM. RED is based on random network distillation (RND) (Burda
et al. 2018), an exploration method using the prediction error of a learned network
against a random fixed target as a measure of novelty, and use it to craft a reward bonus.
Instead of updating the network while training to keep the novelty estimate tuned to the
current exploration level of the agent, RED trains the RND predictor network to predict
the random fixed target on the expert dataset before training the policy. RED then uses
the prediction error to assemble a reward signal for the imitation agent, who is rewarded
more if the actions it picks are deemed not novel, as that means the agent’s occupancy
measure matches the occupancy of what has been seen before, i.e. the expert dataset. As
such, RED is a technique that rewards the agent for matching the distribution support
of the expert policy �e . Note, as opposed to adversarial imitation, the RED reward is
not updated during training, which technically protects it from overfitting. “PU” means
that we learn the reward via adversarial imitation, but using the discriminator objective
recently proposed in positive-unlabeled (PU) GAIL (Xu and Denil 2019). Briefly, the
method considers that while the expert-generated samples are positive-labels, the agent-
generated ones are unlabeled (as opposed to negative-labeled). Intuitively, it should pre-
vent the discriminator overfitting on irrelevant features when it becomes difficult for the
discriminator to tell agent and expert apart.

The wrapping mechanism—consisting in wrapping the absorbing transitions, which
we described in Sect. 4—is used in every experiment reported in Fig. 6, including RED.
In addition, note, we only use GP in the adversarial context we introduced it in. We
do not use GP with RED. Each technique is re-implemented based on the associated
paper, with the same hyper-parameters, with the exception of RED: instead of using
the per-environment scale for the prediction loss on which the RED reward is built, we
keep a running estimate of the standard deviation of this prediction loss and rescale said
prediction loss with its running standard deviation. This modification is consistent with
the rescaling done in the paper RED is based on RND. By contrast, the per-environment
scales in RED’s official implementation span several orders of magnitude (four). We
here opt for environment-agnostic methods.

The results in Fig. 6 show that the wrapping techniques introduced in Kostrikov et al.
(2019) and described in Sect. 4 increases performance overall. Like we have shown
before in Figs. 2, 3, and 4, not using GP causes a considerable drop in performance.
PU prevents the agent to learn an expert-like policy, in every environment. Note, while
the comparison is fair, PU was introduced in visual tasks. In particular, we see that, in

1461Machine Learning (2022) 111:1431–1521

1 3

Hopper, PU’s empirical return hits a plateau at about 1000 reward units (abbrv. r.u.).
We observe the exact same phenomenon with RED, for which it occurs in every environ-
ment. This is caused by the agent being stuck performing the same sub-optimal actions,
accumulating sub-optimal outcomes until episode termination artificially triggered by
timeout. The agent exploits the fact that it has a lifetime upper-bounded by said time-
out and is therefore biased by its survival (survival bias, cf. Sect. 4). The RED agents
are in effect staying alive until termination, and therefore avoid falling down (organic
trigger) until the timeout (artificial trigger) is reached. While the reward used in RED
is not negative, the agent quickly reaches a performance level at which all the rewards
are almost identical—since the RED reward is trained beforehand, with no chance of
adaptive tuning like training the reward at the same time allows in this work, and since
RED’s score is based on how the agent and expert distribution match. Once the agent is
similar enough to the expert, it always gets the same rewards and has therefore no incen-
tive to resemble the expert with higher fidelity. Instead, it is content and just tries to live
through the episode. This propensity to survival bias explains why such care was taken
to hand-tune its scale. Finally, even though wrapping absorbing transitions generally
improves performance, Fig. 6 shows that survival bias is avoided even without it (occur-
rence in Hopper has been overcome).

The results in Fig. 3 provide empirical evidence that enforcing Lipschitz-continuity
on D� over the input space via the gradient regularization [cf. Eq. (14)] is necessary
and sufficient for the agent to achieve expert performance in the considered off-policy
setting. We therefore ask the question: is the positive impact that GP has on training
imitation policies via bootstrapping explained (a) by its direct effect on the reward
smoothness, or (b) by its indirect effect on the state-action value smoothness? We argue
that both contribute to the stability and performance of the studied method. While
point (a) is intuitive from the analyses laid out in Sects. 5.1–5.3, we believe that point
(b) deserves further analysis and discussion. As such, we derive theoretical results to
qualify, both qualitatively and quantitatively, the Lipschitz-continuity that is potentially
implicitly enforced on the state-action value when assuming the Lipschitz-continuity of
the reward. These results are reported in Sect. 6.1, and will hopefully help us answer the
previous question. A discussion of the indirect effect and how it compares to the direct
effect implemented by target smoothing is carried out in Sect. 6.2.4.

6 Pushing the analysis further: robustness guarantees and provably
more robust extension

6.1 Robustness guarantees: state‑action value Lipschitzness

In this section, we ultimately show that enforcing a Lipschitzness constraint on the
reward r� has the effect of enforcing a Lipschitzness constraint on the associated state-
action value Q� . Note, Q� is the real Q-value derived from r� , while Q� is a function
approximation of it. We discuss this point in more detail in Sect. 6.2. We character-
ize and discuss the conditions under which such result is satisfied, as well as how the
exhibited Lipschitz constant for Q� relates to the one enforced on r� . We work in the
episodic setting, i.e. with a finite-horizon T, which is achieved by assuming that � = 0
once an absorbing state is reached. Note, since we optimize over mini-batches in prac-
tice, nothing guarantees that the Lipschitz constraint is satisfied by the learned function

1462 Machine Learning (2022) 111:1431–1521

1 3

approximation globally across the whole joint space S ×A , at every training iteration.
In such setting, we are therefore reduced to local Lipschitzness, defined as Lipschitzness
in neighborhoods around samples at which the constraint is applied. The provenance of
these samples is not the focus of this theoretical section and assume they are agent-
generated. We study the effect of enforcing Lipschitzness constraints on other data dis-
tributions in Sect. 6.3.

Notations Given a function f ∶ ℝ
n ×ℝ

m
→ ℝ

d , taking the pair of vectors (x, y) as
inputs, we denote by ∇x,y f the pair of Jacobians associated with x and y, ∇x f and ∇y f
respectively, which are rectangular matrices in ℝd×n and ℝd×n respectively. Now that the
stable concepts and notations have been laid out, we introduce the variables xi and yi ,
indexed by i ∈ I ⊆ ℕ . Note, indices i’s do not depict different occurrences of the x varia-
ble: the xi ’s and yi ’s are distinct variables. These families of variables will enable us to for-
malize the Jacobian of f with respect to (xi, yi) evaluated at (xi� , xi�) , defined as
(
df (xi� ,yi�)
dxi

,
df (xi� ,yi�)
dyi

) , where i� ∈ I, i� ≥ i . To lighten the notations, we overload the symbol ∇

and introduce the shorthands ∇i
x
[f]i� ∶=

df (xi� ,yi�)
dxi

 and ∇i
y
[f]i� ∶=

df (xi� ,yi�)
dyi

 . By analogy, the
shorthand ∇i

x,y
[f]i� denotes the pair (∇i

x
[f]i� ,∇

i
y
[f]i�) . In this work, the difference between

the index of derivation i and the index of evaluation i′ , i − i� ≤ 0 will be referred to as gap.
We use ‖ ⋅ ‖F to denote the Frobenius norm, which a) is naturally defined over rectangular
matrices in ℝm×n and b) is sub-multiplicative: ‖UV‖F ≤ ‖U‖F ‖V‖F , for U and V rectangu-
lar with compatible sizes (provable via Cauchy-Schwarz inequality). In proofs, we use “ ⊗ ”
for matrix multiplication, to avoid collisions with the scalar product.

Lemma 1 (Recursive inequality—induction step) Let the MDP with which the agent inter-
acts be deterministic, with the dynamics of the environment determined by the function
f ∶ S ×A → S. The agent follows a deterministic policy � ∶ S → A to map states to
actions, and receives rewards from r� ∶ S ×A → ℝ upon interaction. The functions f, �
and r� need be C0 and differentiable over their respective input spaces. This property is
satisfied by the usual neural network function approximators. The “almost-everywhere”
case can be derived from this lemma without major changes (relevant when at least one
activation function is only differentiable almost-everywhere, ReLU). (a) Under the previ-
ous assumptions, for k ∈ [0, T − t − 1] ∩ ℕ the following recursive inequality is verified:

where Ct∶=A
2
t
max(1,B2

t+1
) , At and Bt being defined as the supremum norms associated

with the Jacobians of f and � respectively, with values in ℝ ∪ {+∞}:

(b) Additionally, by introducing time-independent upper bounds A,B ∈ ℝ ∪ {+∞} such
that ∀t ∈ [0,T] ∩ ℕ , At ≤ A and Bt ≤ B, the recursive inequality becomes:

where C∶=A2 max(1,B2) is the time-independent counterpart of Ct.

Proof of Lemma 1(a) First, we take the derivative with respect to each variable separately:

(15)‖∇t
s,a
[r�]t+k+1‖2F ≤ Ct ‖∇t+1

s,a
[r�]t+k+1‖2F

(16)∀t ∈ [0,T] ∩ ℕ,

�
At∶=‖∇t

s,a
[f]t‖∞ = sup

�‖∇t
s,a
[f]t‖F ∶ (st, at) ∈ S ×A

�
Bt∶=‖∇t

s
[�]t‖∞ = sup

�‖∇t
s
[�]t‖F ∶ st ∈ S

�

(17)‖∇t
s,a
[r�]t+k+1‖2F ≤ C ‖∇t+1

s,a
[r�]t+k+1‖2F

1463Machine Learning (2022) 111:1431–1521

1 3

By assembling the norm with respect to both input variables, we get:

(18)∇t
s
[r�]t+k+1 =

dr�(st+k+1, at+k+1)

dst

(19)=
dr�

(
f (st+k, at+k),�(f (st+k, at+k))

)
dst

(20)=
dr𝜑(st+k+1, at+k+1)

dst+1
⊗

df (st, at)

dst

(21)
+

dr𝜑(st+k+1, at+k+1)

dat+1
⊗

d𝜇(st+1)

dst+1
⊗

df (st, at)

dst

= ∇t+1
s

[r𝜑]t+k+1 ⊗ ∇t
s
[f]t + ∇t+1

a
[r𝜑]t+k+1 ⊗ ∇t+1

s
[𝜇]t+1 ⊗ ∇t

s
[f]t

(22)∇t
a
[r�]t+k+1 =

dr�(st+k+1, at+k+1)

dat

(23)=
dr�

(
f (st+k, at+k),�(f (st+k, at+k))

)
dat

(24)=
dr𝜑(st+k+1, at+k+1)

dst+1
⊗

df (st, at)

dat

(25)
+

dr𝜑(st+k+1, at+k+1)

dat+1
⊗

d𝜇(st+1)

dst+1
⊗

df (st, at)

dat

= ∇t+1
s

[r𝜑]t+k+1 ⊗ ∇t
a
[f]t + ∇t+1

a
[r𝜑]t+k+1 ⊗ ∇t+1

s
[𝜇]t+1 ⊗ ∇t

a
[f]t

(26)
‖∇t

s,a
[r�]t+k+1‖2F

= ‖∇t
s
[r�]t+k+1‖2F + ‖∇t

a
[r�]t+k+1‖2F

(27)= ‖∇t+1
s

[r𝜑]t+k+1 ⊗ ∇t
s
[f]t + ∇t+1

a
[r𝜑]t+k+1 ⊗ ∇t+1

s
[𝜇]t+1 ⊗ ∇t

s
[f]t‖2F

(28)
+ ‖∇t+1

s
[r𝜑]t+k+1 ⊗ ∇t

a
[f]t + ∇t+1

a
[r𝜑]t+k+1 ⊗ ∇t+1

s
[𝜇]t+1 ⊗ ∇t

a
[f]t‖2F

≤ ‖∇t+1
s

[r𝜑]t+k+1 ⊗ ∇t
s
[f]t‖2F ▶triangular inequality

1464 Machine Learning (2022) 111:1431–1521

1 3

Let At , Bt and Ct be time-dependent quantities defined as:

Finally, by substitution, we obtain:

which concludes the proof of Lemma 1(a). ◻

Proof of Lemma 1(b) By introducing time-independent upper bounds A and B such that
At ≤ A and Bt ≤ B ∀t ∈ [0,T] ∩ ℕ , as well as C∶=A2 max(1,B2) , we obtain, by substitution
in Eq. (35):

which concludes the proof of Lemma 1(b). ◻

(29)

+ ‖∇t+1
a

[r𝜑]t+k+1 ⊗ ∇t+1
s

[𝜇]t+1 ⊗ ∇t
s
[f]t‖2F

+ ‖∇t+1
s

[r𝜑]t+k+1 ⊗ ∇t
a
[f]t‖2F

+ ‖∇t+1
a

[r𝜑]t+k+1 ⊗ ∇t+1
s

[𝜇]t+1 ⊗ ∇t
a
[f]t‖2F

≤ ‖∇t+1
s

[r𝜑]t+k+1‖2F ‖∇t
s
[f]t‖2F ▶sub-multiplicativity

(30)

+ ‖∇t+1
a

[r�]t+k+1‖2F ‖∇t+1
s

[�]t+1‖2F ‖∇t
s
[f]t‖2F

+ ‖∇t+1
s

[r�]t+k+1‖2F ‖∇t
a
[f]t‖2F

+ ‖∇t+1
a

[r�]t+k+1‖2F ‖∇t+1
s

[�]t+1‖2F ‖∇t
a
[f]t‖2F

= ‖∇t+1
s

[r�]t+k+1‖2F
�‖∇t

s
[f]t‖2F + ‖∇t

a
[f]t‖2F

�
▶factorization

(31)

+ ‖∇t+1
a

[r�]t+k+1‖2F ‖∇t+1
s

[�]t+1‖2F
�‖∇t

s
[f]t‖2F + ‖∇t

a
[f]t‖2F

�

= ‖∇t+1
s

[r�]t+k+1‖2F ‖∇t
s,a
[f]t‖2F ▶total norm

+ ‖∇t+1
a

[r�]t+k+1‖2F ‖∇t+1
s

[�]t+1‖2F ‖∇t
s,a
[f]t‖2F

(32)∀t ∈ [0, T] ∩ ℕ,

⎧⎪⎨⎪⎩

At∶=‖∇t
s,a
[f]t‖∞ = sup

�‖∇t
s,a
[f]t‖F ∶ (st, at) ∈ S ×A

�
Bt∶=‖∇t

s
[�]t‖∞ = sup

�‖∇t
s
[�]t‖F ∶ st ∈ S

�
Ct∶=A

2
t
max(1,B2

t+1
)

(33)‖∇t
s,a
[r�]t+k+1‖2F ≤ A2

t
‖∇t+1

s
[r�]t+k+1‖2F + A2

t
B2
t+1

‖∇t+1
a

[r�]t+k+1‖2F

(34)≤ A2
t
max(1,B2

t+1
)
�‖∇t+1

s
[r�]t+k+1‖2F + ‖∇t+1

a
[r�]t+k+1‖2F

�

(35)= A2
t
max(1,B2

t+1
) ‖∇t+1

s,a
[r�]t+k+1‖2F ▶total norm

(36)= Ct ‖∇t+1
s,a

[r�]t+k+1‖2F ▶Ctdefinition

(37)‖∇t
s,a
[r�]t+k+1‖2F ≤ A2 max(1,B2) ‖∇t+1

s,a
[r�]t+k+1‖2F

(38)= C ‖∇t+1
s,a

[r�]t+k+1‖2F

1465Machine Learning (2022) 111:1431–1521

1 3

Lemma 1 tells us how the norm of the Jacobian associated with a gap between deri-
vation and evaluation indices equal to t + 1 relate to the norm of the Jacobian associated
with a gap equal to t. We will use this recursive property to prove our first theorem,
Theorem 1. Additionally, from this point forward, we will use the time-independent
upper-bounds exclusively, i.e. Lemma 1(b).

Theorem 1 (Gap-dependent reward Lipschitzness) In addition to the assumptions laid
out in Lemma 1, we assume that the function r� is �-Lipschitz over S ×A. Since r� is C0
and differentiable over S ×A, this assumption can be written as ‖∇u

s,a
[r�]u‖F ≤ �, where

u ∈ [0,T] ∩ ℕ . (a) Then, under these assumptions, the following is verified:

where k ∈ [0, T] ∩ ℕ and Cv is defined as in Lemma 1(a), ∀v ∈ [0, T] ∩ ℕ . (b) Additionally,
by involving the time-independent upper bounds introduced in Lemma 1(b), we have the
following:

where k ∈ [0, T] ∩ ℕ and C is defined as in Lemma 1(b).

Proof of Theorem 1(a) We will prove Theorem 1(a) by induction.
Let us introduce the dummy variable v, along with the induction hypothesis for v:

where v represents the gap between the derivation timestep and the evaluation timestep.
Step 1: initialization When the gap v = 0 , Eq. (41) becomes ‖∇t

s,a
[r�]t‖2F ≤ �2 ,

∀t ∈ [0,T] ∩ ℕ , which is trivially verified since it exactly corresponds to Theorem 1’s main
assumption.

Step 2: induction Let us assume that Eq. (41) is verified for v fixed, and show that
Eq. (41) is satisfied when the gap is equal to v + 1.

(39)‖∇t
s,a
[r�]t+k‖2F ≤ �2

k−1�
u=0

Ct+u

(40)‖∇t
s,a
[r�]t+k‖2F ≤ Ck �2

(41)‖∇t
s,a
[r�]t+v‖2F ≤ �2

v−1�
u=0

Ct+u ▶induction hypothesis

(42)‖∇t
s,a
[r�]t+v+1‖2F ≤ Ct ‖∇t+1

s,a
[r�]t+v+1‖2F ▶Lemma 1(a)

(43)≤ Ct �
2

v−1∏
u=0

Ct+1+u ▶Eq. (41) since gap isv, at t + 1

(44)= Ct �
2

v∏
u=1

Ct+u ▶index shift

(45)= �2
v∏

u=0

Ct+u ▶repack product

1466 Machine Learning (2022) 111:1431–1521

1 3

Equation (41) is therefore satisfied for v + 1 when assumed at v, which proves the induction
step.

Step 3: conclusion Since Eq. (41) has been verified for both the initialization and induc-
tion steps, the hypothesis is valid ∀v ∈ [0, T] ∩ ℕ , which concludes the proof of Theo-
rem 1(a). ◻

Proof of Theorem 1b We will prove Theorem 1(b) by induction.
Let us introduce the dummy variable v, along with the induction hypothesis for v:

where v represents the gap between the derivation timestep and the evaluation timestep.
Step 1: initialization When the gap v = 0 , Eq. (46) becomes ‖∇t

s,a
[r�]t‖2F ≤ �2 ,

∀t ∈ [0,T] ∩ ℕ , which is trivially verified since it exactly corresponds to Theorem 1’s main
assumption.

Step 2: induction Let us assume that Eq. (46) is verified for v fixed, and show that
Eq. (46) is satisfied when the gap is equal to v + 1.

Equation (46) is therefore satisfied for v + 1 when assumed at v, which proves the induction
step.

Step 3: conclusion Since Eq. (46) has been verified for both the initialization and induc-
tion steps, the hypothesis is valid ∀v ∈ [0, T] ∩ ℕ , which concludes the proof of Theo-
rem 1(b). ◻

This result shows that when there is a gap k between the derivation and evaluation indi-
ces, the norm of the Jacobian of r� is upper-bounded by a gap-dependent quantity equal
to
√
Ck� , over the entire input space. Crucially, this property applies if and only if the gap

between the timestep of the derivation variable and the timestep of the evaluation variable
is equal to 0, hence the use of the same letter u in the assumption formulation.

Theorem 2 (State-action value Lipschitzness) We work under the assumptions laid out in
both Lemma 1 and Theorem 1, and repeat the main lines here for Theorem 2 to be self-
contained: (a) the functions f, � and r� are C0 and differentiable over their respective input
spaces, and (b) the function r� is �-Lipschitz over S ×A, i.e. ‖∇u

s,a
[r�]u‖F ≤ �, where

u ∈ [0,T] ∩ ℕ. Then the quantity ∇u
s,a
[Q�]u exists ∀u ∈ [0, T] ∩ ℕ, and verifies:

(46)‖∇t
s,a
[r�]t+v‖2F ≤ Cv �2 ▶induction hypothesis

(47)‖∇t
s,a
[r�]t+v+1‖2F ≤ C ‖∇t+1

s,a
[r�]t+v+1‖2F ▶Lemma 1(b)

(48)≤ CCv �2 ▶EQ. (46) since gap isv

(49)= Cv+1 �2

(50)‖∇t
s,a
[Q�]t‖F ≤

⎧
⎪⎪⎨⎪⎪⎩

�

����1 −
�
�2C

�T−t
1 − �2C

, if �2C ≠ 1

�
√
T − t, if �2C = 1

1467Machine Learning (2022) 111:1431–1521

1 3

∀t ∈ [0,T] ∩ ℕ, where C∶=A2 max(1,B2), with A and B time-independent upper bounds
of ‖∇t

s,a
[f]t‖∞ and ‖∇t

s
[�]t‖∞ respectively [see Eq. (32) for definitions of the supremum

norms].

Proof of Theorem 2 With finite horizon T, we have Q�(st, at)∶=
∑T−t−1

k=0
�k r�(st+k, at+k) ,

∀t ∈ [0,T] ∩ ℕ , since f, � , and r� are all deterministic (no expectation). Addition-
ally, since r� is assumes to be C0 and differentiable over S ×A , Q� is by construction
also C0 and differentiable over S ×A . Consequently, ∇u

s,a
[Q�]u exists, ∀u ∈ [0, T] ∩ ℕ .

Since both r� and Q� are scalar-valued (their output space is ℝ), their Jacobians are
the same as their gradients. We can therefore use the linearity of the gradient operator:
∇t

s,a
[Q�]t =

∑T−t−1

k=0
�k ∇t

s,a
[r�]t+k , ∀t ∈ [0,T] ∩ ℕ.

When �2C = 1 , we obtain ‖∇t
s,a
[Q�]t‖2F = �2(T − t) . On the other hand, when �2C ≠ 1:

By applying
√
⋅ (monotonically increasing) to the inequality, we obtain the claimed result.

 ◻

Finally, we derive a corollary from Theorem 2 corresponding to the infinite-horizon
regime.

Corollary 1 (Infinite-horizon regime) Under the assumptions of Theorem 2, including that
r� is �-Lipschitz over S ×A, and assuming that 𝛾2C < 1, we have, in the infinite-horizon
regime:

(51)‖∇t
s,a
[Q�]t‖2F =

�����

T−t−1�
k=0

�k ∇t
s,a
[r�]t+k

�����

2

F

▶operator�s linearity

(52)≤
T−t−1�
k=0

�2k ‖∇t
s,a
[r�]t+k‖2F ▶triangular inequality

(53)≤
T−t−1∑
k=0

�2k Ck �2 ▶Theorem 7

(54)= �2
T−t−1∑
k=0

(
�2C

)k

(55)‖∇t
s,a
[Q�]t‖2F ≤ �2

1 −
�
�2C

�T−t
1 − �2C

▶finite sum of geometric series

(56)⟹ ‖∇t
s,a
[Q�]t‖2F ≤

⎧⎪⎨⎪⎩
�2

1 −
�
�2C

�T−t
1 − �2C

, if �2C ≠ 1

�2(T − t), if �2C = 1

1468 Machine Learning (2022) 111:1431–1521

1 3

which translates into Q� being �√
1−�2C

-Lipschitz over S ×A.

Proof of Corollary 1 We now have Q�(st, at)∶=
∑+∞

k=0
�k r�(st+k, at+k) , ∀t ∈ [0,T] ∩ ℕ , since

f, � , and r� are all deterministic and are now working working under the infinite-horizon
regime. Considering the changes in Q� ’s definition, the first part of the proof can be done
by analogy with the proof of Theorem 2, until Eq. (54), which is our starting point. In
this regime, �2C ≥ 1 yields an infinite sum in Eq. (54), which results in an uninformative
(because infinite) upper-bound on ‖∇t

s,a
[Q�]t‖F . On the other hand, when 𝛾2C < 1 (note,

we always have �2C ≥ 0 by definition), the infinite sum in Eq. (54) is defined. Since we
have shown that 𝛾2C < 1 is the only setting in which the sum is defined, we continue from
the infinite-horizon version of Eq. (54) with 𝛾2C < 1 onwards. Hence,

Using
√
⋅ (monotonically increasing) on both sides concludes the proof of Corollary 1.

