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Abstract
Recent advances in writer identification push the limits
by using increasingly complex methods relying on sophis-
ticated preprocessing, or the combination of already com-
plex descriptors. In this paper, we pursue a simpler and
faster approach to writer identification, introducing novel
descriptors computed from the geometrical arrangement
of interest points at different scales. They capture orienta-
tion distributions and geometrical relationships of script
parts such as strokes, junctions, endings, and loops. Thus,
we avoid a fixed set of character appearances as in stan-
dard codebook-based methods. The proposed descriptors
significantly cut down processing time compared to ex-
isting methods, are simple and efficient, and can be ap-
plied out-of-the-box to an unseen dataset. Evaluations on
widely-used datasets show their potential when applied
by themselves, and in combination with other descriptors.
Limitations of our method relate to the amount of data
needed to obtain reliable models.

Introduction
Handwriting is considered a behavioral biometric feature
unique to a person [1]: a person can be identified by their
writing style which is characterized by the reproduction
of certain recurrent patterns and unconscious practices in-
herited and adopted culturally [2]. However, unlike other
biometric features such as DNA, or fingerprints, which do
not change throughout a person’s life, handwriting is sub-
ject to stochastic natural variation, i.e., no two writings of
a single writer are identical [3]. Sources of natural vari-
ations include the writer’s age, their personal condition,
the materials used, the environmental writing conditions,
and especially skill and practice [3].

While the natural variation of handwriting poten-

tially leads to a different overall appearance of a docu-
ment, a writer still uses the same adopted patterns and
unconscious practices. This fact is exploited by forensic
document examiners, who provide legal evidence of au-
thorship or authenticity on a questioned document in court
of law [4]. However, the US National Research Council
criticized the current practice in forensic document ex-
amination as subjective [5,6]. They express the need for
quantifiable measures: “the scientific basis for handwrit-
ing comparisons needs to be strengthened [...] there has
been only limited research to quantify the reliability and
replicability of the practices used by trained document
examiners” [5]. Automatic writer identification systems
can offer objective methods and quantifiable measures.

Writer identification in this context refers to deter-
mining a document’s writer from a given list of samples
of known authorship (1:N comparison). Figure 1 visual-
izes this concept: a query document (left) is given to the
automatic identification system (center), which has access
to a database of samples of known writers. The identifi-
cation system extracts features from the query document
and compares them with the database. According to some

Figure 1. Concept of writer identification (Figure taken from [7])
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similarity measurement the system returns the most likely
author of the query document (right).

Other fields of applications of writer identification
include historical document analysis and handwriting
recognition. In historical document analysis, knowledge
of the writer can be used to classify and authenticate a
manuscript, establish its origin, or identify the number
of contributors [8–10]. Handwriting recognition systems
benefit indirectly from writer identification: knowledge
of the writer allows for writer-specific models for recog-
nition rather than a generic model [11,12].

Current attempts in writer identification push the per-
formance by increasing complexity, either by combining
already complex descriptors [13,14], or introducing ad-
ditional (pre)processing steps and heuristics [15,16]. In
this paper, we pursue a simpler and faster approach to
writer identification, introducing novel descriptors com-
puted from the geometrical Interest Point (IP) arrange-
ment at different scales. IPs offer a multi-scale sparse rep-
resentation of the image as they are only detected at loca-
tions of a 2D signal change in the image. On document
images, IPs correspond to small script parts such as stroke
sections, junctions, and endings, up to bigger structures
like loops, characters, or spaces. Based on the IPs we in-
troduce a set of descriptors that capture the distribution
of elementary script characteristics: orientations (angles)
of script parts and their geometrical relationships (angles
between script parts).

Our approach has two characteristics distinguishing
it from existing work: firstly, we do not require image
preprocessing such as binarization or segmentation – open
research problems themselves which potentially introduce
errors to the identification process [17]; and secondly, our
features are low-dimensional, simple, and fast to compute,
reducing the complexity when compared with existing
state-of-the-art systems.

This paper is an extension of previous work [18],
where we have firstly introduced scale-specific IP orien-
tations for writer identification, putting a focus on human
interpretability of the results by forensic experts. Three
additional contributions are presented in this paper. First,
we provide a more detailed description of the method and
derive different geometrical IP descriptors in a systematic
way. Secondly, we conduct a more comprehensive and
more detailed experimental evaluation on several bench-
mark datasets. The proposed descriptors are compared
with different state-of-the-art methods. Thirdly, we com-
bine our descriptors with others to improve the perfor-
mance and to demonstrate that they capture complemen-
tary information.

The remainder of this paper is structured as follows.
The next section gives an overview of selected related
work, followed by the definition of the proposed set of
descriptors. The datasets, evaluation procedure, results,
and speed assessment are reported in the last section. The
paper closes with a conclusion and an outlook to future
work.

Related Work
Writer identification methods can broadly be split into two
categories: text-dependent and text-independent methods
[19,20]. The former rely on the comparison of individ-
ual character or word images with known textual content,
and require exact localization and segmentation of the
respective entities. The latter extracts statistical features
from a segmented text block. In order to achieve indepen-
dence of the textual content, a minimal amount of text is
needed [21]. Text-independent methods have the advan-
tage that the identification task is performed without the
need of handwriting recognition, or interaction of a user
transcribing and annotating character images.

Several comprehensive surveys provide a broad
overview of the efforts done in text-dependent [12,22–26]
and text-independent writer identification [2,12]. In the
following, we summarize selected related work on text-
independent writer identification, which we broadly clas-
sify into texture-, structural-, and allograph-based meth-
ods. Finally, we draw a focus on recent work on IP-based
writer identification.

Approaches based on texture analysis consider a doc-
ument image simply as an image. Features are extracted
globally from image patches in writing areas, e.g., Ga-
bor features [19], angular histograms [27] capturing local
stroke directions, or combinations which cover slant and
curvature [20]. Newel and Griffin [28] propose a writer
identification system using oriented Basic Image Feature
Columns (oBIF Columns), a texture-based scheme previ-
ously used for character recognition.

Minor changes in writing styles such as differences
in word- and line spacing, and strokes having different
thickness alter texture, and thus, pose problems to texture-
based methods.

Structural methods attempt to capture script prop-
erties such as heights of writing zones, the slope, and
white runs. They are predominantly extracted from Pro-
jected Profiles (PPs) and Connected Components (CCs),
which require prior binarization and are problematic
in case of touching components of consecutive lines.
Marti et al. [29] report a method based on twelve fea-
tures extracted from PP, CC, and white runs of binarized
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Figure 2. Original document image (left), and overlaid with the IP detected (right) that encode the information in a sparse manner: IP are

found on the writing and in spaces between characters and words. However, no IP are detected on the background between lines or in the

document margin.

segmented text lines. Schlapbach and Bunke [30] propose
a stochastic approach using a series of Hidden Markov
Model (H M M)-based handwriting recognizers and Gaus-
sian Mixture Models (G M Ms), where for each scribe ex-
actly one model is trained. The most likely author is de-
termined by the log-likelihood scores of the recognizers.

Allograph-based methods segment handwriting into
characters and extract features from contours or shapes
both require binarization and segmentation, still open top-
ics in research [17]. Bulacu and Schomaker [20] intro-
duce a method which combines textural [27] with allo-
graphic features [31]. Bensefia et al. [32] characterize
handwriting based on a set of invariant features extracted
from parts of characters segmented from CC based on
the analysis of minima of upper contours of binarized
text. Niels et al. [33] hierarchically cluster manually seg-
mented allographs by Dynamic Time Warping. A his-
togram of the frequency