 ◻

To conclude the section, we now give interpretations of the derived theoretical results,
discuss the implications of our results, and also exhibit to what extent they transfer to the
practical setting.

6.2 Discussion I: implications and limitations of the theoretical guarantees

6.2.1 Function approximation bias

Theorem 2 exhibits the Lipschitz constant of Q� when r� is �-Lipschitz. In practice how-
ever, the state-action value (or value function) is usually modeled by a neural network,
and learned via gradient descent either by using a Monte-Carlo estimate of the collected
return as regression target, or by bootstrapping using a subsequent model estimate (Sutton
1988). We therefore have access to a learned estimate Q� , as opposed to the real state-
action value Q� . As such, the results derived in Theorem 2 will transfer favorably into the
function approximation setting as Q� becomes a better parametric estimate of Q� . Note,
the reward is denoted by r� for the reader to easily distinguish it from the black-box reward
traditionally returned by the environment. Albeit arbitrary, the notation r� allows for the
reward to be modeled by a neural network parameterized by the weights � , and learned
via gradient descent, as is indeed the case in this work. Crucially, having control over r� in
practice allows for the enforcement of constraints, making the �-Lipschitzness assumption
in Theorems 1, 2 and Corollary 1 practically satisfiable via gradient penalization 5.4. It is
crucial to note that, while function approximation creates a gap between theory and prac-
tice for the Q-value (worse when bootstrapping), there is a meaningfully lesser gap for the
reward as the �-Lipschitzness constraint is directly enforced on the parametric reward r�.

(57)‖∇t
s,a
[Q�]t‖F ≤ �√

1 − �2C

(58)

‖∇t
s,a
[Q�]t‖2F ≤ �2

+∞�
k=0

�
�2C

�k
=

�2

1 − �2C
▶infinite sum of geometric series

1469Machine Learning (2022) 111:1431–1521

1 3

6.2.2 Value lipschitzness

In Corollary 1 we showed that ‖∇t
s,a
[Q�]t‖F ≤ �∕

√
1 − �2C , in the infinite-horizon

regime, when r� is assumed �-Lipschitz over S ×A , and assuming 𝛾2C < 1 . In other
words, in this setting, enforcing r� to be �-Lipschitz causes Q� to be Δ∞-Lipschitz,
where Δ∞∶=�∕

√
1 − �2C , C∶=A2 max(1,B2) , and A, B are upper-bounds of ‖∇t

s,a
[f]t‖∞ ,

‖∇t
s
[�]t‖∞ . Starting from the assumption that 𝛾2C < 1 , we arrive at

√
1 − 𝛾2C < 1 , then

1∕
√
1 − 𝛾2C > 1 , and since � ≥ 0 by definition (cf. Sect. 5.4), we finally get Δ∞ > 𝛿 .

Without loss of generality, consider the case in which r� is not a contraction, i.e. r� is �
-Lipschitz C0 over S ×A , with � ≥ 1 . As a result, Δ∞ > 𝛿 ≥ 1 , i.e. Δ∞ > 1 , which means
that, under the considered conditions, Q� is not a contraction over S ×A either. The lat-
ter naturally extends to any u ∈ ℝ+ that lower-bounds � : if 𝛿 > u , then Δ∞ > u , ∀u ∈ ℝ+ .
Lipschitz functions and especially contractions are at the core of many fundamental results
in dynamics programming, hence also in reinforcement learning. Crucially, the Bellman
operator being a contraction causes a fixed point iterative process, such as value iteration
(Sutton and Barto 1998), to converge to a unique fixed point whatever the starting iterate of
Q. Since we learn Q� with temporal-difference learning (Sutton 1988) via a bootstrapped
objective, the convergence of our method is a direct consequence of the contractant nature
of the Bellman operator. As such the Lipschitzness-centric analysis laid out in this section
is complementary to the latter. It provides a characterization of Q� ’s Lipschitzness over
the input space S ×A as opposed to over iterates, i.e. time. As such, our analysis therefore
does not give convergence guarantees of an iterative process, which are already carried
over from temporal-difference learning at the core of our algorithm. Rather, we provide
variation upper-bounds for Q� when r� has upper-bounded variations: if r� is �-Lipschitz,
then Q� is Δ∞-Lipschitz. In fine, this result has an immediate corollary, derived previously
in this block: if the variations of r� are lower-bounded by � , then the variations of Q� are
lower-bounded by Δ∞ > 𝛿.

6.2.3 Compounding variations

The relative position of �2C with respect to 1 is instrumental in the behavior of the exhib-
ited variation bounds, in both the finite- and infinite-horizon settings. In the latter, we see
that the upper-bound gets to infinity when �2C (non-negative by definition, and lower than
1 as necessary condition for the infinite sum to exist) gets closer to 1 from below. In the
former, we focus on the �2C ≠ 1 case, as in the other case, the bound does not even depend
on �2C . As such, we study the value of ‖∇t

s,a
[Q�]t‖F ’s upper-bound in the finite-horizon

setting when �2C ≠ 1 , dubbed Δt∶=�
√
1 − (�2C)T−t∕1 − �2C . Beforehand, we would

remind the reader how the bounded quantity should behave throughout an episode. Since
Q� is defined as the expected sum of future rewards r� , predicting such value should get
increasingly tainted with uncertainty as it tries to predict across long time ranges. As such,
predicting Q� at time t = 0 is the most challenging, as it corresponds to the value of an
entire trajectory, whereas predicting Q� at time t = T is the easiest (equal to last reward r�).
Higher horizons T consequently make the prediction task more difficult, as do discount fac-
tors � closer to 1. We now discuss Δt . As long as �2C ≠ 1 , Δt gets to 0 as t gets to T. This is
consistent with the previous reminder: as t gets to T, the Q� estimation task becomes easier,
hence the variation bound (Δt) due to prediction uncertainty should decrease to 0. As t gets
to 0 however, the behavior of Δt depends on the value of �2C : if 𝛾2C ≫ 1 , Δt explodes to

1470 Machine Learning (2022) 111:1431–1521

1 3

infinity, whereas for reasonable values of �2C , Δt does not. Since C∶=A2 max(1,B2) ,
𝛾2C ≫ 1 translates to ((∃u > 1) ∶ A ≫ u) ∨ ((∃v > 1) ∶ B ≫ v) . Let us assume that A (B)
not only upper-bounds every At (Bt) but is also the tightest time-independent bound:
A∶=At� (B∶=Bt��) where t� = argmax

t

At (t�� = argmax
t

Bt). We then have

((∃u > 1)(∃t�) ∶ At� ≫ u) ∨ ((∃v > 1)(∃t��) ∶ Bt�� ≫ v) , i.e. ((∃u > 1)(∃t�) ∶ ‖∇t�

s,a
[f]t�‖∞ ≫ u)∨

((∃v > 1)(∃t��) ∶ ‖∇t��

s
[𝜇]t��‖∞ ≫ v) over S ×A . Note, the “or” is inclusive. In other words,

if the variations (in space) of the policy or the dynamics are large in the early stage of an
episode (0 ≤ t ≪ T), then Δt (variation bound on Q�) explodes. The exhibited phenome-
non is somewhat reminiscent of the compounding of errors isolated in Ross and Bagnell
(2010).

6.2.4 Is value lipschitzness enough?

We showed that under mild conditions, and in finite- and infinite- horizon regimes, r� Lip-
schitzness implies Q� Lipschitzness, i.e. that if similar state-action are mapped to similar
rewards by r� , then Q� also maps then to similar state-action values. This regularization
desideratum is evocative of the target policy smoothing add-on introduced in (Fujimoto
et al. 2018), already presented earlier in Sect. 4. In short, target policy smoothing perturbs
the target action slightly. In effect, the temporal-difference optimization now fits the value
estimate against an expectation of similar bootstrapped target value estimates. Forcing
similar action to have similar values naturally smooths out the value estimate, which by
definition emulates the enforcement of a Lipschitzness constraint on the value, and as such
mitigates value overfitting which deterministic policies are prone to. While its smooth-
ing effect on the value function is somewhat intuitive, we set out to investigate formally
how target policy smoothing affects the optimization dynamics, and particularly to what
extent it smooths out the state-action value landscape. Since the function approximator
Q� is optimized as a supervised learning problem using the traditional squared loss cri-
terion, we first study how perturbing the inputs with additive random noise, denoted by
� , impacts the optimized criterion, and what kind of behavior it encourages in the pre-
dictive function. As such, to lighten the expressions, we consider the supervised crite-
rion C(x)∶=(y − f (x))2 , where f(x) is the predicted vector at the input vector x, and y is
the supervised target vector. We also consider, in line with (Fujimoto et al. 2018), that the
noise is sampled from a spherical zero-centered Gaussian distribution, omitting here that
the noise is truncated for legibility, hence � ∼ N(0, �2I) . The criterion injected with input
noise is C�(x)∶=C(x + �) = (y − f (x + �))2 . Assuming the noise has small amplitude (fur-
ther supporting the original truncation), we can write the second-order Taylor series expan-
sion of the perturbed criterion near � = 0 , as a polynomial of �:

where ‖ ⋅ ‖ denotes the Euclidean norm in the appropriate vector space. From this point
forward, we assume the noise has a small enough norm to allow the third term, O(‖�‖3) , to
be neglected. By integrating over the noise distribution, we obtain:

(59)C�(x) = C(x) +
�
i

�C

�xi

����x�i +
1

2

�
i

�
j

�2C

�xi�xj

����x�i�j +O(‖�‖3)

(60)
∫ C�(x)p(�)d� = C(x) +

∑
i

�C

�xi

||||x ∫ �ip(�)d� +
1

2

∑
i

∑
j

�2C

�xi�xj

||||x ∫ �i�jp(�)d�

1471Machine Learning (2022) 111:1431–1521

1 3

Since the noise is sampled from the zero-centered and spherical distribution N(0, �2I) , we
have respectively that ∫ �ip(�)d� = 0 and

, where �ij is the Kronecker symbol. By injecting these expressions in Eq. (60), we get:

where Tr(Hx C) is the trace of the Hessian of the criterion C, w.r.t. the input variable x. We
now want to express the exhibited regularizer Tr(Hx C)) as a function of the derivatives of
the prediction function f, and therefore calculate the consecutive derivative sums:

hence,

In fine, we can write, in a more condensed form:

The previous derivations—derived somewhat similarly in Webb (1994) and Bishop
(1995)—show that minimizing the criterion with noise injected in the input is equiva-
lent to minimizing the criterion without any noise and a regularizer containing norms of
both the Jacobian and Hessian of the prediction function f. As raised in Bishop (1995),
the second term of the regularizer is unsuitable for the design of a practically viable learn-
ing algorithm, since (a) it involves prohibitively costly second-order derivatives, and (b)
it is not positive definite, and consequently not lower-bounded, which overall makes the
regularizer a bad candidate for an optimization problem loss. Nevertheless, Bishop (1995)
further shows that this regularization is equivalent to the use of a standard Tikhonov-like
positive-definite regularization scheme involving only first-order derivatives, provided the
noise has small amplitude—ensured here with a small � and noise clipping. As such, the
regularizer induced by the input noise � is equivalent to �2

�‖∇x f‖2
�
 , and by direct analogy,

we can say that target policy smoothing induces an implicit regularizer on the TD objec-
tive, of the form �2

�‖∇a Q��‖2� , Note, �′ are the target critic parameters, given that target
policy smoothing adds noise to the target action, an input of target critic value Q�′ . By
construction, the target parameters �′ slowly follow the online parameters � (cf. Sect. 4).
In addition, temporal-difference learning urges Q� to move closer to Q�′ by design [cf.
Eq. (3)]. Consequently, properties enforced on one set of parameters should eventually be
transfered to the other, such that in fine both � and �′ possess the given property only

∫ �i�jp(�)d� = ∫ �2
i
�ijp(�)d� = �ij ∫ �2

i
p(�)d� = �ij�

2

(61)∫ C�(x)p(�)d� = C(x) +
�2

2

∑
i

�2C

�x2
i

||||x = C(x) +
�2

2
Tr(Hx C)

(62)
∑
i

�C

�xi

||||x = −2
∑
i

(
y − f (x)

) �f
�xi

||||x

(63)
∑
i

�2C

�x2
i

||||x = 2
∑
i

[(
�f

�xi

||||x
)2

−
(
y − f (x)

)�2f
�x2

i

||||x
]

(64)∫ C�(x)p(�)d� = C(x) + �2
∑
i

[(
�f

�xi

||||x
)2

−
(
y − f (x)

)�2f
�x2

i

||||x
]

(65)��[C(x + �)] = C(x) + �2
�
‖∇x f‖2 − Tr

�
C(x)Hx f

��

1472 Machine Learning (2022) 111:1431–1521

1 3

explicitly enforced on one (albeit delayed). Based on this line of reasoning, the temporal-
difference learning dynamics and soft target updates should make the theoretically equiva-
lent �2

�‖∇a Q��‖2� regularizer enforce smoothness on the online parameters � too, even
if it explicitly only constrains the target weights �′ . All in all, we have shown that target
smoothing is equivalent to adding a regularizer to the temporal-difference error to mini-
mize when learning Q� , where said regularizer is reminiscent of the gradient penalty regu-
larizer, presented earlier in Eq. (14). As such, target smoothing does implement a gradient
penalty regularization, but on Q� . Crucially, the gradient in the penalty is only taken w.r.t.
the action dimension, but not w.r.t. the state dimension. In spite of the use of target policy
smoothing in our method, it was not enough to yield stable learning behaviors, as shown
in Sect. 5.5. Gradient penalization was an absolute necessity. Even though both methods
encourage Q� to be smoother (directly in Fujimoto et al. (2018), and indirectly via reward
Lipschitzness in this work), on its own, learning a smooth Q� estimate seems not to be suf-
ficient for our method to work: learning a smooth r� estimate to serve as basis for Q� seems
to be a necessary condition.

6.2.5 Indirect reward regularization

The theoretical guarantees we have derived (cf. Theorems 1, 2 and Corollary 1) all build
on the premise that the reward r� is �-Lipschitz over the joint input space S ×A , i.e. that
‖∇t

s,a
[r�]t‖F ≤ � . Crucially, we do not enforce this regularity property directly is practice,

but instead urge the discriminator D� to be k-Lipschitz by restricting the norm of the Jaco-
bian of the latter via regularization [cf. Eq. (2)]. We here set out to figure out to what
extent the k-Lipschitzness enforced onto D� propagates and transfers to r� ; in particular,
whether it results in the indicrectly-urged �-Lipschitzness of r� , with � ≠ k outside of edge
cases. While k is fixed throughout the lifetime of the agent, � need not be. As such, discuss-
ing the behavior of this evolving Lipschitz constant w.r.t. the learning dynamics is cru-
cial to better understand when the guarantees we have just derived (whose main premise is
‖∇t

s,a
[r�]t‖F ≤ �) apply in practice. As laid out ealier in Sect. 4, in this work, we consider

two forms of reward, crafted purely from the scores returned by D� : the minimax (saturat-
ing) one rMM

�
∶= − log(1 − D�) and the non-saturating one rNS

�
∶= log(D�) (names purposely

chosen to echo their counterpart GAN generator loss). Although we opted for the minimax
form (based on the ablation study we carried out on the matter, cf. Appendix 6), we here
tackle and discuss both forms, as we suspect there could be more to it than just zero-order
numerics. Analyzing first-order behavior is the crux of most GAN design breakthroughs,
which is far from surprising, considering how intertwined the inner networks are (genera-
tor G, and discriminator D). Yet, in adversarial IL, the policy (playing the role of G) does
not receive gradients flowing back from D like in GANs. Instead, it gets a reward signal
crafted from D’s returned scalar value, detached from the computational graph, and try to
maximize it over time via policy-gradient optimization. The discussion in adversarial IL
has thus always limited to the numerics of the reward signal and how to shape it in a way
that faciliates the resolution of the task at hand (similarly to how we discuss the impact of
its shape when reporting our last empirical findings of Sect. 5.5).

By constrast, we here are interested in the gradients of these rewards (r�,MM and r�,NS)
in this studied adversarial IL context, with the end-goal of characterizing their Lip-
schitz-continuity (or absence thereof). Their respective Jacobians’ norms, under the set-
ting laid out earlier in Sect. 6.1, are ‖∇t

s,a
[rMM

�
]t‖F = ‖∇t

s,a
[D�]t‖F

�
(1 − D�(st, at)) and

1473Machine Learning (2022) 111:1431–1521

1 3

‖∇t
s,a
[rNS

�
]t‖F = ‖∇t

s,a
[D�]t‖F

�
D�(st, at) , with D�(st, at) ∈ (0, 1) (D� ’s score is wrapped

with a sigmoid). As laid out above, we here posit that D� is k-Lipschitz-continuous as
founding assumption—‖∇t

s,a
[D�]t‖F ≤ k . We can now upper-bound the Jacobians’ norms

unpacked above with the Lipschitz constant of D� : ‖∇t
s,a
[rMM

�
]t‖F ≤ k

�
(1 − D�(st, at))

and ‖∇t
s,a
[rNS

�
]t‖F ≤ k

�
D�(st, at) . Since D�(st, at) ∈ (0, 1) , both denominators (for

either reward form) are in (0, 1), which makes the Jacobian’s norm of either reward form
unbounded over its domain (due to D� → 0 from above for rNS

�
 ; due to D� → 1 from below

for rMM

�
), despite the D� ’s k-Lipschitzness. Since treating the entire range of values that

can be taken by D�(st, at) , (0, 1), lead us to a dead end, and leaving us unable to upper-
bound neither ‖∇t

s,a
[rMM

�
]t‖F nor ‖∇t

s,a
[rNS

�
]t‖F , we now adopt a more granular approach and

procede by dichotomy. As such, ∃� ∈ (0, 1) verifying 0 < � ≪ 1 such that 1
/
D�(st, at)

(
and as a result also ‖∇t

s,a
[rNS

�
]t‖F ≤ k

�
D�(st, at)

)
 is unbounded when D�(st, at) ∈ (0,�]

and bounded when D�(st, at) ∈ (�, 1) . Similarly, ∃L ∈ (0, 1) verifying 0 ≪ L < 1 such that
1
/
(1 − D�(st, at))

(
and as a result also ‖∇t

s,a
[rMM

�
]t‖F ≤ k

�
(1 − D�(st, at))

)
 is bounded

when D�(st, at) ∈ (0, L] and unbounded when D�(st, at) ∈ (L, 1) . If we were to figure
out the effective range covered by D� ’s values throughout the learning process, we would
maybe be able to exploit the dichotomy.

In practice, the untrained agent initially performs poorly at the imitation task, and is there-
fore assigned low scores by D� (near 0, as “0” is the label assigned to samples from the agent
in the classification update D� goes through every iteration). As learning progresses, the agent’s
scores gradually shift towards 1—the label used for expert samples in D� ’s update, and opti-
mally converge to the central value of 0.5 in the (0, 1) range that D� can describe. Indeed, the
perfect discriminator consistently predicts scores equal to 0.5 for the agent’s actions (Goodfellow
2017): the agent has managed to perfectly confuse D� as to where the data it is fed comes from
(both sources, expert and agent, are perceived as equiprobable). What matters for ‖∇t

s,a
[r�]t‖F

(either form) to be bounded in practice is for it to be bounded for values of D� in (0, M], where
0.5 ≤ M < 1 (the values realistically taken by D� throughout the learning process). Since
M < L in effect (for L, cf. dichotomy above), we can conclude that ‖∇t

s,a
[rMM

�
]t‖F is effectively

bounded: ∃ � , 0 ≤ 𝛿 < +∞ , such that ‖∇t
s,a
[rMM

�
]t‖F ≤ � . We however can not conclude as such

for ‖∇t
s,a
[rNS

�
]t‖F , however close to zero � might be (for � , cf. dichotomy above). It is not rare

for D� to take 0 as value early in training, which makes ‖∇t
s,a
[rNS

�
]t‖F unbounded in the interval

described by the values taken by D in practice: (0, M]. Interestingly, when D� is near 0 early in
training, ‖∇t

s,a
[rMM

�
]t‖F ≤ k

�
(1 − D�(st, at)) ≈ k . The lowest upper-bound for ‖∇t

s,a
[rMM

�
]t‖F is

� ≈ k , and can only happen early in the training process, when D� correctly classifies the agent’s
actions as coming from the agent. In other words, the Lipschitz constant of rMM

�
 is at its lowest early

in training. Besides, as the agent becomes more proficient at mimicking the expert and therefore
collects higher scores from D� , � increases monotonically and grows aways from its initial value
k. Compared to the alternative (highest Lipschitz constant early in training and then monotonically
decreasing as the scores increase when the agent gets better at the task, nearing the lowest value of
k when D� → 1), which as it turns out is exactly the behavior adopted by rNS

�
 , the behavior of rMM

�

is far more desirable.
Crucially, to sum up, rNS

�
 is not Lipschitz early in training when the agent would benefit

most from regularity in the reward landscape. rMM

�
 however is Lipschitz-continuous early in

training, with the lowest Lipschitz constant of its lifetime, which aligns with the Lipschitz con-
stant enforced on D� (� ≈ k). As such, rMM

�
 is at its most regular when the agent needs it most

(early, when it knows nothing), and then becomes less and less restrictive (the Lipschitz con-
stant � increases) as the agent collects higher similarity scores with the expert from D� . One
could therefore see rMM

�
 as having built-in “training wheels”, which gradually phase out as the

1474 Machine Learning (2022) 111:1431–1521

1 3

agent becomes better, providing less safety as the agent becomes more proficient at the imita-
tion task. To conclude this discussion point, with the minimax reward form r�∶=rMM

�
 , we have

‖∇t
s,a
[D�]t‖F ≤ k ⟹ ‖∇t

s,a
[r�]t‖F ≤ � in practice. This means that the premise of our theo-

retical guarantees consisting in positing that the reward is �-Lipschitz-continuous can be satis-
fied in practice by enforcing k-Lipschitz-continuity on D� via gradient penalty regularization
[cf. Eq. (14)]. This is not the case when r�∶=rNS

�
 . We propose this analytical observation as an

explanation as to why using rNS

�
 yields such poor results in our reported ablation, cf. Appen-

dix 6. Our discussion detaches itself from the one adopting a zero-order numerics scope, laid
out in Sect. 5.5, by discussing first-order numerics instead, which blends into our Lipschitzness
narrative.

6.2.6 Local smoothness

The local Lipschitzness assumption is reminiscent of many theoretical results in the study of
robustness to adversarial examples. Notably, Yang et al. (2020) shows that local Lipschitzness
is correlated with empirical robustness and accuracy in various benchmark datasets. As men-
tioned when we justified the local nature of the Lipschitz-continuity notion tackled in this work
(cf. Definition 1), we optimize the different modules over mini-batches of samples. While forc-
ing the constraint to be satisfied globally might be feasible in some low-dimensional supervised
or unsupervised learning problems, the notion of fixed dataset does not exist a priori in rein-
forcement learning. Section 6.3 describes, compares and discusses the effect of where the local
Lipschitzness constraint is enforced (e.g. expert demonstration manifold, fictitious replay experi-
ences). Wherever the regularizer is applied, the constraint is local nonetheless. One can therefore
not guarantee that the �-Lipschitz-continuity of r� , formalized as ‖∇t

s,a
[r�]t‖F ≤ � , and urged

by enforcing ‖∇t
s,a
[D�]t‖F ≤ k via gradient penalization (cf. our previous discussion on indirect

reward regularization in Sect. 6.2.5), will be satisfied everywhere in S ×A . Plus, considering that
Theorem 2 and Corollary 1 rely on the satisfaction of the constraint on r� along every trajectory,
which is likely not to be verified in practice, we can say with high confidence that the constraint
on Q� , ‖∇t

s,a
[Q�]t‖F ≤ Δ∞ , will not be satisfied over the whole joint input space either. Still,

we can hope to enhance the coverage of the subspace on which the constraint ‖∇t
s,a
[r�]t‖F ≤ �

is satisfied, dubbed ℭ , by doing more r� learning updates with the regularizer—technically,
D� learning updates encouraging D� to satisfy ‖∇t

s,a
[D�]t‖F ≤ k via gradient penalization,

cf. Eq. (14). From this point onward, we will qualify a state-action pair (st, at)—equivalently, an
action at in a given state st—as “ ℭ-valid” if it belongs to ℭ ∋ (st, at) , i.e. if r� is �-Lipschitz, veri-
fying ‖∇t

s,a
[r�]t‖F ≤ � . Note, the notion of ℭ-validity is inherently local, since we have defined

the notion for a single given input pair (st, at) . As such, future statements about ℭ-validity will all
be local ones by essence. In addition, despite having ‖∇t

s,a
[D�]t‖F ≤ k ⟹ ‖∇t

s,a
[r�]t‖F ≤ �

in practice for the minimax reward form (cf. our previous discussion on indirect reward regu-
larization in Sect. 6.2.5), there is not an exact equivalence between r� being �-Lipschitz and
D� being k-Lipschitz in theory. Therefore, we will qualify a state-action pair (st, at)—equiva-
lently, an action at in a given state st—as “approximately ℭ-valid” if D� is k-Lipschitz, verify-
ing ‖∇t

s,a
[D�]t‖F ≤ k . As it has been made clear by now, D� ’s k-Lipschitzness is encouraged

by plugging a gradient penalty regularizer ℜ�
�(k) into D� ’s loss [cf. Eq. (14)]. Despite being

encouraged, ‖∇t
s,a
[D�]t‖F ≤ k can nonetheless not be guaranteed solely from the application of

the regularizer at (st, at) . As such, to cover all bases, we will qualify a state-action pair (st, at)
—equivalently, an action at in a given state st—as “probably approximately ℭ-valid” if (st, at) is
in the support of the distribution � that determines where the gradient penalty regularizer ℜ�

�(k)
of �GP

�
 is applied in S ×A , i.e. if (supp �) ∋ (st, at) . A probably approximately ℭ-valid point is

1475Machine Learning (2022) 111:1431–1521

1 3

supported by the distribution that describes where ‖∇t
s,a
[D�]t‖F ≤ k is enforced, and as such,

ℜ
�
�(k) may be applied at this point.
Importantly, the policy might, due to its exploratory motivations, pick an action at in state st

that is not ℭ-valid. Depending on where the constraint will then be enforced, the sample might
then be ℭ-valid after r� ’s update (technically, indirectly via D� ’s update; cf. Sect. 6.3). This
observation motivates the investigation we carry out in Sect. 6.4, in which we define a soft ℭ
-validity pseudo-indicator of ℭ [cf. Eq. (67)] that enables us to assess whether the agent consist-
ently performs approximately ℭ-valid actions when it interacts with the MDP �∗ following ��.

6.3 A new reinforcement learning perspective on gradient penalty

We begin by considering a few variants of the original gradient penalty regularizer (Gulra-
jani et al. 2017) introduced in Sect. 5.4. Each variant corresponds to a particular case of the
generalized version of the regularizer, described in Eq. (14). Subsuming all versions, we
remind Eq. (14) here for didactic purposes:

where � is the distribution that describes where the regularizer is applied—where the Lip-
schitz-continuity constraint is enforced in the input space S ×A . In Gulrajani et al. (2017),
� corresponds to sampling point uniformly along segments joining samples generated by
the agent following its policy and samples generated by the expert policy, i.e. samples
from the expert demonstrations D . Formally, focusing on the action only for legibility—
the counterpart formalism for the state is derived easily by using the visitation distribu-
tion instead of the policy—a ∼ � means a = u a� + (1 − u) a�� , where a� ∼ �� , a�� ∼ �e , and
u ∼ unif(0, 1) . The distribution � we have just described corresponds to the transposition of
the GAN formulation to the GAIL setting, which is an on-policy setting. Therefore, in this
work, we amend the � previously described, and replace it with its off-policy counterpart,
where a� ∼ � (cf. Sect. 4). As for the penalty target, Gulrajani et al. (2017) use k = 1 , in
line with the theoretical result derived by the authors. By contrast, DRAGAN (Kodali et al.
2017) use a � such that a ∼ � means a = a�� + � , where a�� ∼ �e , and � ∼ N(0, 10) . Like
WGAN-GP (Gulrajani et al. 2017), DRAGAN uses the penalty target k = 1 . Finally, for the
sake of symmetry, we introduce a reversed version of DRAGAN, dubbed NAGARD (name
reversed). To the best of our knowledge, the method has not been explored in the literature.
NAGARD also uses k = 1 as penalty target, but perturbs the policy-generated samples as
opposed to the expert ones: a ∼ � means a = a� + � , where a� ∼ � (off-policy setting), and
� ∼ N(0, 10) . We use � = 10 in all the variants, in line with the original hyper-parameter
settings in Gulrajani et al. (2017) and Kodali et al. (2017).

Figure 7 depicts in green the subspace of the input space S ×A where the k-Lipschitz-
continuity constraint, formalized as ‖∇t

s,a
[D�]t‖F ≤ k , and enouraged in �GP

�
 by ℜ�

�(k) , is
applied. In other words, Fig. 7 highlights the support of the distribution � for each variant,
which have just been described above. As such, the green areas in Fig. 7b, c, and a are
schematic depictions of where the state-actions pairs are probably approximately ℭ-valid.

One conceptual difference between the DRAGAN penalty and the two others is that the support
of the distribution � does not change throughout the entire training process for the former, while
is does for the latter. Borrowing the intuitive terminology used in Kodali et al. (2017), WGAN-
GP proposes a coupled penalty, while DRAGAN (like NAGARD) propose a local penalty. In
Kodali et al. (2017), the authors perform a comprehensive empirical study of mode collapse, and

(66)�GP
�

∶=�� + �ℜ�
�
(k)∶=�� + ��st∼�

� ,at∼�
[(‖∇st ,at

D�(st, at)‖ − k)2]

1476 Machine Learning (2022) 111:1431–1521

1 3

diagnose that the generator collapsing to single modes is often coupled with the discriminator dis-
playing sharp gradients around the samples from the real distribution. In model-free generative
adversarial imitation learning, the generator does not have access to the gradient of the discrimina-
tor with respect to its actions in the backward pass, although it could be somewhat accessed using
a model-based approach Baram et al. (2017). In spite of not being accessible per se, the sharpness
of the discriminator’s gradients near real samples observed in Kodali et al. (2017) translates, in
the setting considered in this work, to sharp rewards, which we referred to as reward overfitting
and was discussed thoroughly in Sect. 5.3. As such, mode collapse mitigation in the GAN setting
translates to a problem of credit assignment in our setting, caused by the peaked reward landscape
(cf. Appendix 7 to witness the sensitivity w.r.t. the discount factor � , controlling how far ahead in
the episode the agent looks). The stability issues the methods incur in either settings are on par.
Both gradient penalty regularizers aim to address these stability weaknesses, and do so by enforc-
ing a Lipschitz-continuity constraint, albeit on a different support supp � (cf. Fig. 7).

As mentioned earlier in Sect. 5.4, the distribution � used in WGAN-GP (Gulrajani et al.
2017) is motivated by the fact that—as they show in their work—the optimal discriminator is
1-Lipschitz along lines joining real and fake samples. The authors of Kodali et al. (2017) deem
the assumptions underlying this result to be unrealistic, which naturally weakens the ensuing
method derived from this line of reasoning. They instead propose DRAGAN, whose justification
is straightforward and unarguable: since they witness sharp discriminator gradients around real
samples, they introduce a local penalty that aims to smooth out the gradients of the discriminator
around the real data points. Formally, as described above when defining the distribution � associ-
ated with the approach, it tries to ensure Lipschitz-continuity of the discriminator in the neigh-
borhoods (additive Gaussian noise perturbations) of the real samples. The generator or policy
is more likely to escape the narrow peaks of the optimization landscape—corresponding to the
real data points—with this extra stochasticity. In fine, in our setting, DRAGAN can dial down
the sharpness of the reward landscape at expert samples the discriminator overfits on. This tech-
nique should therefore fully address the shortcomings raised and discussed in Sect. 5.4. While
the method seem to yield better results than WGAN-GP in generative modeling with generative
adversarial nets, the empirical results we report in Fig. 8 show otherwise. All the considered pen-
alties help close the significant performance gap reported in Fig. 3, in almost every environment,
but the penalty from WGAN-GP generally pulls ahead. Additionally, not only does is display
higher empirical return, it also crucially exhibits more stable and less jittery behavior.

Despite the apparent disadvantage of local penalties (DRAGAN (Kodali et al. 2017) and
NAGARD) compared to WGAN-GP in terms of their schematically-depicted supp � sizes
(cf. Fig. 7), it is important to remember that the additive Gaussian perturbation is distributed
as N(0, 10) . For these local methods, � is therefore covering a large3 area around the central
sample, including with high probability samples that are, according to the discriminator, from
both categories—fake samples (predicted as from �), and real samples (predicted as from �e). As
such, the perceived diameter of the green disks in the schematic representations in Fig. 7b and
c maybe smaller than it would be in reality. It is crucial to consider the coverage of the different
� distributions as they determine how strongly the Lipschitz-continuity property is potentially
enforced at a given state-action pair, for a fixed number of discriminator updates. Consequently,
for a given optimization step, while the local penalties are—somewhat ironically—applying
the Lipschitz-continuity constraint on data points scattered around the agent—(NAGARD) or

3 Considering the observations are clipped to be in [−5.0, 5.0] , as is customary in the MuJoCo (Todorov
et al. 2012) benchmark (Brockman et al. 2016), an additive Gaussian perturbation with �2 = 10 can, in all
fairness, be qualified as large.

1477Machine Learning (2022) 111:1431–1521

1 3

expert-generated (DRAGAN) samples, the supp � for WGAN-GP is less diffuse. Local penalties
ensure the Lipschitzness is somewhat satisfied all around the selected samples, which for DRA-
GAN is motivated by the fact that there are narrow peaks on the reward landscape located at the
expert samples, where it us prone to overfit (cf. Sect. 5.3). The distribution � used in WGAN-
GP also supports data points near expert samples, but these are not scattered all around for the
sole purpose of making the whole area smooth and escape bad basins of attraction like in DRA-
GAN. In other terms, the Lipschitz-continuity constraint is applied isotropically, from the origi-
nal expert sample outwards. By contrast, WGAN-GP’s � only supports a few discrete directions
from a given expert sample, the lines joining said sample to all the agent-generated samples (of
the mini-batch). Intuitively, while DRAGAN smooths out the reward landscape starting from
expert data points and going in every direction from there, WGAN-GP smooths out the reward
landscape starting from expert data points and going only in the directions that point toward
agent-generated data points. As such, one could qualify DRAGAN as isotropic regularizer, and
WGAN-GP as directed regularizer.

We believe that WGAN-GP outperforms DRAGAN in the setting and environments
considered in this work (cf. Fig. 8) due to the fact that the agent benefits from having
smooth reward pathways in the reward landscape in-between agent samples and expert
samples. Along these pathways, going from the agent sample end to the expert sample
end, the reward progressively increases. For the agent trying to maximize its return,
these series of gradually increasing rewards joining agent to the expert data points are
akin to an automatic curriculum (Karpathy and Van De Panne 2012; OpenAI 2019)
assisting the reward-driven agent and leading it towards the expert. Figure 8 shows that
WGAN-GP indeed achieves consistently better results across every environment but the
least challenging, as seen in the IDP environment (cf. Table 1). In the four considerably
more challenging environments, the directed method allows the agent to attain overall
significantly higher empirical return than its competitors. Besides, it displays greater
stability when approaching the asymptotic regime, whereas the local regularizers clearly
suffer from instabilities, especially DRAGAN in the results obtained in environments
Walker2d and HalfCheetah, depicted in Fig. 8. While the proposed interpretation
laid out previously corroborates the results obtained and reported in Fig. 8, it does not
explain the instability issues hindering the local penalties. We believe the jittery behav-
ior observed in the results obtained in environments Walker2d and HalfCheetah

(a) (b) (c)

Fig. 7 Schematic representation (in green) of the support of the � distribution, depicting where the gra-
dient penalty regularizer is enforced, at a given iteration, and for all iterations throughout the lifetime of
the learning agent. It corresponds to the subspace of S ×A on which the Lipschitz-continuity constraint is
applied: where the state-action pairs are likely ℭ-valid. The intensity of the green color indicates the prob-
ability assigned by the distribution � on the state-action pair. The more opaque the coloration, the higher the
probability. Best seen in color (Color figure online)

1478 Machine Learning (2022) 111:1431–1521

1 3

(cf. Fig. 8)—once the peak performance is attained—is caused by supp � (green areas in
Fig. 7) not changing is size as the agent learns to imitate and gets closer to the expert in
S ×A.

Indeed, in DRAGAN, � is a stationary distribution: it applies the regularizer on per-
turbations of the expert samples, where the additive noise’s underlying sufficient statistics
are constant throughout the learning process, and where the expert data points are distrib-
uted according to the stationary policy �e and its associated state visitation distribution. For
NAGARD, the perturbations follow the same distribution, and remain constant across the
updates. However, unlike DRAGAN, � is defined by adding the stationary noise to samples

(a)

(b)

Fig. 8 Evaluation of gradient penalty variants. Explanation in text. Runtime is 48 h

1479Machine Learning (2022) 111:1431–1521

1 3

from the current agent, every update, distributed as � in our off-policy setting. Since �
is by construction non-stationary across the updates, as a mixture of past �� updates, �
is non-stationary in NAGARD. Despite � ’s having these different support and stationary
traits, the results of either local penalties are surprisingly similar. This is due to the vari-
ance of the additive noise used in both methods being large relative to the distance between
the expert and agent samples, at all times, in the considered environments. As such, their
supp � are virtually overlapping, which makes the two local penalties virtually equivalent,
and explains the observed similarities in-between them.

Coming back to the main point—“why do local penalties suffer from instabilities at
the end of training?”—even though the agent samples are close to the expert ones, the
local methods both apply the same large perturbation before applying the Lipschitz-con-
tinuity penalty. The probability mass assigned by � is therefore still spread similarly over
the input space, and is therefore severely decreased in-between agent and expert samples
since these are getting closer in the space. The local methods are therefore often applying
the constraint on data points that the policy will never visit again (since it wants to move
towards the expert) and equivalently, rarely enforces the constraint between the agent and
the expert, which is where the agent should be encouraged to go. With this depiction, it
is clearer why WGAN-GP pulls ahead. Compared to the fixed size of supp � in the local
penalties, � adapts to the current needs of the agent (hence qualifying as non-stationary).
As the agent gets closer to the expert, Lipschitz-continuity is always enforced on data
points between them, which is where it potentially benefits the agent most. The support of
� is therefore decreasing in size as the iterations go by, focusing the probability mass of �
where enforcing a smooth reward landscape matters most: where the agent should go, i.e.
in the direction of the expert data points.

Besides, considering the inherent sample selection bias (Heckman 1979) the control
agent is subjected to, where the latter end up in S ×A depends on its actions, in every
interaction with the dynamical system represented by its environment. This aspect dramati-
cally differs from the traditional non-Markovian GAN setting—in which these penalties
were introduced—where the generator’s input noise is i.i.d.-sampled. Indeed, suffering
from said sample selection bias, an imitation agent straying from the expert demonstra-
tions is likely to keep on doing so until the episode is reset (cf. discussion in Sect. 5.4).
Distributions � whose definition involve samples generated by the learning agent and adapt
to the agent’s current relative position w.r.t. the expert data points therefore provide valu-
able extra guidance in Markovian settings. Additionally, assuming the input also contained
the phase—“how far the agent/expert is in the current episode”, 0 ≤ t ≤ T—[like in Peng
et al. (2018)] not only would the imitation task be easier, but the benefits of the WGAN-GP
penalty would be further enhanced, as it would allow the models to exploit the temporal
structure of to the considered Markovian setting.

Finally, in reaction to the recent interest towards “zero-centered” gradient penalties
(Roth et al. 2017; Mescheder et al. 2018), due to the theoretical convergence guarantees
they allow for, we have conducted a grid search on the values of the Lipschitz constant
k and the regularizer importance coefficient � , as described in Sect. 6.3. The results are
reported in Appendix 5.3. In short, the method performs poorly when k = 0 , unless a very
small value is used for � . Enforcing 0-Lipschitzness is far too restraining for the agent to
learning anything, unless this constraint is only loosely imposed. Conversely, a smaller �
value yields worse results when k = 1 , revealing the interaction between the gradient pen-
alty hyper-parameters k and � . In particular, we will momentarily provide comprehensive
evidence along with a greater characterization of how the choice of scaling factor � not
only impacts the agent’s performance (which is already depicted in Appendix 5.3), but

1480 Machine Learning (2022) 111:1431–1521

1 3

how it correlates quantitatively with the approximate ℭ-validity displayed by the agent
(cf. Sect. 6.4). Unless explicitly stated otherwise, we use the WGAN-GP penalty variant,
with Lipschitz constant target k = 1 , and scaling coefficient � = 10 throughout the empiri-
cal results exhibited in both the body and appendix.

6.4 Diagnosing ℭ‑validity: Is the Lipschitzness premise of the theoretical
guarantees satisfied in practice?

To put things in perspective, we first give a side-by-side rundown of how what we set out
to tackle here compares to what we have just tackled in Sect. 6.3, thereby giving a glimpse
of what we set out to investigate in what follows. In the previous section, we showed how
(a) the choice of � (where do we want to encourage approximately ℭ-valid behavior), and
(b) the choice of � (to what degree do we want to encourage approximately ℭ-valid behav-
ior) both independently impact the agent’s performance in terms of empirical episodic
return. In this section on the other hand, we will show how (a) the choice of � , and (b)
the choice of � both independently impact the agent’s consistency at effectively selecting
approximately ℭ-valid actions with its learned policy �� . If we were to find a strong posi-
tive correlation between the agent’s asymptotic return and its effectively measured approxi-
mate ℭ-validity rate—high when high, low when low, for all tested � ’s and for all tested �
’s—then we would have further quantitative evidence to support our work’s main claim:
reward Lipschitzness is necessary to achieve high return, and higher Lipschitzness uptime
correlates strongly with higher return. Perhaps most crucially, we would be able to corre-
late high empirical episodic return with high chance of satisfying the premise of our theo-
retical guarantees (r� ’s Lipschitzness). As such, these would consequently apply in in prac-
tice too. This would attest to the practical relevance of Sect. 6.1.

We have shown that enforcing a Lipschitz-continuity constraint on the learned reward
r� (albeit indirectly via D�) is instrumental in achieving expert-level performance in off-
policy generative adversarial imitation learning (cf. Sect. 5.5). We have also shown that
directed regularization techniques yield better results, seemingly due to the better guid-
ance they provide to the mimicking agent, in the form of an automatic curriculum of
rewards towards the expert data points (cf. Sect. 6.3). Such curriculum only exists where
the Lipschitz-continuity constraint is satisfied. Said differently, it could not exist if the con-
straint were not satisfied along �� ’s pathways which would then involve non-smooth hur-
dles. It is therefore crucially important for said constraint to be satisfied in effect for the
state-actions pairs in the the support of the policy the agent uses in its learning update, �� ,
i.e. supp �� ∋ (st, at) . Still, the deterministic policy �� likely performs only approximately
ℭ-valid actions as it is trained with the sole objective to maximize cumulative rewards that
represent its similarity w.r.t. the expert �e . The imitation rewards corresponding to a greater
degree of similarity are, by design of the generative adversarial imitation learning frame-
work, situated between the agent’s current position and the expert’s position on the current
reward landscape. Since this is where we apply the Lipschitzness constraint (with WGAN-
GP, our baseline, as said above)—equivalently, since these regions are approximately ℭ
-valid—�� is likely to never select ℭ-invalid actions as it optimizes for its utility function
(cf. Sect. 3). Conversely, in the considered setting, picking ℭ-invalid actions could in the-
ory hinder the optimization process the policy is subject to, as �� would a priori venture in
regions of the state-action space that do not increase its similarity with the expert policy �e
—or, at the very least, for which the non-satisfaction of the reward’s Lipschitz-continuity
premise ‖∇t

s,a
[r�]t‖F ≤ � might lead to instabilities due to ‖∇t

s,a
[Q𝜑]t‖F > Δ∞ as a direct

1481Machine Learning (2022) 111:1431–1521

1 3

consequence of our theoretical guarantees (cf. Sect. 6.2). Since we do not have such a tight
control over where and to what degree the Lipschitzness constraint over the reward r� is
satisfied (hence our introduction of the notions of approximately ℭ-valid samples and prob-
ably approximately ℭ-valid samples), we instead turn to the closest surrogate over which
we do have a tighter control: where and to what degree D� ’s constraint is enforced. The
“where” is controlled by the choice of � (determined by the gradient penalty regularization
method in use), and the ‘to what degree’ by the choice of � scale.

Still, even in the occurrence where D� ’s constraint is enforced by adding ℜ�
�(k) as in �GP

�

[cf. Eq. (14)] at the point (st, at) , the most we could say is that (st, at) is probably approxi-
mately ℭ-valid, since (st, at) ∈ supp �—otherwise, the gradient penalty regularizer ℜ�

�(k)
could never have been applied at that point in the landscape S ×A . In effect, enforcing the
constraint at the point was enough to guarantee that ‖∇t

s,a
[D�]t‖F ≤ k , and we therefore

do not know whether (st, at) is approximately ℭ-valid, or not. As a direct consequence, we
can a fortiori not guarantee that ‖∇t

s,a
[r�]t‖F ≤ � ; we do not know whether (st, at) is ℭ

-valid, or not—cf. Sect. 6.2.5 for our discussion on indirect reward regularization, in which
we establish that D� ’s k-Lipschitzness causes r� to be �-Lipschitz in practice. On the flip
side, based on the latter result about indirect Lipschitz-continuity inducement, we can state
that ensuring empirically that ‖∇t

s,a
[D�]t‖F ≤ k is enough to ensure that ‖∇t

s,a
[r�]t‖F ≤ �

is verified in practice. In other words, showing that (st, at) is approximately ℭ-valid can be
used as a proxy for showing that (st, at) is ℭ-valid, empirically. As such, in order to assess
whether the premise of the theoretical guarantees we derived in Sect. 6.1 is satisfied in
practice (r� ’s - �-Lipschitz-continuity), it is sufficient to assess whether the agent’s actions
at = ��(st) are approximately ℭ-valid. In particular, we want to know the relative impacts
the choices of � and the � in �GP

�
 have on the propensity for an action from �� to be approxi-

mately ℭ-valid. So as to estimate how often the actions selected by the agent via �� are
approximately ℭ-valid, we build an estimator that softy approximates 1ℭ ∶ S ×A → {0, 1} ,
the indicator of the ℭ-validity subspace over S ×A , where 1ℭ(st, at) = 1 when (st, at) ∈ ℭ ,
and 1ℭ(st, at) = 0 when (st, at) ∉ ℭ . Accordingly, we call our estimator soft approximate ℭ
-validity pseudo-indicator, implementing a soft, C0 mapping 1̂ℭ ∶ S ×A → (0, 1] , and for-
mally defined as, ∀t ∈ [0,T] ∩ ℕ,∀(st, at) ∈ S ×A:

Thus, for a given pair (st, at) , 1̂ℭ(st, at) = 1 when ‖∇t
s,a
[D�]t‖F ≤ k and 1̂ℭ(st, at) → 0 when

‖∇t
s,a
[D𝜑]t‖F ≫ k.

Figures 9 and 10 depict respectively the evolution of the values taken by the soft approx-
imate ℭ-validity pseudo-indicator 1̂ℭ [cf. Eq. (67)] for different choices of � (different gra-
dient penalty variants) and � (sweep over ℜ�

�(k) ’s scaling factor). In Figs. 9 and 10, we also
share the return accumulated by the agents throughout their respective training periods,
(cf. Figs. 9a and 10a, respectively). In particular, what we report in Figs. 9a and 10a ech-
oes what we have already reported in Figs. 8 and 16, but the settings in which the agents
were trained differ (ever so) slightly. We indicate the specificities of the setting tackled
in this section below, in this very paragraph. Still, since their settings do not match per-
fectly, we report their return along their soft approximate ℭ-validity pseudo-indicator 1̂ℭ
values. We monitor and record these values during the evaluation trials the agent periodi-
cally goes through, in which the agent uses �� to decide what to do in a given state. To best
align with the definition of Lipschitz-continuity (cf. Definition 1), which is also how we

(67)
1̂ℭ(st, at)∶= exp

�
−max

�
0, ‖∇st ,at

D�(st, at)‖ − k
�2�

▶soft approximateℭ-validity pseudo-indicator

1482 Machine Learning (2022) 111:1431–1521

1 3

designed our soft approximate ℭ-validity pseudo-indicator 1̂ℭ , we use one-sided gradient
penalties ℜ�

�(k) in the � sweep—max(0, ‖∇st ,at
D�(st, at)‖ − k)2 , which purely encourages

‖∇t
s,a
[D�]t‖F ≤ k to be satisfied (nothing more, nothing less)—although we have shown

the variant presents very little empirical difference with the base two-sided one (cf. abla-
tion in Appendix 5.1). It is worth noting that the experiments whose results are reported
in Figs. 9 and 10 carry out less iterations during the fixed allowed runtime, due to the
substantial cost entailed by computing soft approximate ℭ-validity pseudo-indicator 1̂ℭ at
every single evaluation step, in every evaluation trial. One could cut down that cost simply
by evaluating 1̂ℭ less frequently, but we decided otherwise, as we gave priority to having
a finer tracking of 1̂ℭ . Besides, despite this slight apparent hindrance, the values of the
proposed pseudo-indicator reported in either figure seem to have reached maturity, nearing
their asymptotic regime, in the allowed runtime. We now go over and interpret the results
reported in both figures.

In Fig. 9, we observe that the monitored soft approximate ℭ-validity pseudo-indicator
1̂ℭ [cf. Eq. (67)] consistently takes values close to 1 when using the distribution � advo-
cated in WGAN-GP to assemble the regularizer ℜ�

�(k) . Conversely, not using any gradient
penalty regularizer causes the approximate ℭ-validity rate to be in the vicinity of 0. Albeit
a priori not surprising, it is still substantially valuable to notice that D� ’s k-Lipschitz-con-
tinuity (and therefore r� ’s �-Lipschitz-continuity; cf. Sect. 6.2) never happens by accident
(or rather, by chance). As for DRAGAN and NAGARD (both being non-directed gradient
penalty schemes, unlike WGAN-GP; cf. Sect. 6.3), both perform similarly across the board
in terms of collected 1̂ℭ values. Their recorded soft pseudo-indicator values stay around a
fixed value per environment, different for every one of them. These are within the [0.1, 0.7]
range, and as such, are definitely encouraging ‖∇t

s,a
[D�]t‖F ≤ k in practice, yet are falling

short of achieving the same (a) effective approximate ℭ-validity value, and (b) effective
approximate ℭ-validity consistency as WGAN-GP. These phenomenona occur consistently
across the spectrum of tackled environments.

In Fig. 10, we observe the unsurprising fact that the higher � ’s value is—equiv-
alently, the more we encourage the regularity property ‖∇t

s,a
[D�]t‖F ≤ k to be satis-

fied—the more ‖∇t
s,a
[D�]t‖F ≤ k is satisfied in effect. Besides confirming that gradient

penalization indeed urges Lipschitzness (which we were not doubting), the figure helps
us gauge to what degree the value of ℜ�

�(k) ’s scaling coefficient in �GP
�

 [cf. Eq. (14)]
affects quantitatively the satisfaction of ‖∇t

s,a
[D�]t‖F ≤ k monitored via the soft

proxy 1̂ℭ . We considered powers of 10 for � ’s sweep, tackling the values �i∶=10i , for
i ∈ {−3,−2,−1, 0, 1} . The gap inbetween the 1̂ℭ values associated with each of these
�i differ per environment, but their ranking remain the same (higher 1̂ℭ ’s for higher
i’s). At its lowest (i.e. for minimum i: i = −3) the soft pseudo-indicator values lie more
often that not near 0. For i = 1 , 1̂ℭ perfectly aligns on the 1 value, meaning that the
value we used so far (� = 10 , which corresponds to �i with i = 1) is enough for �� to
achieve a 100% satisfaction rate of ‖∇t

s,a
[D�]t‖F ≤ k . The case i = 0 is right on the edge:

in some environments, the approximate ℭ-validity exactly equals 1, while for other
environments, it nears it, yet does not quite reach it.

Since we use WGAN-GP’s � in the experiments reported in Fig. 10, we can first
conclude that picking WGAN-GP’s � variant and � = 10 not only yields the best

Fig. 9 Evaluation of several GP methods differing by their � distribution In line with how we defined it in
Eq. (14), � controls “where” the GP constraint is enforced. Also, we report what happens without any GP
regularization (NoGP). Explanation in text. Runtime is 48h

▸

1483Machine Learning (2022) 111:1431–1521

1 3

(a)

(b)

(c)

1484 Machine Learning (2022) 111:1431–1521

1 3

empirical return (as reported and discussed in Sect. 6.3), but also guarantees that the
constraint ‖∇t

s,a
[D�]t‖F ≤ k (and therefore ‖∇t

s,a
[r�]t‖F ≤ � ; cf. Sect. 6.2) is satisfied for

100% of the actions performed by the agent’s �� in practice. As such, we can conclude
that, in practice, the main premise of the theoretical guarantees we have derived in
Sect. 6.1—the reward �-Lipschitz-continuity, ‖∇t

s,a
[r�]t‖F ≤ �—is satisfied, hence mak-

ing our theoretical guarantees practically relevant and insightful. In addition, since we
showed that the learning agent’s policy �� (or rather, it’s companion Q-value) is trained
on a reward surrogate r� that verifies ‖∇t

s,a
[r�]t‖F ≤ � almost 100% of the time, we have

empirically proved that the agent effectively sees virtually uninterrupted sequences of
smooth rewards. This new observation somewhat corroborates our RL-grounded inter-
pretation of directed gradient penalization as as the automated and adaptive creation
of reward curricula (cf. Sect. 6.3, and particularly our schematic depiction of WGAN-
GP’s supp � in Fig. 7a).

Despite having answered the question we asked in the title of the section (in the
block right above), interpreting the findings laid out both in this section and in the
previous one side-by-side allows us to draw another critical conclusion, substantially
more meaningful than if we were to interpret either in a vacuum. In Sect. 6.3, we stud-
ied the impact � and � both have on the agent’s performance, in terms of the empirical
return in the MDP � . We refer here to the latter via the shorthand return. In this sec-
tion, on the other hand, we have studied the impact � and � both have on the effective
approximate ℭ-validity rate of the agent. We refer here to the latter via the shorthand
VAlidity. What emerges from comparing these two sets of results is that, for every
given pair (� , �) (where to apply the gradient penalty, and to what degree, respectively)
in �GP

�
 [cf. Eq. (14)]: low return co-occurs with low VAlidity; intermediate return

co-occurs with intermediate VAlidity; high return co-occurs with high VAlidity. Said
differently, return and VAlidity behave similarly under the various pairings (� , �) that
we have considered. Through these observations, we therefore witness a strong cor-
relation between return and VAlidity. Ultimately, by combining our two previous
empirical analyses, we have shown that VAlidity is a good predictor or return, and
vice versa.

In fine, compared to Sects. 5.5, 6.4 (this section) gives a far more fine-grained diag-
nostic of how reward Lipschitzness relates to empirical return, along with insights
related to the practicality of our theorerical guarantees.

6.5 Towards fulfilling the premise: a provably more robust way to further
encourage Lipschitzness

We introduce two new entities, �t and r̃𝜑 ∶ S ×A → ℝ , formally defined as:

∀t ∈ [0,T] ∩ ℕ,∀(st, at) ∈ S ×A , where 0 < 𝜅t ≤ 1 , ∀t ∈ [0,T] ∩ ℕ (in any episode).

(68)r̃𝜑(st, at)∶=𝜅t r𝜑(st, at) ▶𝜅t − preconditioned reward r̃𝜑

Fig. 10 Evaluation of several GP methods differing by their � scaling factor In line with how we defined it
in Eq. (14), � controls “to what degree” the GP constraint is enforced. Also, we report what happens with-
out any GP regularization (NoGP). Explanation in text. Runtime is 48 h

▸

1485Machine Learning (2022) 111:1431–1521

1 3

(a)

(b)

(c)

1486 Machine Learning (2022) 111:1431–1521

1 3

We call �t a reward preconditioner since it functionally echoes the numerical trans-
formation that conditions the tackled problem into a form that is more amenable to be
solved via first-order optimization methods. Since our preconditioner is a scalar, we
use the shorthand �t to constrast with the usual preconditioning matricies, denoted
with capitalization. We have the following ranking of values, depending on the sign of
the original learned synthetic reward r� : ∀t ∈ [0,T] ∩ ℕ and ∀(st, at) ∈ S ×A , we have
r̃𝜑(st, at) ≤ r𝜑(st, at) whenever r𝜑(st, at) > 0 , and conversely, we have r̃𝜑(st, at) > r𝜑(st, at)
whenever r𝜑(st, at) < 0.

We posit that �t does not depend on (i.e., is constant w.r.t.) the current state st and
action at:

∀t ∈ [0, T] ∩ ℕ,∀(st , at) ∈ S ×A . Thus, we can write dr̃𝜑(st ,at)
dst

= 𝜅t
dr𝜑(st ,at)

dst
+

d𝜅t(st ,at)

dst
r𝜑 = 𝜅t

dr𝜑(st ,at)

dst
 ,

and similarly dr̃𝜑(st ,at)
dat

= 𝜅t
dr𝜑(st ,at)

dat
 . As such, we have ‖∇t

s,a
[r̃𝜑]t‖F = 𝜅t‖∇t

s,a
[r𝜑]t‖F , hence

‖∇t
s,a
[r̃𝜑]t‖F ≤ ‖∇t

s,a
[r𝜑]t‖F since 0 < 𝜅t ≤ 1 , ∀t ∈ [0,T] ∩ ℕ . Applying such a precondi-

tioner to r� therefore squashes the absolute value of r� and in effect shrinks r� ’s Lipschitz
constant (assuming here that r� is �-Lipschitz, with ‖∇t

s,a
[r𝜑]t‖F ≤ 𝛿 < +∞) without regard

to the sign of the signal. Formally, since �t is posited constant in st and at , we have,
∀t ∈ [0,T] ∩ ℕ and ∀(st, at) ∈ S ×A:

That is, if r� is �-Lipschitz-continuous at t, then r̃𝜑 is �t�-Lipschitz-continuous at t. Impor-
tantly, Eq. (70) will be instrumental in proving the first stages of our next theoretical guar-
antees, in which we deal with the counterpart action-value of r̃𝜑 , denoted by Q̃�.

Because of its “reward-squashing” effect, we name the method corresponding to
the subtitution of r� with the preconditioned reward r̃𝜑 “Pessimistic” Reward Precon-
ditioning Enforcing Lipschitzness. We dub the plug-in technique “PURPLE” (it is an
acronym, with minor vowel filling and letter shuffle for legibility and easy of pronuncia-
tion). From this point onward, we study the effect of plugging PURPLE into SAM. The
pseudo-code of the resulting algorithm can be obtained by replacing the learned reward
r� in SAM’s pseudo-code laid out in AlGorithM 1 with the preconditioned reward r̃𝜑.

We now study how the injection of PURPLE in SAM impacts the theoretical guaran-
tees we have previously derived in Sect. 6.1. Concretely, we derive the PURPLE coun-
terparts of Lemma 1, Theorems 1, 2, and Corollary 1. In order for us to characterize the
Lipschitzness of Q̃� , we also posit that the introduced preconditioner does not depend
on (i.e., is constant w.r.t.) the previously visited (past) states and actions. Formally:

∀t ∈ [0,T] ∩ ℕ,∀k ∈ [0, T − t − 1] ∩ ℕ,∀(st, at) ∈ S ×A . All in all, to develop the
counterpart guarantees that will follow, the preconditioner �t must possess the following
properties:

(69)
d�t
dst

= 0 and
d�t
dat

= 0 ▶property 1

(70)‖∇t
s,a
[r𝜑]t‖F ≤ 𝛿 ⟹ ‖∇t

s,a
[r̃𝜑]t‖F = 𝜅t‖∇t

s,a
[r𝜑]t‖F ≤ 𝜅t 𝛿 (≤ 𝛿)

(71)
d�t+k+1

dst
= 0 and

d�t+k+1

dat
= 0 ▶property 2

1487Machine Learning (2022) 111:1431–1521

1 3

∀t ∈ [0,T] ∩ ℕ,∀k ∈ [0, T − t − 1] ∩ ℕ,∀(st, at) ∈ S ×A . Note,
the last two properties, Eqs. (69) and (71), can be condensed into,
∀t ∈ [0,T] ∩ ℕ,∀k ∈ [0, T − t] ∩ ℕ,∀(st, at) ∈ S ×A:

Property that �t must have In plain English, to get our guarantees, we need the precon-
ditioner to not depend on neither current nor past states visited and actions taken by the
agent. Note, the property �t ≤ 1 is only ever used in Sect. 6.6.1, and will not be leveraged
anywhere else. The developed theory will still hold if ∃t ∈ [0,T] ∩ ℕ such that 𝜅t > 1.

PURPLE in the broader algorithmic landscape Setting aside the fact that �t depends on
a schedule indexed by the timestep t, PURPLE has the effect of reducing the (policy) gra-
dients received by the GAIL or SAM policy, since it squashed the reward received by the
agent. This scales down the gradients traditionally designed for the policy. The most direct
adaptation of PURPLE to the GAN world would consist in scaling down the output of the
discriminator (from which the reward is directly crafted in GAIL and SAM). The generator
in a GAN is updated with gradients of the output of the discriminator w.r.t. its own param-
eters, similarly to how the actor is updated with gradients of the critic in an actor-critic.
Consequently, squashing the output of the discriminator squashes the gradients used by the
generator, which is equivalent to reducing the learning rate for the optimization of the gen-
erator (assuming no exotic optimizer or regularizer are in use).

Lemma 2 Let the MDP with which the agent interacts be deterministic, with the dynam-
ics of the environment determined by the function f ∶ S ×A → S. The agent follows
a deterministic policy � ∶ S → A to map states to actions, and receives rewards from
r� ∶ S ×A → ℝ upon interaction. The functions f, � and r� need be C0 and differentiable
over their respective input spaces. This property is satisfied by the usual neural network
function approximators. The “almost-everywhere” case can be derived from this lemma
without major changes (relevant when at least one activation function is only differentiable
almost-everywhere, ReLU). (a) Under the previous assumptions, for k ∈ [0, T − t − 1] ∩ ℕ
the following (non-recursive) inequality is verified:

where 0 < 𝜅u ≤ 1 ∀u ∈ [0, T] ∩ ℕ, and Ct∶=A
2
t
max(1,B2

t+1
) , At and Bt being defined as

the supremum norms associated with the Jacobians of f and � respectively, with values in
ℝ ∪ {+∞}:

d�t
dst

= 0 and
d�t
dat

= 0 ▶property 1, Eq.

▶gave usEq. (70), itself used in the proof (step 1) ofTheorem 3(a)+(b)

d�t+k+1

dst
= 0 and

d�t+k+1

dat
= 0 ▶property 2,Eq. (71)

▶used in the proof of Lemma 2, itself then used to prove (step 2)Theorem 3(a) + (b)

(72)
d�t+k

dst
= 0 and

d�t+k

dat
= 0 ▶property 1+2 condensed into one

(73)‖∇t
s,a
[r̃𝜑]t+k+1‖2F ≤ 𝜅2

t+k+1
Ct ‖∇t+1

s,a
[r𝜑]t+k+1‖2F

(74)∀t ∈ [0,T] ∩ ℕ,

�
At∶=‖∇t

s,a
[f]t‖∞ = sup

�‖∇t
s,a
[f]t‖F ∶ (st, at) ∈ S ×A

�
Bt∶=‖∇t

s
[�]t‖∞ = sup

�‖∇t
s
[�]t‖F ∶ st ∈ S

�

1488 Machine Learning (2022) 111:1431–1521

1 3

(b) Additionally, by introducing time-independent upper bounds A,B ∈ ℝ ∪ {+∞} such
that ∀t ∈ [0,T] ∩ ℕ , At ≤ A and Bt ≤ B, and � such that �u ≤ � ≤ 1 ∀u ∈ [0, T] ∩ ℕ, the
non-recursive inequality becomes:

where C∶=A2 max(1,B2) is the time-independent counterpart of Ct.

Proof of Lemma 2(a) (a) First, we take the derivative with respect to each variable
separately:

 By assembling the norm with respect to both input variables, we get:

 As in Lemma 1, let At , Bt and Ct be time-dependent quantities defined as:

(75)‖∇t
s,a
[r̃𝜑]t+k+1‖2F ≤ 𝜅2C ‖∇t+1

s,a
[r𝜑]t+k+1‖2F

(76)∇t
s
[r̃𝜑]t+k+1 =

dr̃𝜑(st+k+1, at+k+1)

dst

(77)= �t+k+1
dr�(st+k+1, at+k+1)

dst
▶Eq. (71)(property 2), left

(78)= �t+k+1 ∇
t
s
[r�]t+k+1 ▶repack

(79)∇t
a
[r̃𝜑]t+k+1 =

dr̃𝜑(st+k+1, at+k+1)

dat

(80)= �t+k+1
dr�(st+k+1, at+k+1)

dat
▶Eq. (71)(property 2), right

(81)= �t+k+1 ∇
t
a
[r�]t+k+1 ▶repack

(82)
‖∇t

s,a
[r̃𝜑]t+k+1‖2F

= ‖∇t
s
[r̃𝜑]t+k+1‖2F + ‖∇t

a
[r̃𝜑]t+k+1‖2F

(83)= �2
t+k+1

‖∇t
s
[r�]t+k+1‖2F + �2

t+k+1
‖∇t

a
[r�]t+k+1‖2F

(84)= �2
t+k+1

�‖∇t
s
[r�]t+k+1‖2F + ‖∇t

a
[r�]t+k+1‖2F

�

(85)= �2
t+k+1

‖∇t
s,a
[r�]t+k+1‖2F ▶total norm

(86)∀t ∈ [0, T] ∩ ℕ,

⎧⎪⎨⎪⎩

At∶=‖∇t
s,a
[f]t‖∞ = sup

�‖∇t
s,a
[f]t‖F ∶ (st, at) ∈ S ×A

�
Bt∶=‖∇t

s
[�]t‖∞ = sup

�‖∇t
s
[�]t‖F ∶ st ∈ S

�
Ct∶=A

2
t
max(1,B2

t+1
)

1489Machine Learning (2022) 111:1431–1521

1 3

 Finally, by injecting Eq. (35), we directly obtain:

 which concludes the proof of Lemma 2(a). ◻

Proof of Lemma 2(b) By introducing time-independent upper bounds A and B such
that At ≤ A and Bt ≤ B ∀t ∈ [0,T] ∩ ℕ , C∶=A2 max(1,B2) , and � such that �u ≤ � ≤ 1
∀u ∈ [0, T] ∩ ℕ , we obtain, through Eq. (88):

which concludes the proof of Lemma 2(b). ◻

Theorem 3 (Gap-dependent reward Lipschitzness) In addition to the assumptions laid
out in Lemma 2, we assume that the function r� is �-Lipschitz over S ×A . Since r� is C0
and differentiable over S ×A, this assumption can be written as ‖∇u

s,a
[r�]u‖F ≤ �, where

u ∈ [0,T] ∩ ℕ . (a) Then, under these assumptions, the following is verified:

where k ∈ [0, T] ∩ ℕ and Cv is defined as in Lemma 2(a), ∀v ∈ [0, T] ∩ ℕ . (b) Additionally,
by involving the time-independent upper bounds introduced in Lemma 2(b), we have the
following:

where k ∈ [0, T] ∩ ℕ ; C and � are defined as in Lemma 2(b).

Proof of Theorem 3(a) We will prove Theorem 3(a) directly, not by induction (Lemma 2
proposes non-recursive inequalities, one side containing r� , the other r̃𝜑). We want to prove
the following Eq. (94), ∀v ∈ [0, T] ∩ ℕ:

To do so, we will procede in two steps: (1) prove it for v = 0 , and (2) prove it
∀v ∈ [1, T] ∩ ℕ.

Step 1: case v = 0 . When the gap v = 0 , Eq. (94) becomes ‖∇t
s,a
[r̃𝜑]t‖2F ≤ 𝜅2

t
𝛿2 ,

∀t ∈ [0,T] ∩ ℕ , which is verified by coupling Theorem 3’s main assumption about the �
-Lipschitzness of r� and the observation laid out in Eq. (70).

(87)‖∇t
s,a
[r̃𝜑]t+k+1‖2F = 𝜅2

t+k+1
‖∇t

s,a
[r𝜑]t+k+1‖2F

(88)≤ �2
t+k+1

A2
t
max(1,B2

t+1
) ‖∇t+1

s,a
[r�]t+k+1‖2F ▶Eq (35)

(89)= �2
t+k+1

Ct ‖∇t+1
s,a

[r�]t+k+1‖2F ▶Ct definition

(90)‖∇t
s,a
[r̃𝜑]t+k+1‖2F ≤ 𝜅2 A2 max(1,B2) ‖∇t+1

s,a
[r𝜑]t+k+1‖2F

(91)= �2 C ‖∇t+1
s,a

[r�]t+k+1‖2F

(92)‖∇t
s,a
[r̃𝜑]t+k‖2F ≤ 𝜅2

t+k
𝛿2

k−1�
u=0

Ct+u

(93)‖∇t
s,a
[r̃𝜑]t+k‖2F ≤ 𝜅2 Ck 𝛿2

(94)‖∇t
s,a
[r̃𝜑]t+v‖2F ≤ 𝜅2

t+v
𝛿2

v−1�
u=0

Ct+u

1490 Machine Learning (2022) 111:1431–1521

1 3

Step 2: case v ∈ [1,T] ∩ ℕ . We start from the result we derived in Lemma 2 (a), valid
∀w ∈ [0, T − 1] ∩ ℕ:

This shows that Eq. (94) is verified when v = w + 1 , ∀w ∈ [0, T − 1] ∩ ℕ . Equation (94) is
therefore valid ∀v ∈ [1, T] ∩ ℕ.

Conclusion We have shown that Eq. (94) is valid ∀v ∈ [0, T] ∩ ℕ , which concludes the
proof of Theorem 3(a). ◻

Proof of Theorem 3(b) We will prove Theorem 3(b) directly, not by induction (Lemma 2
proposes non-recursive inequalities, one side containing r� , the other r̃𝜑). We want to prove
the following Eq. (99), ∀v ∈ [0, T] ∩ ℕ:

where � satisfies �u ≤ � ≤ 1 ∀u ∈ [0, T] ∩ ℕ.
To do so, we will procede in two steps: (1) prove it for v = 0 , and (2) prove it

∀v ∈ [1, T] ∩ ℕ.
Step 1: case v = 0 . When the gap v = 0 , Eq. (99) becomes ‖∇t

s,a
[r̃𝜑]t‖2F ≤ 𝜅2

t
𝛿2 ≤ 𝜅2 𝛿2 ,

∀t ∈ [0,T] ∩ ℕ , which is verified by coupling Theorem 3’s main assumption about the �
-Lipschitzness of r� , the observation laid out in Eq. (70), and finally the definition of �
(upper bound for all the �u’s).

Step 2: case v ∈ [1,T] ∩ ℕ . We start from the result we derived in Lemma 2(b), valid
∀w ∈ [0, T − 1] ∩ ℕ:

This shows that Eq. (99) is verified when v = w + 1 , ∀w ∈ [0, T − 1] ∩ ℕ . Equation (99) is
therefore valid ∀v ∈ [1, T] ∩ ℕ.

Conclusion. We have shown that Eq. (99) is valid ∀v ∈ [0, T] ∩ ℕ , which concludes the
proof of Theorem 3(b). ◻

(95)‖∇t
s,a
[r̃𝜑]t+w+1‖2F ≤ 𝜅2

t+w+1
Ct ‖∇t+1

s,a
[r𝜑]t+w+1‖2F ▶Lemma 2(a)

(96)≤ �2
t+w+1

Ct �
2

w−1∏
u=0

Ct+1+u ▶Theorem 1(a), att + 1

(97)= �2
t+w+1

Ct �
2

w∏
u=1

Ct+u ▶index shift

(98)= �2
t+w+1

�2
w∏

u=0

Ct+u ▶repack product

(99)‖∇t
s,a
[r̃𝜑]t+v‖2F ≤ 𝜅2 Cv 𝛿2

(100)‖∇t
s,a
[r̃𝜑]t+w+1‖2F ≤ 𝜅2 C ‖∇t+1

s,a
[r𝜑]t+w+1‖2F ▶Lemma 2(b)

(101)≤ �2 CCw �2 ▶Theorem 1(b), att + 1

(102)= �2 Cw+1 �2 ▶repack product

1491Machine Learning (2022) 111:1431–1521

1 3

Theorem 4 (State-action value Lipschitzness) We work under the assumptions laid out in
both Lemma 2 and Theorem 3, and repeat the main lines here for Theorem 4 to be self-
contained: (a) the functions f, � and r� are C0 and differentiable over their respective input
spaces, and (b) the function r� is �-Lipschitz over S ×A, i.e. ‖∇u

s,a
[r�]u‖F ≤ �, where

u ∈ [0,T] ∩ ℕ. Then the quantity ∇u
s,a
[Q̃�]u exists ∀u ∈ [0, T] ∩ ℕ, and verifies:

∀t ∈ [0,T] ∩ ℕ, where C∶=A2 max(1,B2), with A and B time-independent upper bounds
of ‖∇t

s,a
[f]t‖∞ and ‖∇t

s
[�]t‖∞ respectively (see Eq. (86) for definitions of the supremum

norms), and where � satisfies �u ≤ � ≤ 1 ∀u ∈ [0, T] ∩ ℕ.

Proof of Theorem 4 With finite horizon T, we have �Q𝜑(st, at)∶=
∑T−t−1

k=0
𝛾k r̃𝜑(st+k, at+k) ,

∀t ∈ [0,T] ∩ ℕ , since f, � , r� , and r̃𝜑 [cf. Eq. (68)] are all deterministic (no expectation).
Additionally, since r� is assumes to be C0 and differentiable over S ×A , Q̃� is by construc-
tion also C0 and differentiable over S ×A . Consequently, ∇u

s,a
[Q̃�]u exists, ∀u ∈ [0, T] ∩ ℕ .

Since both r� and Q̃� are scalar-valued (their output space is ℝ), their Jacobians are
the same as their gradients. We can therefore use the linearity of the gradient operator:
∇t

s,a
[�Q𝜑]t =

∑T−t−1

k=0
𝛾k ∇t

s,a
[r̃𝜑]t+k , ∀t ∈ [0,T] ∩ ℕ.

When �2C = 1 , we obtain ‖∇t
s,a
[Q̃�]t‖2F = �2(T − t) . On the other hand, when �2C ≠ 1:

(103)‖∇t
s,a
[Q̃�]t‖F ≤

⎧
⎪⎪⎨⎪⎪⎩

��

����1 −
�
�2C

�T−t
1 − �2C

, if �2C ≠ 1

��
√
T − t, if �2C = 1

(104)‖∇t
s,a
[�Q𝜑]t‖2F =

�����

T−t−1�
k=0

𝛾k ∇t
s,a
[r̃𝜑]t+k

�����

2

F

▶operator�s linearity

(105)≤
T−t−1�
k=0

𝛾2k ‖∇t
s,a
[r̃𝜑]t+k‖2F ▶triangular inequality

(106)≤
T−t−1∑
k=0

�2k �2 Ck �2 ▶Theorem 3 (b)

(107)= (��)2
T−t−1∑
k=0

(
�2C

)k

(108)‖∇t
s,a
[Q̃�]t‖2F ≤ (��)2

1 −
�
�2C

�T−t
1 − �2C

▶finite sum of geometric series

(109)⟹ ‖∇t
s,a
[Q̃�]t‖2F ≤

⎧⎪⎨⎪⎩
(��)2

1 −
�
�2C

�T−t
1 − �2C

, if �2C ≠ 1

(��)2(T − t), if �2C = 1

1492 Machine Learning (2022) 111:1431–1521

1 3

By applying
√
⋅ (monotonically increasing) to the inequality, we obtain the claimed result.

 ◻

Finally, we derive a corollary from Theorem 4 corresponding to the infinite-horizon
regime.

Corollary 2 (Infinite-horizon regime) Under the assumptions of Theorem 4, including that
r� is �-Lipschitz and that r̃𝜑 is defined as in Eq. (68) over S ×A, and assuming that 𝛾2C < 1

, we have, in the infinite-horizon regime:

which translates into Q̃� being ��√
1−�2C

-Lipschitz over S ×A.

Proof of Corollary 2 By following the proof of Corollary 1, using Theorem 3 instead of
Theorem 1, we arrive directly at the claimed result. ◻

Remark 1 Say we were to write a proof analogous to the one laid out right above for Theo-
rem 4, but using the time-dependent version of Theorem 3 instead of the time-independent
version that we used in Eq. (106) (version 3(a) instead of 3(b)). Despite not being identifi-
able as a finite or infinite sum of geometric series, the expression we would get instead of
Eq. (106) not only is a tighter bound by construction, but it also has an interesting form:

Going through the first operands of the sum, and looking solely at the “ � ” and “C” factors,
we have the following:

This observation tells us that, in the derived Lipschitz constant of Q̃� , the reward precondi-
tioner �t at time t can compensate for all the past values {Cv | v < t} . Intuitively, the more
we wait to reduce �t , the more the next �t ’s will need to compensate for the “negligence” of
their predecessors. Note, the product of {Cv | v < t} compounds quickly.

6.6 Discussion II: implications and limitations of the theoretical guarantees

6.6.1 Provably more robust

Given that, in this work, we aligned the notion of robustness of a function approxima-
tor with the value of its Lipschitz constant (more robust means lower Lipschitz constant,
cf. Sect. 4), and given that �t ’s upper bound � verifies � ≤ 1 (cf. Lemma 2), we can write,
from the result of Corollary 2:

(110)‖∇t
s,a
[Q̃�]t‖F ≤ ��√

1 − �2C

(111)‖∇t
s,a
[Q̃�]t‖2F ≤

T−t−1�
k=0

�
�2k �2

t+k
�2

k−1�
u=0

Ct+u

�
▶Theorem 3(a)

(112)
�2
t
→ �2

t+1
Ct → �2

t+2
CtCt+1 → �2

t+3
CtCt+1Ct+2 → … → �2

T
CtCt+1Ct+2 …CT−1

1493Machine Learning (2022) 111:1431–1521

1 3

where Δ∞∶=�∕
√
1 − �2C is the upper bound of Q� ’s Lipschitz constant that we derived

in Corollary 1. Note, all of what is written in this remark concerns the infinite-horizon
regime, but one can derive the finite-horizon counterpart trivially—using Theorem 2
instead of Corollary 1, and Theorem 4 instead of Corollary 2—to arrive at the same con-
clusion: Q̃� has a lower derived Lipschitz constant upper bound than Q� by a factor of
� ≤ 1 and is therefore provably more robust than Q� . In other words, employing the simple
PURPLE reward preconditioning to SAM has the effect of making the learned Q-value
provably more robust.

6.6.2 Detached guide

Consider the following particular form for �t , ∀t ∈ [0,T] ∩ ℕ,∀(st, at) ∈ S ×A:

where � is an inverse temperature hyper-parameter involved in the definition of the kernel
of the Boltzmann or Gibbs probability distribution �t∶= exp(−� �t) , (hence 0 < 𝜅t ≤ 1),
and where �t ≥ 0 for now depicts an arbitrary non-negative energy function. �t is non-
normalized, and as such, it is not a probability per se. Nonetheless, it still echoes the
propensity or tendency of the state-action pair (st, at) to possess the property described by
the non-negative energy �t , which we define momentarily. Low values of �t ≥ 0 will
push the preconditioner towards the upper limit �t → 1 , while high energy values will
make it tend towards the lower limit �t → 0 with 𝜅t > 0 . Equivalently, the preconditioned
reward r̃𝜑 will verify the approximate identity r̃𝜑(st, at) ≈ r𝜑(st, at) whenever �t
approaches zero (from above), and r̃𝜑(st, at) ≈ 0 whenever the energy �t grows towards
higher levels. Under this orchestration, we need d�t+k

dst
= 0 and d�t+k

dat
= 0 to be satisfied

∀t ∈ [0,T] ∩ ℕ,∀k ∈ [0, T − t] ∩ ℕ,∀(st, at) ∈ S ×A for the derived robustness guarantees
to be readily applicable (we laid out the properties �t must possess in Sect. 6.5, right before
exposing Lemma 2).

In particular, the soft approximate ℭ-validity pseudo-indicator [cf. Eq. (67)] is an instan-
tiation of the �t form laid out in Eq. (114), where � = 1 for the inverse temperature, and
�t = max(0, ‖∇st ,at

D�(st, at)‖ − k)2 for the energy. In such an instance, r̃𝜑(st, at) ≈ r𝜑(st, at)
whenever the pair (st, at) is approximately ℭ-valid, formally, ‖∇t

s,a
[D�]t‖F ≤ k . Conversely,

in the extreme scenario where ‖∇t
s,a
[D𝜑]t‖F ≫ k , �t grows large, �t is approximately equal

to 0, and r̃𝜑(st, at) ≈ 0 . As such, in effect, the agent’s policy �� is punished for selecting
actions that do not satisfy the approximate ℭ-validity condition above. Besides, it is pun-
ished in accordance to how far outside the allowed range, [0, k], the norm of the Jacobian
of D� gets. Nonetheless, in this particular instance, the empirical observations we have
made in Sect. 6.4 attest to the fact that, provided the right choice of � scaling factor and �
distribution (both characterizing the gradient penalization), the approximate ℭ-validity
constraint ‖∇t

s,a
[D�]t‖F ≤ k can easily be satisfied 100% of the time by only regularizing

D� . For D� ’s k-Lipschitzness to be ensured, there is therefore no need to further alter the
rewards provided to the agent’s policy �� through PURPLE’s pessimistic reward precondi-
tioning. Note, however, that under such a �t formulation, we see that we clearly have

(113)‖∇t
s,a
[Q̃�]t‖F ≤ ��√

1 − �2C
= � Δ∞∶=Δ̃∞ ≤ Δ∞

(114)𝜅t∶= exp(−𝛼 𝜖t) ⟹ r̃𝜑(st, at)∶=𝜅t r𝜑(st, at)∶= exp(−𝛼 𝜖t) r𝜑(st, at)

1494 Machine Learning (2022) 111:1431–1521

1 3

d�t+k
dst

≠ 0 and d�t+k
dat

≠ 0 , ∀t ∈ [0,T] ∩ ℕ,∀k ∈ [0, T − t] ∩ ℕ,∀(st, at) ∈ S ×A . While this
does not mean that the studied entities are not robust, it prevents us from applying our
derived results to guarantee such robustness.

Generally speaking, we will probably make the same observation whenever �t is defined
from a constraint we want to enforce on a learned function approximation, for regulariza-
tion purposes. Indeed, verifying said desideratum on the function approximator directly via
the application of a regularizer seems to always be the easiest (since most direct) solution
to encourage the satisfaction of a constraint on a differentiable function (e.g. D� , ��). Con-
straints involving the Jacobian of a (a fortioni differentiable) function of the learned system
(e.g. ‖∇t

s,a
[D�]t‖F ≤ k) is a particular case of the general class of constraints for which

direct regularization is a priori prefereable to an analogous reward shaping as dictated by
Eq. (114). On the flip side, due to the fact that the reward—albeit learned as a parametric
function—is treated as an input in our computational graph, it is not differentiated through
and can consequently be augmented with non-differentiable nodes through the design of �t .
In other words, even if it is preferable to apply regularization directly the objective of the
regularized function approximator for it to satisfy some constraint, it might not always be
possible to do so directly. In that case, guiding the policy towards areas of the state-action
landscape that satisfy said constraint could be a surrogate solution, albeit far less preferable
than acting on the targeted approximator directly.

As such, by aligning �t with said constraint, Eq. (114) offers a way for the policy to act
in view of the satisfaction of said constraint while enjoying the considerable advantage of
being able to treat �t as a black box. We will leverage this universality in the next discussion
point.

6.6.3 Partial compensation of compounding variations

In reaction to the theoretical robustness guarantees derived in Theorem 2 and Corollary 1,
we have discussed earlier in Sect. 6.2.3 that, if the variations in space of the policy or the
dynamics are large in the early stage of an episode (i.e. when 0 ≤ t ≪ T), then Δt (the varia-
tion bound on Q�) might explode. As results, ‖∇t

s,a
[Q�]t‖F would then be unbounded, leav-

ing us unable to guarantee the robustness of the learned Q-value Q� . The earlier large vari-
ations in either or both the policy and dynamics manifest, the more likely these variations
are to compound to unreasonably high levels. Concretely, the degree of such compounding
variations in space is entirely determined by the operand �2C that appears in the varia-
tion bounds derived in both Theorem 2 and Corollary 1. The exact same line of reasoning
holds for the variation bounds laid out later in Sect. 6.5, in both Theorem 4 and Corollary 2
respectively. These guarantees unanimously agree on the critical role that C plays in the
robustness bounds, which we here called variation bounds indifferently. Loosely, high val-
ues of C prevent Q� from enjoying the Lipschitzness guarantees laid out in Sects. 6.1 and
6.5. As such, it is paramount to devise a way to keep C in check by somewhat controling its
magnitude, thereby preventing it from voiding our theoretical guarantees and from adopt-
ing a brittle behavior. We defined C in Lemma 1(b) as C∶=A2 max(1,B2) , where A and B
are time-independent upper bounds of the supremum Frobenius norms of the Jacobians
of the dynamics f and the policy � , ‖∇t

s,a
[f]t‖∞ and ‖∇t

s
[�]t‖∞ , respectively [cf. Eq. (32)

for definitions of the supremum norms ‖ ⋅ ‖∞]. Simply, ∀t ∈ [0,T] ∩ ℕ,∀(st, at) ∈ S ×A ,
‖∇t

s,a
[f]t‖∞ ≤ A and ‖∇t

s
[�]t‖∞ ≤ B . As such, to devise a way to limit the magnitude of

C, we seek ways to limit the respective magnitudes of the A and B majorants. Similarly to

1495Machine Learning (2022) 111:1431–1521

1 3

the learned surrogate reward core D� , the policy �� followed by the agent (of which � is a
placeholder) is learned as a parametric function approximator, enabling us to tame B by
applying a gradient penalty regularizer directly on the policy (exactly like we already do to
ensure that D� remains k-Lipschitz-continuous).

By contrast, we can not tame A the same way (via direct regularization applied onto
f), due to the transition function f of the world (whether real or simulated) being a black
box that we can not even query at will. Not only is f non-differentiable (the real world
never is; non-trivial simulated worlds virtually never are), but we also can not evaluate it
at any state-action pair whenever we want. Our desideratum then ultimately boils down
to finding a way to keep A in check, since the usual candidate to enforce Lipschitzness
(applying a regularizer on the Jacobian directly)—which is the preferable option by far for
D� and ��—is out of the question for f, as we have established. Despite the fact that, by
nature, we can not change f in the MDP � , we can change the transition function f ′ that
effectively takes the place of f in practice and underlies the effectively observed MDP �′
by urging the agent’s policy �� to avoid areas of the state-action landscape S ×A that dis-
play high ‖∇t

s,a
[f �]t‖∞ values. In fact, f ′ changes continually (f ′ is non-stationary) through-

out the learning process as the preferences of the agent evolve across learning episodes.
It is therefore fair to posit that we can devise a way to skew the policy towards areas of
S ×A where ‖∇t

s,a
[f �]t‖∞ is tightly upper-bounded. As such, we can keep A in check by

keeping ‖∇t
s,a
[f �]t‖∞ in check in practice, which can be approximately achieved by keeping

‖∇t
s,a
[f�]t‖∞ in check, where f� ∶ S ×A → S is a learned functional approximation of the

effective dynamics f ′.
In fine, we urge the constraint ‖∇t

s,a
[f]t‖∞ ≤ A to be satisfied by encouraging �� to avoid

areas where ‖∇t
s,a
[f�]t‖∞ is high, which itself can be relaxed into ‖∇t

s,a
[f�]t‖F . Note, even if

f� is differentiable, regularizing it via gradient penalization does not have any effect on the
value of ‖∇t

s,a
[f �]t‖∞ , since the agent does not interact with f� , but with f ′ . For our line of

reasoning to hold, we want ‖∇t
s,a
[f�]t‖F to be a high-fidelity depiction of ‖∇t

s,a
[f �]t‖∞.

We maintain the parametric model f� because it allows us to approximate the norm of
the Jacobian of the dynamics wherever we want, whenever we want. In order for �� to avoid
areas where ‖∇t

s,a
[f�]t‖F is high, we leverage the universal preconditioner form exhibited

in Eq. (114). Concretely, we reward the agent less for not navigating areas of S ×A that
satisfy the constraint ‖∇t

s,a
[f�]t‖F ≤ � . The Lipschitz constant � we want to enforce onto

f� is a hyper-parameter that must be tuned, like k for D� . We push �� towards areas where
‖∇t

s,a
[f�]t‖F ≤ � (where f� is �-Lipschitz-continuous, thereby also satisfying the premise

of the guarantees) by defining the energy function ��t in the model-based preconditioner ��
t

as a one-sided gradient penalty, as follows:

∀t ∈ [0,T] ∩ ℕ,∀(st, at) ∈ S ×A , where ��
ON

 denotes an online, running estimate of
the standard deviation of max(0, ‖∇st ,at

f� (st, at)‖F − �)2 . For completeness, we remind
here that we used the same online normalization technique in our RED experiments (cf.
Sect. 5.5), inspired by the discussion laid out in in Burda et al. (2018) on the importance of

(115)

r̃𝜓
𝜑
(st, at)∶=𝜅

𝜓
t r𝜑(st, at) where

�
𝜅
𝜓
t ∶=max

�
𝜅min, exp

�
− 𝛼 𝜖

𝜓
t

��
with

𝜖
𝜓
t ∶=max

�
0, ‖∇t

s,a
[f𝜓]t‖F − 𝜏

�2�
𝜎
𝜓
ON

(116)

⟺ r̃𝜓
𝜑
(st, at)∶=max

�
𝜅min, exp

�
−

𝛼

𝜎
𝜓
ON

max
�
0, ‖∇t

s,a
[f𝜓]t‖F − 𝜏

�2��
r𝜑(st, at)

1496 Machine Learning (2022) 111:1431–1521

1 3

such normalization technique when the reward is grounded on a prediction loss. Consider-
ing the edge cases, and omitting here the clipping to �min , when ��t is close to zero, ��

t is
approximately equal to 1, i.e. r̃𝜑(st, at) ≈ r𝜑(st, at) [cf. Eqs. (115), (116)]. Conversely, in the
extreme scenario where ��t is very large (i.e. ‖∇t

s,a
[f𝜓]t‖F ≫ 𝜏), ��

t is approximately equal
to 0, and r̃𝜑(st, at) ≈ 0.

Looking at the model-based instantiation of PURPLE laid out in Eq. (115), and
specifically of the form exhibited in Eq. (113), we see that the energy ��t depends
on the current state st and action at . Indeed, from the definitions of ��t and ��

t , we immedi-

ately see that d�
�

t+k

dst
≠ 0 and d�

�

t+k

dat
≠ 0 , which directly leads to d�

�

t+k

dst
≠ 0 and d�

�

t+k

dat
≠ 0 ,

∀t ∈ [0,T] ∩ ℕ,∀k ∈ [0, T − t] ∩ ℕ,∀(st, at) ∈ S ×A . As such, the crafted preconditioner
does not satisfy the eligibily conditions for the derived theoretical guarantees to be applica-
ble, which were represented in condensed form in Sect. 6.5, right before exposing
Lemma 2. If we had used the supremum Frobenius norm ‖∇t

s,a
[f�]t‖∞ to formulate ��t

instead of relaxing it to ‖∇t
s,a
[f�]t‖F , its non-supremum counterpart, ��t would not depend

on st and at (or any visited state or picked action), and our robustness guarantees would be
readily applicable. Still, such a supremum Frobenius norm is intractable in practice. In
order for us to be able to evaluate the developed prototype empirically, we resorted to the
obvious tractable relaxation consisting in simply dropping the supremum altogether for this
diagnostics-oriented case.

(a)

(b) (c)

Fig. 11 Empirical evaluation of a the empirical return, b the norm of the Jacobian of the for-
ward model f� defined by G∶=‖∇t

s,a
[f�]t‖F , and c the approximation of �2C defined by

H∶=�2‖∇t
s,a
[f�]t‖2F max(1, ‖∇t

s
[��]t‖2F) . SAM-PURPLE-7 and SAM-PURPLE-6 are two instantiations of

SAM (cf. Algorithm 1), augmented with the model-based instantiation of PURPLE whose template is laid
out in Eqs. (115) and (116), with � = 7 and � = 6 respectively. We indicate how to read the plots (whether
lower or higher is better) in the caption of each column. Despite displaying overlapping return curves, note
how tighter the standard deviation envelope is for PURPLE runs. Runtime is 96 h

1497Machine Learning (2022) 111:1431–1521

1 3

Now that we have laid out how the pessimistic model-based preconditioner ��
t impacts

the reward received by the agent artificially upon interaction, we consider how this pre-
conditioning affects the Lipschitz constant of Q̃� in the infinite-horizon setting, denoted by
Δ̃∞ [cf. Eq. (113)]. As ‖∇t

s,a
[f]t‖∞ grows larger, its upper-bound A grows larger. Assum-

ing B (upper-bounding ‖∇t
s
[�]t‖∞) remains unaffected and remains constant, larger val-

ues of A cause larger values of C∶=A2 max(1,B2) , which in turn push the denominator
of the Lipschitz constant Δ̃�

∞∶=�
�
t �∕

√
1 − �2C towards 0 from above, exposing Δ̃�

∞ to
diverge to +∞ . Without preconditioning (��

t = 1), the task of compensating for such a low-
valued denominator would be left to � alone, and picking � ≈ 0 would be the only way
to maintain the robustness bound from diverging. With preconditioning however, we can
also try to prevent it from diverging with the preconditioner ��

t , whose value can be set
far more finely (per timestep). Specifically, with the ��

t formulation laid out in Eqs. (115)
and (116), and assuming ‖∇t

s,a
[f�]t‖F approximates ‖∇t

s,a
[f]t‖∞ well—i.e. ‖∇t

s,a
[f�]t‖F mir-

rors the behavior of ‖∇t
s,a
[f]t‖∞ , we hold an analogous line of reasoning for the numerator

of Δ̃�
∞ . As ‖∇t

s,a
[f]t‖∞ grows larger, ‖∇t

s,a
[f�]t‖F grows larger (with we can translate into

‖∇t
s,a
[f𝜓]t‖F ≫ 𝜏), which consequently pushes the preconditioner ��

t towards 0 from above.
As such, the premise “ ‖∇t

s,a
[f]t‖∞ grows larger” pushes both the numerator and denomina-

tor of Δ̃�
∞ towards 0 from above, taming the quotient in effect. Nonetheless, note, we can

not eliminate the influence of ‖∇t
s,a
[f]t‖∞ on the bound. Still, the partial compensation of

the detrimental impact of ‖∇t
s,a
[f]t‖∞ on Δ̃�

∞—that we were able to secure by proposing the
model-based pessimistic reward preconditioning ��

t [cf. Eqs. (115), (116)]—can be tuned
extensively in practice to achieve the desired level of compensation. We used �min = 0.7 ,
� = 1 , and � ∈ {6, 7} in the experiments we conducted to showcase how the proposed
model-based reward preconditioning laid out above can help us achieve our robustness
desideratum.

Since we aim to showcase its potential benefits, as opposed to convince the reader
to plug this preconditioning method in every future architecture, we conducted illustra-
tive experiments only in the Hopper environment (neither the easiest, nor the hard-
est among the ones considered, cf. Table 1). Note, when it comes to D� ’s gradient pen-
alty regularization, we use the default � and � (cf. Sect. 6.3): the directed � distribution
of WGAN-GP, with � = 10 as scaling factor. Since the evaluated policy is penalized for
navigating areas of S ×A where ‖∇t

s,a
[f𝜓]t‖F > 𝜏 , we monitor G∶=‖∇t

s,a
[f�]t‖F . We

expect to observe lower values of G when using the studied preconditioning. In order
to grasp the extent to which variations can compound in the system, and therefore high-
light the need for mechanims allowing the main method to contain such compounding of
variations (like the proposed one), we also monitor an approximation of �2C , relaxed as
H∶=�2‖∇t

s,a
[f�]t‖2F max(1, ‖∇t

s
[��]t‖2F) . We expect to see the same ranking of methods in

the plots depicting G and H respectively. These are all reported in Fig. 11.
Note, the steep surge in overall computational cost caused by the evaluation of the mon-

itored metrics (G and H) and expecially ��
t lowered the number of iterations our agent

could do in the allowed runtime. As such, we increased said runtime from the usual 0.5-
day or 2-day duration to a 4-day duration (or 96 h) Such runs are more costly to orches-
trate, hence the sparser array of experiments to offset the steeper cost in compute. In
Fig. 11, we observe that, at evaluation time, the model-based PURPLE instantiation in
Eqs. (115) and (116) indeed enables the agent to achieve lower values of G and H, with
the same episodic return. Said differently, it seems that the agent—with precondition-
ing, compared to the one without—achieves the same proficiency, with the same conver-
gence speed, while making decisions that are safer in terms of incurred variations of the

1498 Machine Learning (2022) 111:1431–1521

1 3

approximate dynamics f� . So, even if the preconditioner is not needed to reach a higher
return (or reach it faster) per se, we have showcased that the studied model-based reward
preconditioning can increase the robustness of the main method by augmenting it with the
means to tame a priori untamable entities in the system (here, the dynamics). Still, the
studied model-based instantiation of PURPLE is set back by several drawbacks. (a) We
need to maintain a forward model f� that approximates the effective transition function f ′ .
(b) To be estimated, ��

t requires explicit calls to an automatic differentiation library, mak-
ing its frequent computation (every time a mini-batch is sampled from the replay buffer)
extremely expensive overall. (c) The threshold � (to be enforced as Lipschitz constant for
f�) must be set such that not every decision made by the agent is penalized, while mak-
ing sure it is still strict enough in that respect. Besides, we observed in practice that the
range of values taken by ‖∇t

s,a
[f�]t‖F varies greatly across environments. As such, � must

be tuned carefully per environment, making the overall process tedious and computation-
ally expensive. In effect, this brings us back to the original issues of reward shaping (Ng
et al. 1999), that adversarial IL (Ho and Ermon 2016) circumvented.

6.6.4 Total compensation of compounding variations

Inspired by the insight laid out in Remark 1, we derive theoretical guarantees that charac-
terize the robustness of Q̃� when using a preconditioner defined as follows:

∀t ∈ [0,T] ∩ ℕ , and ∀k ∈ [0, T − t] ∩ ℕ . Since the norms involved in Cv are
supremum ones, the preconditioner �t verifies d�t+k

dst
= 0 and d�t+k

dat
= 0 ,

∀t ∈ [0,T] ∩ ℕ,∀k ∈ [0, T − t] ∩ ℕ,∀(st, at) ∈ S ×A . The reward preconditioner therefore
verifies the properties one must satisfy for the derived robustness guarantees to be applica-
ble (cf. Sect. 6.5).

Again, note, the property �t ≤ 1 is only ever used in Sect. 6.6.1, and has not been lever-
aged anywhere else. Given that the developed theory still holds if ∃t ∈ [0,T] ∩ ℕ such that
𝜅t > 1 , the fact that the preconditioner defined in Eq. (117) does not necessarily lie in the
(0, 1] interval is not an issue a priori. Still, in practice, it will virtually always be below 1.

We now derive the associated counterparts of Theorem 4 and Corollary 2.

Theorem 5 (State-action value Lipschitzness) We work under the assumptions laid out in
both Lemma 2 and Theorem 3, and repeat the main lines here for Theorem 5 to be self-
contained: (a) the functions f, � and r� are C0 and differentiable over their respective input
spaces, and (b) the function r� is �-Lipschitz over S ×A, i.e. ‖∇u

s,a
[r�]u‖F ≤ �, where

u ∈ [0,T] ∩ ℕ. Then the quantity ∇u
s,a
[Q̃�]u exists ∀u ∈ [0, T] ∩ ℕ. Assuming in addition

that the reward preconditioner used on r� to obtain r̃𝜑 is defined according to Eq. (117), the
action-value Q̃� verifies:

(117)
�t+k∶=

1�∏k−1

u=0
Ct+u

where cf. Eq. ((86)) ∀v ∈ [0, T − 1],

Cv∶=‖∇v
s,a
[f]v‖2∞ max

�
1, ‖∇v+1

s
[�]v+1‖2∞

�

(118)‖∇t
s,a
[Q̃�]t‖F ≤ �

�
1 − �2(T−t)

1 − �2

1499Machine Learning (2022) 111:1431–1521

1 3

∀t ∈ [0,T] ∩ ℕ . Note, the bound now only depends on � , �, and T − t, the “remaining time
in the episode”.

Proof of Theorem 5 The reward preconditioner used to assemble r̃𝜑 from r� is defined accord-
ing to Eq. (117). As carried out in Remark 1, we start the proof of Theorem 5 analogously to
the one laid out for Theorem 4, but using the time-dependent version of Theorem 3 instead
of the time-independent version that we used in Eq. (106) (version 3 (a) instead of Theo-
rem 3 (b)). Our starting point then aligns with the crux of Remark 1. As such:

Since we defined � to be within the interval [0, 1) in Sect. 3, we trivially have 𝛾2 < 1 , hence
�2 ≠ 1 and:

By applying
√
⋅ (monotonically increasing) to the inequality, we obtain the claimed result.

 ◻

Finally, we derive a corollary from Theorem 5 corresponding to the infinite-horizon
regime.

Corollary 3 (Infinite-horizon regime) Under the assumptions of Theorem 5, including that
r� is �-Lipschitz and that r̃𝜑 is defined as in Eq. (68) over S ×A, we have, in the infinite-
horizon regime:

which translates into Q̃� being �√
1−�2

-Lipschitz over S ×A.

Proof of Corollary 3 As we adapt the proof of Theorem 5 to the infinite-horizon regime,
Eq. (121) becomes

since we defined � to be within the interval [0, 1) in Sect. 3, i.e. 𝛾2 < 1 . We then apply
√
⋅

to the inequality. ◻

(119)‖∇t
s,a
[Q̃�]t‖2F ≤

T−t−1�
k=0

�
�2k �2

t+k
�2

k−1�
u=0

Ct+u

�
▶Theorem 3(a)

(120)=

T−t−1�
k=0

�
�2k

1∏k−1

u=0
Ct+u

�2
k−1�
u=0

Ct+u

�
▶Eq. (117)

(121)= �2
T−t−1∑
k=0

(�2)k

(122)‖∇t
s,a
[Q̃�]t‖2F ≤ �2

1 − �2(T−t)

1 − �2
▶finite sum of geometric series

(123)‖∇t
s,a
[Q̃�]t‖F ≤ �√

1 − �2

(124)‖∇t
s,a
[Q̃�]t‖2F ≤ �2

+∞�
k=0

(�2)k =
�2

1 − �2
▶infinite sum of geometric series

1500 Machine Learning (2022) 111:1431–1521

1 3

In these theoretical guarantees, we have shown that by carefully crafting PURPLE’s
reward preconditioner according to Eq. (117), we obtain upper-bounds Δ̂∞ on the Lip-
schitz constant of the resulting action-value Q̃� that are independent of Cv , ∀v ∈ [0, T − 1]

—where Cv∶=‖∇v
s,a
[f]v‖2∞ max

�
1, ‖∇v+1

s
[�]v+1‖2∞

�
 [cf. Eq. (117)]. In other words, we

have shown that such preconditioner design allows us to totally compensate for the com-
pounding variations (a) first tackled in the discussion led in Sect. 6.2.3, and (b) then
addressed only partially by the model-based reward preconditioning discussed profusely in
Sect. 6.6.3 (of which we showcase the applicability in practice). Echoing what motivated
the emergence of Remark 1 in the first place, the form adopted by the reward precondition-
ing [cf. Eq. (117)] that allowed us to derive the robustness guarantees of Theorem 5 and
Corollary 3 enjoys an insightful and intuitive interpretation. Going through the elements
of the series described by the preconditioner of Eq. (117), (�t+k)k , ∀t ∈ [0,T] ∩ ℕ , and
∀k ∈ [0, T − t] ∩ ℕ , we have the following sequence of consecutive preconditioning values:

We observe that, when purposely defined as such, the reward preconditioner �t+k at a
given stage t + k compensates for the Cv ’s of all the previous timesteps—backwards from
t + k − 1 to t, where Q̃� ’s Lipschitz constant is characterized. In order to prevent the upper-
bound on ‖∇t

s,a
[Q̃�]t‖F to be burdened by incipient, potentially prone to compound, vari-

ation of Cv∶=‖∇v
s,a
[f]v‖2∞ max

�
1, ‖∇v+1

s
[�]v+1‖2∞

�
 , the preconditioner can actively antici-

pate said incipient compounding variations to compound further within the time remaining
in the episode by preemptively squashing the current surrogate reward at t + k based on
how much Cv ’s variations have accumulated since t until t + k − 1 . The proposed interpre-
tation of the studied preconditioner aligns with our intuitive desideratum: “if you want to
fend off from compounding of variations that threaten the stability of your action-value,
make the latter more robust as soon as you see, from past metrics—here, monitored Cv val-
ues—that said variations might actually compound soon”.

Despite appealing in principle thanks to its salient interpretation, and justified by the-
oretical guarantees, we did not experiment with the proposed preconditioner in practice.
Indeed, considering how we have shown in Sect. 6.6.3 that the values in effect taken by
Cv∶=‖∇v

s,a
[f]v‖2∞ max

�
1, ‖∇v+1

s
[�]v+1‖2∞

�
 do not seem to affect the agent’s return in prac-

tice, we do not expect the interpretable preconditioner tackled in this discussion to bring
anything practically in the considered environments. Using a gradient penalty constraint to
induce local Lipschitz-continuity of the function at the core of the reward function is, in a
sense, all you need to achieve peak expert performance in the considered off-policy genera-
tive adversarial imitation learning setting. Still, we believe the design and study of meth-
ods able to actively tune their level of robustness—aligned in this work with the concept
of spatial, local Lipschitz-continuity—depending on the choices (or more pessimistically,
on the mistakes) made by the agent to be an interesting avenue of future work. Besides,
by augmenting the reward-less MDP � (from which we first stripped the environmental
reward) with our adversarially learned reward, preconditioned in line with Eq. (117), the
resulting MDP has a memory, since the reward r̃𝜑 depends on entities (Cv’s) from previous
timesteps in the episode. In effect, due to such a reward preconditioning formulation, the
Markov property is not satisfied anymore as, given the present, the future now does depend

(125)

�t+k
��k=0 = �t∶=1 → �t+k

��k=1 = �t+1∶=
1√
Ct

→ �t+k
��k=2 = �t+2∶=

1√
CtCt+1

→ �t+k
��k=3 = �t+3∶=

1√
CtCt+1Ct+2

→ … → �t+k
��k=T−t = �T∶=

1√
CtCt+1Ct+2 …CT−1

1501Machine Learning (2022) 111:1431–1521

1 3

on the past. We believe the observations made and results derived in this work could pave
the way to further investigations aiming to decipher known methods and ultimately pin-
point the most minimal setup for it to still do well.

7 Conclusion

In this work, we conducted an in-depth study of the stability problems incurred by off-policy
generative adversarial imitation learning. Our contributions closely follow the line of reason-
ing, and are as follows. (1) We characterized the various inherent hindrances the approach
suffers from, in particular how learned parametric rewards affect the learned parametric
state-action value. (2) We showed that enforcing a local Lipschitz-continuity constraint on
the discriminator network used to formulate the imitation surrogate reward is a sine qua non
condition for the approach to empirically achieve expert performance in challenging continu-
ous control problems, within a number of timesteps that still enable us to call the method
sample-efficient. (3) In line with the first and second steps, we derived theoretical guarantees
that characterize the Lipschitzness of the Q-function when the reward is assumed �-Lipschitz-
continuous. Note, the reported theoretical results are valid for any reward satisfying the con-
dition, nothing is specific to imitation. (4) We propose a new RL-grounded interpretation
of the usual GAN gradient penalty regularizers—differing by where they induce Lipschitz-
ness—along with an explanation as to (a) why they all have such a positive impact on stabil-
ity, but also (b) how to make sense of the empirical gap between them. (5) We show that,
in effect, the consistent satisfaction of the Lipschitzness constraint on the reward is a strong
predictor of how well the mimicking agent performs empirically. (6) Finally, we introduce a
pessimistic reward preconditioning technique which (a) makes the base method it is plugged
into provably more robust, and (b) is accordingly backed by several theoretical guarantees.
As in (3), these guarantees are not not specific to imitation and have a wide range of appli-
cability. We give an illustrative example of how the technique can help further increasing the
robustness of the method it is plugged into empirically.

Appendix 1: Hyper‑parameters

The function approximators used in every learned module are two-layer multi-layer per-
ceptrons, but the widths of their respective layers differ. We use layers of sizes 100–100
for the discriminator (from which the reward is formulated), 300–200 for the actor, and
400–300 for the critic, as they achieved the best overall result across the environments of
the suite in our early experiments. Unless specifically stated otherwise, the discriminator
network uses spectral normalization (Miyato et al. 2018) at every layer, while the actor
and critic networks both use layer normalization (Ba et al. 2016) at every layer. Every neu-
ral network is initialized via orthogonal initialization (Saxe et al. 2013). Each network has
its own optimizer (cf. Sect. 4 for a complete description of the optimization problems the
networks of parameter � , � , and � are involved in, along with the loss they optimize). We
use AdAM (Kingma and Ba 2014) for each of them, with respective learning rates reported
in Table 2, while the other parameters of the optimizer are left to the default PyTorch
(Paszke et al. 2019) values. In practice, we replace the squared error loss involved in the
loss optimized by the critic [cf. Eq. (3)] by the Huber loss, as is commonly done in tem-
poral-difference learning with function approximation and target networks (Mnih et al.

1502 Machine Learning (2022) 111:1431–1521

1 3

2013, 2015). As for the activations functions used in the neural networks, we used ReLU
non-linearities in both the actor and critic, and used Leaky-ReLU (Maas et al. 2013) non-
linearities with a leak of 0.1 in the discriminator. We used an online version of batch nor-
malization (described earlier in Sect. 5.5) to standardize the actor and critic observations
before they are fed to them. We do not use any learning rate scheduler, for any module.

Appendix 2: Sequential decision making under uncertainty
in non‑stationary Markov decision processes

In Sect. 3, we have defined � as a stationary MDP, in line with a vast majority of works in
RL. Note, a stochastic process or a distribution is commonly said stationary if it remains
unchanged when shifted in time. While the stationarity assumption allows for the deriva-
tion of various theoretical guarantees and is overall easier to deal with analytically, it fails
to explain the inner workings of complex realistic simulations, and a fortiori the real world.
One critical challenge incurred when modeling the world as a non-stationarity MDP is the

Table 2 Hyper-parameters used in this work. Unless explicitly stated otherwise, every method uses these

The “effective” batch size corresponds to the size of the mini-batch aggregated across parallel work-
ers of the distributed architecture. In our case, every worker—of the grand total of n = 16 workers—
samples a mini-batch of size 64 from its (individual) replay buffer, resulting in an effective batch size of
64 × 16 = 1024

Hyper-parameter Selected Value

Training steps per iteration 2
Evaluation steps per iteration 10
Evaluation frequency 10
Actor learning rate 2.5 × 10−4

Critic learning rate 2.5 × 10−4

Actor clip norm 40
Critic weight decay scale 0
Rollout length 2
Effective batch size 1024
Discount factor � 0.99
Replay buffer R size 100000
Exploration (cf. Sect. 4) �a = 0.2 , �b = 0.2

Param. noise update frequency 50
Target update Polyak scale � 0.005
Multi-step lookahead n 10
Target smoothing - noise � (Fujimoto et al. 2018) 0.2
Target smoothing - noise clip (Fujimoto et al. 2018) 0.5
Actor update delay (Fujimoto et al. 2018) 2
Reward training steps per iteration 1
Agent training steps per iteration 1
Discriminator learning rate 5.0 × 10−4

Entropy regularization scale 0.001
Positive label-smoothing Real labels ∼ unif(0.7, 1.2)

Positive-Unlabeled (Xu and Denil 2019)—coeff. � 0.25

1503Machine Learning (2022) 111:1431–1521

1 3

unavailability of convergence guarantees for standard practical RL methods. Crucially,
assuming stationarity in the dynamics p is necessary for the Markov property to hold, which
is required for the convergence of Q-learning (Watkins 1989) algorithms (Abdallah and Kai-
sers 2016) like DQN (Mnih et al. 2013, 2015). As such, designing methods yielding agents
that are robust against the non-stationarities naturally occurring in their realistic environ-
ments is a challenging yet timely milestone. Methods equipping models against unforeseen
changes in the data distribution, a phenomenon qualified as concept drift (Schlimmer and
Granger 1986), are surveyed in (Gama et al. 2014) who dedicate the study to the supervised
case. In RL, a analysis of non-stationarity issues inherent to the Q-learning loss optimization
under function approximation (Sutton et al. 1999) proposes qualitative and quantitative diag-
nostics along with a new replay sampling method to alleviate the isolated weaknesses (Fu
et al. 2019). Non-stationarities are characterized by how they manifest in time. A distribution
is switching if abrupt changes, called change points, occur while remaining stationarity in-
between, making it in effect piece-wise stationary (Da Silva et al. 2006; Jaksch et al. 2010;
Garivier and Moulines 2011; Abdallah and Kaisers 2016; Gajane et al. 2018; Padakandla
et al. 2019; Auer et al. 2019). The change points are either given by an oracle or discovered
via change point detection techniques. Once exhibited, one can employ stationary methods
individually on each segment. A distribution is drifting if it gradually changes at an unknown
rate (Besbes et al. 2014; Anava and Karnin 2016; Luo et al. 2018; Ortner et al. 2019; Chen
et al. 2019; Cheung et al. 2019a, b; Russac et al. 2019). The change can occur continually
or as a slow transition between stationary plateaus, making it considerably more difficult to
deal with, theoretically and empirically. In a non-stationary MDP, the non-stationarities can
manifest in the dynamics p (Nilim and El Ghaoui 2005; Da Silva et al. 2006; Xu and Mannor
2007; Lim et al. 2013; Abdallah and Kaisers 2016), in the reward process r (Even-dar et al.
2005; Dick et al. 2014), or in both conjointly (Yu and Mannor 2009a, b; Abbasi-Yadkori et al.
2013; Gajane et al. 2018; Padakandla et al. 2019; Yu and Sra 2019; Lecarpentier et al. 2019).
The adversarial bilevel optimization problem—guiding the adaptive tuning of the reward for
every policy update—present in this work is reminiscent of the stream of research pioneered
by Auer et al. (1995) in which the reward is generated by an omniscient adversary, either
arbitrarily or adaptively with potentially malevolent drive (Yu and Mannor 2009a, b; Lim
et al. 2013; Gajane et al. 2018; Yu and Sra 2019). Non-stationary environments are almost
exclusively tackled from a theoretical perspective in the literature (cf. previous references in
this section). Specifically, in the drifting case, the non-stationarities are traditionally dealt
with via the use of sliding windows. The accompanying (dynamic) regret analyses all rely
on strict assumptions. In the switching case, one needs to know the number of occurring
switches beforehand, while in the drifting case, the change variation need be upper-bounded.
Specifically, (Besbes et al. 2014; Cheung et al. 2019a) assume the total change to be upper-
bounded by some preset variation budget, while (Cheung et al. 2019b) assumes the variations
are uniformly bounded in time. (Ortner et al. 2019) assumes that the incremental variation
[as opposed to total in (Besbes et al. 2014; Cheung et al. 2019a)] is upper-bounded by a
per-change threshold. Finally, in the same vein, (Lecarpentier et al. 2019) posits regular evo-
lution, by making the assumption that both the transition and reward functions are Lipschitz-
continuous w.r.t. time.

Appendix 3: Adaptive Policy Update based on Gradient Similarities

See Appendix Fig. 12.

1504 Machine Learning (2022) 111:1431–1521

1 3

(b)

(a)

Fig. 12 Comparison of the gradient used to update the policy in this work, involving the gradient of the
state-action value, against an adaptive hybrid method involving also the gradient of the discriminator, and
combining both gradients based on their cosine similarity. Runtime is 12 h

1505Machine Learning (2022) 111:1431–1521

1 3

Appendix 4: Clipped double‑Q learning and target policy smoothing

See Appendix Fig. 13.

(a)

(b)

Fig. 13 Ablation study on the use of the clipped double Q-Learning (CD) and target smoothing (TS) tech-
niques, both from (Fujimoto et al. 2018), with gradient penalty regularization (Gulrajani et al. 2017). Runt-
ime is 48 h

1506 Machine Learning (2022) 111:1431–1521

1 3

Appendix 5: Gradient penalty

5.1 One‑sided gradient penalty

See Appendix Fig. 14.

(b)

(a)

Fig. 14 Ablation study on the use of the one-sided (OS) penalty variant (Gulrajani et al. 2017). Runtime is
48 h

1507Machine Learning (2022) 111:1431–1521

1 3

5.2 Online batch normalization in discriminator

See Appendix Fig. 15.

5.3 Target k and coefficient � grid search

See Appendix Figs. 16 and 17.

(a)

(b)

Fig. 15 Ablation study on the use of online batch normalization (BN) in the discriminator for its impact on
the gradient penalization (Gulrajani et al. 2017). Runtime is 48 hours

1508 Machine Learning (2022) 111:1431–1521

1 3

(b)

(a)

Fig. 16 Grid search over the hyper-parameter � when k = 1 . Runtime is 12 h

1509Machine Learning (2022) 111:1431–1521

1 3

(a)

(b)

Fig. 17 Grid search over the hyper-parameter � when k = 0 . Runtime is 12 h

1510 Machine Learning (2022) 111:1431–1521

1 3

Appendix 6: Reward formulation
See Appendix Fig. 18.

(a)

(b)

Fig. 18 Comparison of two ways to define the surrogate imitation reward r� from the discriminator D� .
“Minimax” corresponds to rMM

�
∶= − log(1 − D�) , while “Minimax + Non-Saturating” denotes the use of

rNS

�
∶= − log(1 − D�) + log(D�) , as described in Sect. 4. Runtime is 12 h

1511Machine Learning (2022) 111:1431–1521

1 3

Appendix 7: Discount factor

See Appendix Fig. 19.

(a)

(b)

Fig. 19 Grid search over the discount factor � . Runtime is 12 h

1512 Machine Learning (2022) 111:1431–1521

1 3

Appendix 8: Return normalization

See Appendix Fig. 20.

(a)

(b)

Fig. 20 Ablation study on return normalization and pop-Art (van Hasselt et al. 2016). Runtime is 12 h

1513Machine Learning (2022) 111:1431–1521

1 3

Appendix 9: Exploration

See Appendix Fig. 21.

(a)

(b)

1514 Machine Learning (2022) 111:1431–1521

1 3

Fig. 21 Evaluation of the considered method under several exploration strategies. “Action” corre-
sponds to defining �� by directly applying additive Gaussian noise to the action returned by �� . As such,
��(⋅, st) = ��(st) + � , where � ∼ N(0, �) , with � = 0.2 . “Param” denotes the application of additive noise
in the network parameters directly, and “Param + OU” corresponds to the additional application of tem-
porally correlated noise, generated sequentially by a Ornstein-Uhlenbeck process, on the action (cf. Sect. 4
for a description of these two last approaches, and Table 2 for the associated hyper-parameters). Despite
the absence of a clear winner, we use the combination of parameter noise and temporally correlated action
noise in every experiment reported in this work, as it seems to yield the best results. Runtime is 12 h

Author contributions Conceptualization: Lionel Blondé; Methodology: Lionel Blondé; Formal analysis
and investigation: Lionel Blondé; Writing—original draft preparation: Lionel Blondé; Writing—review and
editing: Lionel Blondé, Pablo Strasser, Alexandros Kalousis; Funding acquisition: Alexandros Kalousis;
Resources: Lionel Blondé, Alexandros Kalousis; Supervision: Alexandros Kalousis.

Funding Open access funding provided by University of Geneva. This work was supported by the Swiss
National Science Foundation grant number CSSII5_177179 “Modeling pathological gait resulting from
motor impairment”.

Availability of data and materials The simulated robotics, continuous control environments considered in
this work are built with the MuJoCo (Todorov et al. 2012) physics engine, and provided to the commu-
nity through the OpenAI Gym API (Brockman et al. 2016). Note, to use these environments, one needs a
MuJoCo license, which can be obtained from https:// www. roboti. us/ licen se. html.

Code availability SAM (Blondé and Kalousis 2019) implementations: https:// github. com/ lione lblon de/ sam-
tf (TensorFlow), https:// github. com/ lione lblon de/ sam- pytor ch (PyTorch). SAM augmented with the exten-
sions implemented in this work: https:// github. com/ lione lblon de/ liayn- pytor ch (PyTorch).

Declarations

Conflict of interest The authors declare that they have no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Abbasi-Yadkori, Y., Bartlett, P. L., & Szepesvari, C. (2013). Online learning in Markov decision processes
with adversarially chosen transition probability distributions. Preprint retrieved from arXiv: 1303.
3055

Abbeel, P., & Ng, A. Y. (2004). Apprenticeship learning via inverse reinforcement learning. In It interna-
tional conference on machine learning (ICML). https:// doi. org/ 10. 1145/ 10153 30. 10154 30

Abdallah, S., & Kaisers, M. (2016). Addressing environment non-stationarity by repeating Q-learning
updates. Journal of Machine Learning Research (JMLR), 17(1), 1582–1612. https:// doi. org/ 10. 5555/
29466 45. 29466 91

Achiam, J., Knight, E., & Abbeel, P. (2019). Towards characterizing divergence in deep q-learning. Preprint
retrieved from arXiv: 1903. 08894

◂

https://www.roboti.us/license.html
https://github.com/lionelblonde/sam-tf
https://github.com/lionelblonde/sam-tf
https://github.com/lionelblonde/sam-pytorch
https://github.com/lionelblonde/liayn-pytorch
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1303.3055
http://arxiv.org/abs/1303.3055
https://doi.org/10.1145/1015330.1015430
https://doi.org/10.5555/2946645.2946691
https://doi.org/10.5555/2946645.2946691
http://arxiv.org/abs/1903.08894

1515Machine Learning (2022) 111:1431–1521

1 3

Anava, O., & Karnin, Z. (2016). Multi-armed Bandits: Competing with optimal sequences. In Neural infor-
mation processing systems (NeurIPS). https:// papers. nips. cc/ paper/ 6341- multi- armed- bandi ts- compe
ting- with- optim al- seque nces. pdf

Arjovsky, M., & Bottou, L. (2017). Towards principled methods for training generative adversarial net-
works. In International conference on learning representations (ICLR). Preprint retrieved from arXiv:
1701. 04862

Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN. Preprint retrieved from arXiv: 1701.
07875

Atkeson, C. G., & Schaal, S. (1997). Robot learning from demonstration. In International conference on
machine learning (ICML) (Vol. 97, pp. 12–20). https:// pdfs. seman ticsc holar. org/ a0e2/ dd2f6 b116a
12b23 5caa9 b8ef8 960f7 afc585. pdf

Auer, P., Cesa-Bianchi, N., Freund, Y., & Schapire, R. E. (1995). The non-stochastic multi-armed ban-
dit problem. Symposium on Foundations of Computer Science. https:// cseweb. ucsd. edu/ ~yfreu nd/
papers/ bandi ts. pdf

Auer, P., Gajane, P., & Ortner, R. (2019). Adaptively tracking the best bandit arm with an unknown
number of distribution changes. In Conference on learning theory (COLT). http:// proce edings. mlr.
press/ v99/ auer1 9a/ auer1 9a. pdf

Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. Preprint retrieved from arXiv: 1607.
06450

Bagnell, J. A. (2015). An invitation to imitation. Tech. rep., Carnegie Mellon, Robotics Institute. https://
www. ri. cmu. edu/ pub_ files/ 2015/3/ Invit ation ToImi tation_ 3_ 1415. pdf

Baram, N., Anschel, O., Caspi, I., & Mannor, S. (2017). End-to-end differentiable adversarial imita-
tion learning. In International conference on machine learning (ICML) (pp. 390–399). http:// proce
edings. mlr. press/ v70/ baram 17a/ baram 17a. pdf

Besbes, O., Gur, Y., & Zeevi, A. (2014). Stochastic multi-armed-bandit problem with non-stationary
rewards. In Neural information processing systems (NeurIPS). http:// papers. nips. cc/ paper/ 5378-
stoch astic- multi- armed- bandit- probl em- with- non- stati onary- rewar ds. pdf

Biewald, L. (2020). Experiment tracking with weights and biases. https:// www. wandb. com/
Billard, A., Calinon, S., Dillmann, R., & Schaal, S. (2008). Robot programming by demonstration. In Bruno,

S., & Oussama, K. (Eds.) Springer handbook of robotics (pp. 1371–1394). Springer. http:// link. sprin
ger. com/ refer encew orken try/ 10. 1007/ 978-3- 540- 30301-5_ 60

Bishop, C. M. (1995). Training with noise is equivalent to Tikhonov regularization. Neural Computation,
7(1), 108–116. https:// doi. org/ 10. 1162/ neco. 1995.7. 1. 108

Blondé, L., & Kalousis, A. (2019). Sample-efficient imitation learning via generative adversarial nets. In
International conference on artificial intelligence and statistics (AISTATS). Preprint retrieved from
arXiv: 1809. 02064

Borsa, D., Piot, B., Munos, R., & Pietquin, O. (2017). Observational learning by reinforcement learning. In
Neural information processing systems (NeurIPS). Preprint retrieved from arXiv: 1706. 06617

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba, W. (2016).
OpenAI Gym. Preprint retrieved from arXiv: 1606. 01540

Burda, Y., Edwards, H., Storkey, A., & Klimov, O. (2018). Exploration by random network distillation.
Preprint retrieved from arXiv: 1810. 12894

Carpenter, G. A., & Grossberg, S. (1987). A massively parallel architecture for a self-organizing neural
pattern recognition machine. Computer Vision, Graphics, and Image Processing, 37(1), 54–115.
http:// techl ab. bu. edu/ files/ resou rces/ artic les_ cns/ Carpe nterG rossb erg19 87. pdf

Chen, Y., Lee, C. W., Luo, H., & Wei, C. Y. (2019). A new algorithm for non-stationary contextual ban-
dits: Efficient, optimal, and parameter-free. In Conference on learning theory (COLT). Preprint
retrieved from arXiv: 1902. 00980

Cheung, W. C., Simchi-Levi, D., & Zhu, R. (2019). Learning to optimize under non-stationarity. In
International conference on artificial intelligence and statistics (AISTATS). Preprint retrieved
from arXiv: 1810. 03024

Cheung, W. C., Simchi-Levi, D., & Zhu, R. (2019). Reinforcement learning under drift. Preprint
retrieved from arXiv: 1906. 02922

Cisse, M., Bojanowski, P., Grave, E., Dauphin, Y., & Usunier, N. (2017). Parseval networks: Improving
robustness to adversarial examples. Preprint retrieved from arXiv: 1704. 08847

Da Silva, B. C., Basso, E. W., Bazzan, A. L. C., & Engel, P. M. (2006). Dealing with non-stationary
environments using context detection. In International conference on machine learning (ICML).
https:// dl. acm. org/ citat ion. cfm? id= 11438 72

https://papers.nips.cc/paper/6341-multi-armed-bandits-competing-with-optimal-sequences.pdf
https://papers.nips.cc/paper/6341-multi-armed-bandits-competing-with-optimal-sequences.pdf
http://arxiv.org/abs/1701.04862
http://arxiv.org/abs/1701.04862
http://arxiv.org/abs/1701.07875
http://arxiv.org/abs/1701.07875
https://pdfs.semanticscholar.org/a0e2/dd2f6b116a12b235caa9b8ef8960f7afc585.pdf
https://pdfs.semanticscholar.org/a0e2/dd2f6b116a12b235caa9b8ef8960f7afc585.pdf
https://cseweb.ucsd.edu/%7eyfreund/papers/bandits.pdf
https://cseweb.ucsd.edu/%7eyfreund/papers/bandits.pdf
http://proceedings.mlr.press/v99/auer19a/auer19a.pdf
http://proceedings.mlr.press/v99/auer19a/auer19a.pdf
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
https://www.ri.cmu.edu/pub_files/2015/3/InvitationToImitation_3_1415.pdf
https://www.ri.cmu.edu/pub_files/2015/3/InvitationToImitation_3_1415.pdf
http://proceedings.mlr.press/v70/baram17a/baram17a.pdf
http://proceedings.mlr.press/v70/baram17a/baram17a.pdf
http://papers.nips.cc/paper/5378-stochastic-multi-armed-bandit-problem-with-non-stationary-rewards.pdf
http://papers.nips.cc/paper/5378-stochastic-multi-armed-bandit-problem-with-non-stationary-rewards.pdf
https://www.wandb.com/
http://link.springer.com/referenceworkentry/10.1007/978-3-540-30301-5_60
http://link.springer.com/referenceworkentry/10.1007/978-3-540-30301-5_60
https://doi.org/10.1162/neco.1995.7.1.108
http://arxiv.org/abs/1809.02064
http://arxiv.org/abs/1706.06617
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1810.12894
http://techlab.bu.edu/files/resources/articles_cns/CarpenterGrossberg1987.pdf
http://arxiv.org/abs/1902.00980
http://arxiv.org/abs/1810.03024
http://arxiv.org/abs/1906.02922
http://arxiv.org/abs/1704.08847
https://dl.acm.org/citation.cfm?id=1143872

1516 Machine Learning (2022) 111:1431–1521

1 3

Dick, T., Gyorgy, A., & Szepesvari, C. (2014). Online learning in Markov decision processes with
changing cost sequences. In International conference on machine learning (ICML). http:// proce
edings. mlr. press/ v32/ dick14. html

Dinh, L., Pascanu, R., Bengio, S., & Bengio, Y. (2017). Sharp minima can generalize for deep nets. In
International conference on machine learning (ICML). Preprint retrieved from arXiv: 1703. 04933

Doersch, C., Gupta, A., Efros, A. A. (2015). Unsupervised visual representation learning by context
prediction. In International conference on computer vision (ICCV). Preprint retrieved from arXiv:
1505. 05192

Du, Y., Czarnecki, W. M., Jayakumar, S. M., Pascanu, R., & Lakshminarayanan, B. (2018). Adapting
auxiliary losses using gradient similarity. Preprint retrieved from arXiv: 1812. 02224

Duan, Y., Andrychowicz, M., Stadie, B. C., Ho, J., Schneider, J., Sutskever, I., Abbeel, P., & Zaremba,
W. (2017). One-shot imitation learning. In Neural Information Processing Systems (NeurIPS).
Preprint retrieved from arXiv: 1703. 07326

Even-dar, E., Kakade, S. M., & Mansour, Y. (2005). Experts in a Markov decision process. In Neural
Information Processing Systems (NeurIPS). http:// papers. nips. cc/ paper/ 2730- exper ts- in-a- markov-
decis ion- proce ss. pdf

Everitt, T., Krakovna, V., Orseau, L., Hutter, M., & Legg, S. (2017). Reinforcement learning with a cor-
rupted reward channel. In International joint conference on artificial intelligence (IJCAI). Preprint
retrieved from arXiv: 1705. 08417.

Fernando Hernandez-Garcia, J., & Sutton, R. S. (2019). Understanding multi-step deep reinforcement
learning: A systematic study of the DQN target. Preprint retrieved from arXiv: 1901. 07510

Finlay, C., Calder, J., Abbasi, B., & Oberman, A. (2018). Lipschitz regularized Deep Neural Networks
generalize and are adversarially robust. Preprint retrieved from arXiv: 1808. 09540

Fonteneau, R., Murphy, S. A., Wehenkel, L., & Ernst, D. (2010). Model-free Monte Carlo–like policy
evaluation. In International conference on artificial intelligence and statistics (AISTATS). http://
proce edings. mlr. press/ v9/ fonte neau1 0a/ fonte neau1 0a. pdf

Fonteneau, R., Murphy, S. A., Wehenkel, L., & Ernst, D. (2013). Batch mode reinforcement learning
based on the synthesis of artificial trajectories. Annals of Operations Research, 208(1), 383–416.
http:// dx. doi. org/ 10. 1007/ s10479- 012- 1248-5

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Osband, I., Graves, A., Mnih, V., Munos, R., Hassa-
bis, D., Pietquin, O., Blundell, C., & Legg, S. (2017). Noisy networks for exploration. Preprint
retrieved from arXiv: 1706. 10295

Fu, J., Kumar, A., Soh, M., & Levine, S. (2019). Diagnosing bottlenecks in deep Q-learning algorithms.
In International conference on machine learning (ICML). Preprint retrieved from arXiv: 1902.
10250

Fujimoto, S., van Hoof, H., & Meger, D. (2018). Addressing function approximation error in actor-critic
methods. In International conference on machine learning (ICML). Preprint retrieved from arXiv:
1802. 09477

Gajane, P., Ortner, R., & Auer, P. (2018). A sliding-window algorithm for Markov decision processes
with arbitrarily changing rewards and transitions. Preprint retrieved from arXiv: 1805. 10066

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on concept drift
adaptation. ACM Computing Surveys (CSUR). https:// www. win. tue. nl/ ~mpech en/ publi catio ns/ pubs/
Gama_ ACMCS_ Adapt ation CD_ accep ted. pdf

Garivier, A., & Moulines, E. (2011). On upper-confidence bound policies for switching bandit problems.
In Algorithmic learning theory (ALT) (pp. 174–188). Springer. http:// dx. doi. org/ 10. 1007/ 978-3- 642-
24412-4_ 16

Goodfellow, I. (2017). NIPS 2016 tutorial: Generative adversarial networks. Preprint retrieved from arXiv:
1701. 00160

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Ben-
gio, Y. (2014). Generative adversarial nets. In Neural information processing systems (NIPS). http://
papers. nips. cc/ paper/ 5423- gener ative- adver sarial- nets. pdf

Gouk, H., Frank, E., Pfahringer, B., & Cree, M. J. (2021). Regularisation of neural networks by
enforcing Lipschitz continuity. Machine Learning, 110(2), 393–416. https:// doi. org/ 10. 1007/
s10994- 020- 05929-w

Gu, Z., Li, Z., Di, X., & Shi, R. (2020). An LSTM-based autonomous driving model using Waymo open
dataset. Preprint retrieved from arXiv: 2002. 05878

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. (2017). Improved training of Was-
serstein GANs. In Neural information processing systems (NIPS). Preprint retrieved from arXiv: 1704.
00028 v3

http://proceedings.mlr.press/v32/dick14.html
http://proceedings.mlr.press/v32/dick14.html
http://arxiv.org/abs/1703.04933
http://arxiv.org/abs/1505.05192
http://arxiv.org/abs/1505.05192
http://arxiv.org/abs/1812.02224
http://arxiv.org/abs/1703.07326
http://papers.nips.cc/paper/2730-experts-in-a-markov-decision-process.pdf
http://papers.nips.cc/paper/2730-experts-in-a-markov-decision-process.pdf
http://arxiv.org/abs/1705.08417
http://arxiv.org/abs/1901.07510
http://arxiv.org/abs/1808.09540
http://proceedings.mlr.press/v9/fonteneau10a/fonteneau10a.pdf
http://proceedings.mlr.press/v9/fonteneau10a/fonteneau10a.pdf
http://dx.doi.org/10.1007/s10479-012-1248-5
http://arxiv.org/abs/1706.10295
http://arxiv.org/abs/1902.10250
http://arxiv.org/abs/1902.10250
http://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1805.10066
https://www.win.tue.nl/%7empechen/publications/pubs/Gama_ACMCS_AdaptationCD_accepted.pdf
https://www.win.tue.nl/%7empechen/publications/pubs/Gama_ACMCS_AdaptationCD_accepted.pdf
http://dx.doi.org/10.1007/978-3-642-24412-4_16
http://dx.doi.org/10.1007/978-3-642-24412-4_16
http://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1701.00160
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://doi.org/10.1007/s10994-020-05929-w
https://doi.org/10.1007/s10994-020-05929-w
http://arxiv.org/abs/2002.05878
http://arxiv.org/abs/1704.00028v3
http://arxiv.org/abs/1704.00028v3

1517Machine Learning (2022) 111:1431–1521

1 3

Ha, S., Xu, P., Tan, Z., Levine, S., & Tan, J. (2020). Learning to walk in the real world with minimal human
effort. Preprint retrieved from arXiv: 2002. 08550

Hafner, R., & Riedmiller, M. (2011). Reinforcement learning in feedback control. Machine Learning, 84(1–
2), 137–169. https:// link. sprin ger. com/ artic le/ 10. 1007/ s10994- 011- 5235-x

Hanna, J. P., & Stone, P. (2017). Grounded action transformation for robot learning in simulation. In AAAI
conference on artificial intelligence. https:// www. cs. utexas. edu/ ~jphan na/ gsl. pdf

Harada, D. (1997). Reinforcement learning with time. In Conference on artificial intelligence (AAAI).
https:// www. aaai. org/ Papers/ AAAI/ 1997/ AAAI97- 090. pdf

Hardt, M., Recht, B., & Singer, Y. (2015). Train faster, generalize better: Stability of stochastic gradient
descent. Preprint retrieved from arXiv: 1509. 01240

Heckman, J. J. (1979). Sample selection bias as a specification error. Econometrica, 47(1), 153–161. http://
www. jstor. org/ stable/ 19123 52

Held, D., McCarthy, Z., Zhang, M., Shentu, F., & Abbeel, P. (2017). Probabilistically safe policy transfer.
Preprint retrieved from arXiv: 1705. 05394

Hernandez, D., & Brown, T. B. (2020). Measuring the algorithmic efficiency of neural networks. https://
cdn. openai. com/ papers/ ai_ and_ effic iency. pdf

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot, B., Azar,
M., & Silver, D. (2017). Rainbow: Combining improvements in deep reinforcement learning. Preprint
retrieved from arXiv: 1710. 02298

Ho, J., & Ermon, S. (2016). Generative adversarial imitation learning. In Neural information processing
systems (NIPS). Preprint retrieved from arXiv: 1606. 03476

Ho, J., Gupta, J. K., & Ermon, S. (2016). Model-free imitation learning with policy optimization. In Inter-
national conference on machine learning (ICML). Preprint retrieved from arXiv: 1605. 08478

Hochreiter, S., & Schmidhuber, J. (1997). Flat minima. Neural Computation, 9(1), 1–42. https:// www. ncbi.
nlm. nih. gov/ pubmed/ 91178 94

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing inter-
nal covariate shift. Preprint retrieved from arXiv: 1502. 03167

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T., Leibo, J. Z., Silver, D., & Kavukcuoglu, K. (2016).
Reinforcement learning with unsupervised auxiliary tasks. Preprint retrieved from arXiv: 1611. 05397

Jaksch, T., Ortner, R., & Auer, P. (2010). Near-optimal regret bounds for reinforcement learning. Journal
of Machine Learning Research (JMLR), 11, 1563–1600 . http:// www. jmlr. org/ papers/ volum e11/ jaksc
h10a/ jaksc h10a. pdf

Kaelbling, L. P. (1993). Learning to achieve goals. In International joint conference on artificial intelligence
(IJCAI). https:// cites eerx. ist. psu. edu/ viewd oc/ downl oad? doi= 10.1. 1. 51. 3077& rep= rep1& type= pdf

Kahn, G., Zhang, T., Levine, S., & Abbeel, P. (2016). PLATO: Policy learning using adaptive trajectory
optimization. Preprint retrieved from arXiv: 1603. 00622

Karpathy, A., & Van De Panne, M. (2012). Curriculum learning for motor skills. In Advances in artificial
intelligence (Canadian conference on artificial intelligence) (pp. 325–330). http:// link. sprin ger. com/
conte nt/ pdf/ 10. 1007/ 978-3- 642- 30353-1. pdf# page= 339

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., & Tang, P. T. P. (2017). On large-batch training
for deep learning: Generalization gap and sharp minima. In International conference on learning rep-
resentations (ICLR). Preprint retrieved from arXiv: 1609. 04836

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. Preprint retrieved from arXiv:
1412. 6980

Kodali, N., Abernethy, J., Hays, J., & Kira, Z. (2017). How to train your DRAGAN. Preprint retrieved from
arXiv: 1705. 07215

Kostrikov, I., Agrawal, K. K., Dwibedi, D., Levine, S., & Tompson, J. (2019). Discriminator-actor-critic:
Addressing sample inefficiency and reward bias in adversarial imitation learning. In International
conference on learning representations (ICLR). Preprint retrieved from arXiv: 1809. 02925

Kurach, K., Lucic, M., Zhai, X., Michalski, M., & Gelly, S. (2018). The GAN landscape: Losses, architec-
tures, regularization, and normalization. Preprint retrieved from arXiv: 1807. 04720

Lange, S., Gabel, T., & Riedmiller, M. (2012). Batch reinforcement learning. In Wiering, M., & van Otterlo,
M. (Eds.) Reinforcement learning: State-of-the-art (pp. 45–73). Springer. https:// doi. org/ 10. 1007/
978-3- 642- 27645-3_2

Lecarpentier, E., & Rachelson, E. (2019). Non-stationary Markov decision processes, a worst-case approach
using model-based reinforcement learning. In Neural information processing systems (NeurIPS). Pre-
print retrieved from arXiv: 1904. 10090

Li, H., Xu, Z., Taylor, G., Studer, C., & Goldstein, T. (2018). Visualizing the loss landscape of neural nets.
In Neural information processing systems (NeurIPS). Preprint retrieved from arXiv: 1712. 09913

http://arxiv.org/abs/2002.08550
https://link.springer.com/article/10.1007/s10994-011-5235-x
https://www.cs.utexas.edu/%7ejphanna/gsl.pdf
https://www.aaai.org/Papers/AAAI/1997/AAAI97-090.pdf
http://arxiv.org/abs/1509.01240
http://www.jstor.org/stable/1912352
http://www.jstor.org/stable/1912352
http://arxiv.org/abs/1705.05394
https://cdn.openai.com/papers/ai_and_efficiency.pdf
https://cdn.openai.com/papers/ai_and_efficiency.pdf
http://arxiv.org/abs/1710.02298
http://arxiv.org/abs/1606.03476
http://arxiv.org/abs/1605.08478
https://www.ncbi.nlm.nih.gov/pubmed/9117894
https://www.ncbi.nlm.nih.gov/pubmed/9117894
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1611.05397
http://www.jmlr.org/papers/volume11/jaksch10a/jaksch10a.pdf
http://www.jmlr.org/papers/volume11/jaksch10a/jaksch10a.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.3077&rep=rep1&type=pdf
http://arxiv.org/abs/1603.00622
http://link.springer.com/content/pdf/10.1007/978-3-642-30353-1.pdf#page=339
http://link.springer.com/content/pdf/10.1007/978-3-642-30353-1.pdf#page=339
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1705.07215
http://arxiv.org/abs/1809.02925
http://arxiv.org/abs/1807.04720
https://doi.org/10.1007/978-3-642-27645-3_2
https://doi.org/10.1007/978-3-642-27645-3_2
http://arxiv.org/abs/1904.10090
http://arxiv.org/abs/1712.09913

1518 Machine Learning (2022) 111:1431–1521

1 3

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra, D. (2016). Con-
tinuous control with deep reinforcement learning. In International conference on learning representa-
tions (ICLR). Preprint retrieved from arXiv: 1509. 02971

Lim, S.H., Xu, H., & Mannor, S. (2013). Reinforcement learning in robust Markov decision processes. In
Neural information processing systems (NeurIPS). http:// papers. nips. cc/ paper/ 5183- reinf orcem ent-
learn ing- in- robust- markov- decis ion- proce sses. pdf

Lin, L. J. (1992). Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine Learning, 8(3), 293–321. https:// doi. org/ 10. 1007/ BF009 92699

Loshchilov, I., & Hutter, F. (2017). Fixing weight decay regularization in Adam. Preprint retrieved from
arXiv: 1711. 05101

Lucic, M., Kurach, K., Michalski, M., Gelly, S., & Bousquet, O. (2017). Are GANs created equal? A large-
scale study. Preprint retrieved from arXiv: 1711. 10337

Luo, H., Wei, C. Y., Agarwal, A., & Langford, J. (2018). Efficient contextual bandits in non-stationary
worlds. In Conference on learning theory (COLT). Preprint retrieved from arXiv: 1708. 01799

Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural network acoustic
models. In International conference on machine learning (ICML). http:// cites eerx. ist. psu. edu/ viewd
oc/ downl oad? doi= 10.1. 1. 693. 1422& rep= rep1& type= pdf

Mescheder, L., Geiger, A., & Nowozin, S. (2018). Which training methods for GANs do actually converge?
In International conference on machine learning (ICML). Preprint retrieved from arXiv: 1801. 04406

Mirowski, P., Pascanu, R., Viola, F., Soyer, H., Ballard, A. J., Banino, A., Denil, M., Goroshin, R., Sifre,
L., Kavukcuoglu, K., Kumaran, D., & Hadsell, R. (2016). Learning to navigate in complex envi-
ronments. Preprint retrieved from arXiv: 1611. 03673

Miyato, T., Kataoka, T., Koyama, M., & Yoshida, Y. (2018). Spectral normalization for generative
adversarial networks. In International conference on learning representations (ICLR). https://
openr eview. net/ pdf? id= B1QRg ziT-

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M.
(2013). Playing Atari with deep reinforcement learning. Preprint retrieved from arXiv: 1312. 5602

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller,
M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H.,
Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D. (2015). Human-level control through deep
reinforcement learning. Nature, 518(7540), 529–533. https:// doi. org/ 10. 1038/ natur e14236

Müller, R., Kornblith, S., & Hinton, G. E. (2019). When does label smoothing help? In Neural informa-
tion processing systems (NeurIPS). http:// papers. nips. cc/ paper/ 8717- when- does- label- smoot hing-
help. pdf

Ng, A. Y., Harada, D., & Russell, S. (1999). Policy invariance under reward transformations: Theory
and application to reward shaping. In International conference on machine learning (ICML) (pp.
278–287). http:// www. robot ics. stanf ord. edu/ ~ang/ papers/ shapi ng- icml99. pdf

Ng, A. Y., & Russell, S. J. (2000). Algorithms for inverse reinforcement learning. In International confer-
ence on machine learning (ICML) (pp. 663–670). http:// ai. stanf ord. edu/ ~ang/ papers/ icml00- irl. pdf

Nilim, A., & El Ghaoui, L. (2005). Robust control of Markov decision processes with uncertain transi-
tion matrices. Operations Research, 53(5), 780–798. https:// doi. org/ 10. 1287/ opre. 1050. 0216

OpenAI: Solving Rubik’s cube with a robot Hand (2019). https:// d4muc fpksy wv. cloud front. net/ papers/
solvi ng- rubiks- cube. pdf

Orsini, M., Raichuk, A., Hussenot, L., Vincent, D., Dadashi, R., Girgin, S., Geist, M., Bachem, O., Pie-
tquin, O., & Andrychowicz, M. (2021). What matters for adversarial imitation learning? Preprint
retrieved from arXiv: 2106. 00672

Ortner, R., Gajane, P., & Auer, P. (2019). Variational regret bounds for reinforcement learning. Preprint
retrieved from arXiv: 1905. 05857

Padakandla, S., Prabuchandran, K. J., & Bhatnagar, S. (2019). Reinforcement learning in non-stationary
environments. Preprint retrieved from arXiv: 1905. 03970

Pardo, F., Tavakoli, A., Levdik, V., & Kormushev, P. (2018). Time limits in reinforcement learning. In
International conference on machine learning (ICML). Preprint retrieved from arXiv: 1712. 00378

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., & Chintala, S. (2019). PyTorch: An imperative style, high-performance
deep learning library. In Neural information processing systems (NeurIPS). http:// papers. nips. cc/
paper/ 9015- pytor ch- an- imper ative- style- high- perfo rmance- deep- learn ing- libra ry. pdf

Peng, J., & Williams, R. J. (1996). Incremental multi-step Q-learning. Machine Learning, 22(1-3), 283–
290. https:// link. sprin ger. com/ artic le/ 10. 1023/A: 10180 76709 321

http://arxiv.org/abs/1509.02971
http://papers.nips.cc/paper/5183-reinforcement-learning-in-robust-markov-decision-processes.pdf
http://papers.nips.cc/paper/5183-reinforcement-learning-in-robust-markov-decision-processes.pdf
https://doi.org/10.1007/BF00992699
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.10337
http://arxiv.org/abs/1708.01799
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.693.1422&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.693.1422&rep=rep1&type=pdf
http://arxiv.org/abs/1801.04406
http://arxiv.org/abs/1611.03673
https://openreview.net/pdf?id=B1QRgziT-
https://openreview.net/pdf?id=B1QRgziT-
http://arxiv.org/abs/1312.5602
https://doi.org/10.1038/nature14236
http://papers.nips.cc/paper/8717-when-does-label-smoothing-help.pdf
http://papers.nips.cc/paper/8717-when-does-label-smoothing-help.pdf
http://www.robotics.stanford.edu/%7eang/papers/shaping-icml99.pdf
http://ai.stanford.edu/%7eang/papers/icml00-irl.pdf
https://doi.org/10.1287/opre.1050.0216
https://d4mucfpksywv.cloudfront.net/papers/solving-rubiks-cube.pdf
https://d4mucfpksywv.cloudfront.net/papers/solving-rubiks-cube.pdf
http://arxiv.org/abs/2106.00672
http://arxiv.org/abs/1905.05857
http://arxiv.org/abs/1905.03970
http://arxiv.org/abs/1712.00378
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://link.springer.com/article/10.1023/A:1018076709321

1519Machine Learning (2022) 111:1431–1521

1 3

Peng, X. B., Kanazawa, A., Toyer, S., Abbeel, P., & Levine, S. (2018). Variational discriminator bot-
tleneck: Improving imitation learning, inverse RL, and GANs by constraining information flow.
Preprint retrieved from arXiv: 1810. 00821

Pfau, D., & Vinyals, O. (2016). Connecting generative adversarial networks and actor-critic methods.
Preprint retrieved from arXiv: 1610. 01945

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R.Y., Chen, X., Asfour, T., Abbeel, P., &
Andrychowicz, M. (2018). Parameter space noise for exploration. In International conference on
learning representations (ICLR). Preprint retrieved from arXiv: 1706. 01905

Pomerleau, D. (1989). ALVINN: An autonomous land vehicle in a neural network. In Neural informa-
tion processing systems (NIPS) (pp. 305–313). http:// papers. nips. cc/ paper/ 95- alvinn- an- auton
omous- land- vehic le- in-a- neural- netwo rk. pdf

Pomerleau, D. (1990). Rapidly adapting artificial neural networks for autonomous navigation. In Neural
information processing systems (NIPS) (pp. 429–435). http:// papers. nips. cc/ paper/ 432- rapid ly-
adapt ing- artifi cial- neural- netwo rks- for- auton omous- navig ation. pdf

Puterman, M. L. (1994). Markov decision processes: Discrete stochastic dynamic programming. Wiley.
Ratliff, N., Bagnell, J. A., Srinivasa, S. S. (2007). Imitation learning for locomotion and manipulation. In

IEEE-RAS international conference on humanoid robots (pp. 392–397). https:// doi. org/ 10. 1109/
ICHR. 2007. 48138 99

Ray, A., Achiam, J., & Amodei, D. (2019). Benchmarking safe exploration in deep reinforcement learn-
ing. https:// d4muc fpksy wv. cloud front. net/ safexp- short. pdf

Reed, S., Aytar, Y., Wang, Z., Paine, T., van den Oord, A., Pfaff, T., Gomez, S., Novikov, A., Budden, D., &
Vinyals, O. (2018). Visual imitation with a minimal adversary. Tech. rep., Deepmind.

Robbins, H. (1952). Some aspects of the sequential design of experiments. Bulletin of the American Math-
ematical Society, 58(5), 527–535. https:// proje cteuc lid. org/ downl oad/ pdf_1/ euclid. bams/ 11835 17370

Romoff, J., Henderson, P., Piché, A., Francois-Lavet, V., & Pineau, J. (2018). Reward estimation for vari-
ance reduction in deep reinforcement learning. In Conference on robot learning (CoRL). Preprint
retrieved from arXiv: 1805. 03359

Rosca, M., Weber, T., Gretton, A., & Mohamed, S. (2020). A case for new neural network smoothness con-
straints. In NeurIPS workshop “I Can’t Believe It’s Not Better”. http:// proce edings. mlr. press/ v137/
rosca 20a/ rosca 20a. pdf

Ross, S., & Bagnell, J. A. (2010). Efficient reductions for imitation learning. In International conference on
artificial intelligence and statistics (AISTATS). http:// www. jmlr. org/ proce edings/ papers/ v9/ ross1 0a/
ross1 0a. pdf

Roth, K., Lucchi, A., Nowozin, S., & Hofmann, T. (2017) Stabilizing training of generative adversarial net-
works through regularization. In Neural information processing systems (NeurIPS). Preprint retrieved
from arXiv: 1705. 09367 v2

Russac, Y., Vernade, C., & Cappé, O. (2019). Weighted linear bandits for non-stationary environments. In
Neural information processing systems (NeurIPS) . Preprint retrieved from arXiv: 1909. 09146

Rusu, A. A., Colmenarejo, S. G., Gulcehre, C., Desjardins, G., Kirkpatrick, J., Pascanu, R., Mnih, V.,
Kavukcuoglu, K., & Hadsell, R. (2015). Policy distillation. Preprint retrieved from arXiv: 1511. 06295

Saxe, A. M., McClelland, J. L., & Ganguli, S. (2013). Exact solutions to the nonlinear dynamics of learning
in deep linear neural networks. Preprint retrieved from arXiv: 1312. 6120

Schaal, S. (1997)(1997) Learning from demonstration. In Neural information processing systems (NeurIPS).
http:// papers. nips. cc/ paper/ 1224- learn ing- from- demon strat ion. pdf

Schlimmer, J. C., & Granger Jr., R. H. (1986). Incremental learning from noisy data. Machine Learning.
https:// link. sprin ger. com/ artic le/ 10. 1007/ BF001 16895

Schulman, J., Levine, S., Moritz, P., Jordan, M. I., & Abbeel, P. (2015). Trust region policy optimization.
In International conference on machine learning (ICML). Preprint retrieved from arXiv: 1502. 05477

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Oleg, K. (2017). Proximal policy optimization algo-
rithms. https:// openai- public. s3- us- west-2. amazo naws. com/ blog/ 2017- 07/ ppo/ ppo- arxiv. pdf

Shelhamer, E., Mahmoudieh, P., Argus, M., & Darrell, T. (2016). Loss is its own reward: Self-supervision
for reinforcement learning. Preprint retrieved from arXiv: 1612. 07307

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antono-
glou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sut-
skever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., & Hassabis, D. (2016). Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587), 484–489. https:// doi.
org/ 10. 1038/ natur e16961

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., & Riedmiller, M. (2014). Deterministic policy
gradient algorithms. In International conference on machine learning (ICML) (pp. 387–395). http://
proce edings. mlr. press/ v32/ silve r14. html

http://arxiv.org/abs/1810.00821
http://arxiv.org/abs/1610.01945
http://arxiv.org/abs/1706.01905
http://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
http://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
http://papers.nips.cc/paper/432-rapidly-adapting-artificial-neural-networks-for-autonomous-navigation.pdf
http://papers.nips.cc/paper/432-rapidly-adapting-artificial-neural-networks-for-autonomous-navigation.pdf
https://doi.org/10.1109/ICHR.2007.4813899
https://doi.org/10.1109/ICHR.2007.4813899
https://d4mucfpksywv.cloudfront.net/safexp-short.pdf
https://projecteuclid.org/download/pdf_1/euclid.bams/1183517370
http://arxiv.org/abs/1805.03359
http://proceedings.mlr.press/v137/rosca20a/rosca20a.pdf
http://proceedings.mlr.press/v137/rosca20a/rosca20a.pdf
http://www.jmlr.org/proceedings/papers/v9/ross10a/ross10a.pdf
http://www.jmlr.org/proceedings/papers/v9/ross10a/ross10a.pdf
http://arxiv.org/abs/1705.09367v2
http://arxiv.org/abs/1909.09146
http://arxiv.org/abs/1511.06295
http://arxiv.org/abs/1312.6120
http://papers.nips.cc/paper/1224-learning-from-demonstration.pdf
https://link.springer.com/article/10.1007/BF00116895
http://arxiv.org/abs/1502.05477
https://openai-public.s3-us-west-2.amazonaws.com/blog/2017-07/ppo/ppo-arxiv.pdf
http://arxiv.org/abs/1612.07307
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
http://proceedings.mlr.press/v32/silver14.html
http://proceedings.mlr.press/v32/silver14.html

1520 Machine Learning (2022) 111:1431–1521

1 3

Singh, S., Lewis, R. L., & Barto, A. G. (2009). Where do rewards come from? http:// www- anw. cs. umass.
edu/ pubs/ 2009/ singh_l_ b_ 09. pdf

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple
way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(56),
1929–1958. https:// jmlr. org/ papers/ v15/ sriva stava 14a. html

Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo, J., Zhou, Y., Chai, Y.,
Caine, B., Vasudevan, V., Han, W., Ngiam, J., Zhao, H., Timofeev, A., Ettinger, S., Krivokon, M.,
Gao, A., Joshi, A., Zhao, S., Cheng, S., Zhang, Y., Shlens, J., Chen, Z., & Anguelov, D. (2019). Scal-
ability in perception for autonomous driving: Waymo open dataset. Preprint retrieved from arXiv:
1912. 04838

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learning, 3(1),
9–44. https:// link. sprin ger. com/ artic le/ 10. 1007/ BF001 15009

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. MIT Press.
Sutton, R. S., McAllester, D. A., Singh, S. P., & Mansour, Y. (1999). Policy gradient methods for reinforce-

ment learning with function approximation. In Neural information processing systems (NIPS) (pp.
1057–1063). http:// papers. nips. cc/ paper/ 1713- policy- gradi ent- metho ds- for- reinf orcem ent- learn ing-
with- funct ion- appro ximat ion. pdf

Syed, U., Bowling, M., & Schapire, R. E. (2008). Apprenticeship learning using linear programming. In
International conference on machine learning (ICML) (pp. 1032–1039). https:// doi. org/ 10. 1145/
13901 56. 13902 86

Syed, U., & Schapire, R. E. (2008). A game-theoretic approach to apprenticeship learning. In Neural infor-
mation processing systems (NIPS) (pp. 1449–1456). http:// papers. nips. cc/ paper/ 3293-a- game- theor
etic- appro ach- to- appre ntice ship- learn ing. pdf

Thrun, S., & Schwartz, A. (1993). Issues in using function approximation for reinforcement learning. In
Proceedings of the 1993 connectionist models summer school. Lawrence Erlbaum. https:// www. ri.
cmu. edu/ pub_ files/ pub1/ thrun_ sebas tian_ 1993_1/ thrun_ sebas tian_ 1993_1. pdf

Todorov, E., Erez, T., & Tassa, Y. (2012). MuJoCo: A physics engine for model-based control. In IEEE/RSJ
international conference on intelligent robots and systems (IROS) (pp. 5026–5033). https:// doi. org/ 10.
1109/ IROS. 2012. 63861 09

Uhlenbeck, G. E., & Ornstein, L. S. (1930). On the theory of the Brownian motion. Physical Reviews, 36(5),
823–841. https:// doi. org/ 10. 1103/ PhysR ev. 36. 823

van Hasselt, H. (2010). Double Q-learning. In Neural information processing systems (NeurIPS). https://
papers. nips. cc/ paper/ 3964- double- q- learn ing

van Hasselt, H., Doron, Y., Strub, F., Hessel, M., Sonnerat, N., & Modayil, J. (2018). Deep reinforcement
learning and the deadly triad. Preprint retrieved from arXiv: 1812. 02648

van Hasselt, H., Guez, A., Hessel, M., Mnih, V., & Silver, D. (2016). Learning values across many orders of
magnitude. In Neural information processing systems (NeurIPS). Preprint retrieved from arXiv: 1602.
07714

van Hasselt, H., Guez, A., & Silver, D. (2015). Deep reinforcement learning with double Q-learning. In
AAAI conference on artificial intelligence (pp. 2094–2100). Preprint retrieved from arXiv: 1509. 06461

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Choi, D. H., Powell, R.,
Ewalds, T., Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Danihelka, I., Huang, A., Sifre, L., Cai, T.,
Agapiou, J. P., Jaderberg, M., & Silver, D. (2019). Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature. https:// doi. org/ 10. 1038/ s41586- 019- 1724-z

Wang, R., Ciliberto, C., Amadori, P., & Demiris, Y. (2019). Random expert distillation: Imitation learning
via expert policy support estimation. In International conference on machine learning (ICML). Pre-
print retrieved from arXiv: 1905. 06750

Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R., Kavukcuoglu, K., & de Freitas, N. (2016). Sample
efficient actor-critic with experience replay. Preprint retrieved from arXiv: 1611. 01224

Wang, Z., Merel, J., Reed, S., Wayne, G., de Freitas, N., & Heess, N. (2017). Robust imitation of diverse
behaviors. In Neural information processing systems (NIPS). Preprint retrieved from arXiv: 1707.
02747

Watkins, C. J. C. H. (1989). Learning from delayed rewards. Ph.D. thesis, King’s College. http:// www. cs.
rhul. ac. uk/ ~chrisw/ new_ thesis. pdf

Watkins, C. J. C. H., & Dayan, P. (1992). Technical note: Q-learning. Machine Learning, 8(3), 279–292.
https:// doi. org/ 10. 1023/A: 10226 76722 315

Webb, A. R. (1994). Functional approximation by feed-forward networks: a least-squares approach to gener-
alization. IEEE Transactions on Neural Networks, 5(3), 363–371. https:// doi. org/ 10. 1109/ 72. 286908

Xu, D., & Denil, M. (2019). Positive-unlabeled reward learning. Preprint retrieved from arXiv: 1911. 00459

http://www-anw.cs.umass.edu/pubs/2009/singh_l_b_09.pdf
http://www-anw.cs.umass.edu/pubs/2009/singh_l_b_09.pdf
https://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1912.04838
http://arxiv.org/abs/1912.04838
https://link.springer.com/article/10.1007/BF00115009
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf
https://doi.org/10.1145/1390156.1390286
https://doi.org/10.1145/1390156.1390286
http://papers.nips.cc/paper/3293-a-game-theoretic-approach-to-apprenticeship-learning.pdf
http://papers.nips.cc/paper/3293-a-game-theoretic-approach-to-apprenticeship-learning.pdf
https://www.ri.cmu.edu/pub_files/pub1/thrun_sebastian_1993_1/thrun_sebastian_1993_1.pdf
https://www.ri.cmu.edu/pub_files/pub1/thrun_sebastian_1993_1/thrun_sebastian_1993_1.pdf
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1103/PhysRev.36.823
https://papers.nips.cc/paper/3964-double-q-learning
https://papers.nips.cc/paper/3964-double-q-learning
http://arxiv.org/abs/1812.02648
http://arxiv.org/abs/1602.07714
http://arxiv.org/abs/1602.07714
http://arxiv.org/abs/1509.06461
https://doi.org/10.1038/s41586-019-1724-z
http://arxiv.org/abs/1905.06750
http://arxiv.org/abs/1611.01224
http://arxiv.org/abs/1707.02747
http://arxiv.org/abs/1707.02747
http://www.cs.rhul.ac.uk/%7echrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/%7echrisw/new_thesis.pdf
https://doi.org/10.1023/A:1022676722315
https://doi.org/10.1109/72.286908
http://arxiv.org/abs/1911.00459

1521Machine Learning (2022) 111:1431–1521

1 3

Xu, H., & Mannor, S. (2007). The robustness-performance tradeoff in Markov decision processes. In Neu-
ral information processing systems (NeurIPS). http:// papers. nips. cc/ paper/ 3053- the- robus tness- perfo
rmance- trade off- in- markov- decis ion- proce sses. pdf

Yang, Y. Y., Rashtchian, C., Zhang, H., Salakhutdinov, R., & Chaudhuri, K. (2020). Adversarial robustness
through local lipschitzness. Preprint retrieved from arXiv: 2003. 02460

Yu, J. Y., & Mannor, S. (2009). Arbitrarily modulated Markov decision processes. In Conference on deci-
sion and control (CDC) (pp. 2946–2953). https:// doi. org/ 10. 1109/ CDC. 2009. 54006 62

Yu, J. Y., & Mannor, S. (2009). Online learning in Markov decision processes with arbitrarily changing
rewards and transitions. In International conference on game theory for networks (pp. 314–322).
https:// doi. org/ 10. 1109/ GAMEN ETS. 2009. 51374 16

Yu, T., & Sra, S. (2019). Efficient policy learning for non-stationary MDPs under adversarial manipulation.
Preprint retrieved from arXiv: 1907. 09350

Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2017). mixup: Beyond empirical risk minimization.
Preprint retrieved from arXiv: 1710. 09412

Zhao, J., Mathieu, M., & LeCun, Y. (2017). Energy-based generative adversarial network. In International
conference on learning representations (ICLR). Preprint retrieved from arXiv: 1609. 03126

Ziebart, B. D., Maas, A. L., Bagnell, J. A., & Dey, A. K. (2008). Maximum entropy inverse reinforcement
learning. In AAAI conference on artificial intelligence (pp. 1433–1438). http:// www. aaai. org/ Papers/
AAAI/ 2008/ AAAI08- 227. pdf

Zolna, K., Reed, S., Novikov, A., Colmenarej, S. G., Budden, D., Cabi, S., Denil, M., de Freitas, N., &
Wang, Z. (2019). Task-relevant adversarial imitation learning. Preprint retrieved from arXiv: 1910.
01077

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://papers.nips.cc/paper/3053-the-robustness-performance-tradeoff-in-markov-decision-processes.pdf
http://papers.nips.cc/paper/3053-the-robustness-performance-tradeoff-in-markov-decision-processes.pdf
http://arxiv.org/abs/2003.02460
https://doi.org/10.1109/CDC.2009.5400662
https://doi.org/10.1109/GAMENETS.2009.5137416
http://arxiv.org/abs/1907.09350
http://arxiv.org/abs/1710.09412
http://arxiv.org/abs/1609.03126
http://www.aaai.org/Papers/AAAI/2008/AAAI08-227.pdf
http://www.aaai.org/Papers/AAAI/2008/AAAI08-227.pdf
http://arxiv.org/abs/1910.01077
http://arxiv.org/abs/1910.01077

	Lipschitzness is all you need to tame off-policy generative adversarial imitation learning
	Abstract
	1 Introduction
	2 Related work
	3 Background
	4 Comprehensive refresher on the sample-efficient adversarial mimic
	5 Lipschitzness is all you need
	5.1 A deadlier triad
	5.2 Continually changing rewards
	5.3 Overfitting cascade
	5.4 Enforcing Lipschitz-continuity in deep neural networks
	5.5 Diagnosing the importance of Lipschitzness empirically in off-policy adversarial imitation learning
	5.5.1 Environments
	5.5.2 Demonstrations
	5.5.3 Distributed training
	5.5.4 Empirical results

	6 Pushing the analysis further: robustness guarantees and provably more robust extension
	6.1 Robustness guarantees: state-action value Lipschitzness
	6.2 Discussion I: implications and limitations of the theoretical guarantees
	6.2.1 Function approximation bias
	6.2.2 Value lipschitzness
	6.2.3 Compounding variations
	6.2.4 Is value lipschitzness enough?
	6.2.5 Indirect reward regularization
	6.2.6 Local smoothness

	6.3 A new reinforcement learning perspective on gradient penalty
	6.4 Diagnosing -validity: Is the Lipschitzness premise of the theoretical guarantees satisfied in practice?
	6.5 Towards fulfilling the premise: a provably more robust way to further encourage Lipschitzness
	6.6 Discussion II: implications and limitations of the theoretical guarantees
	6.6.1 Provably more robust
	6.6.2 Detached guide
	6.6.3 Partial compensation of compounding variations
	6.6.4 Total compensation of compounding variations

	7 Conclusion
	References

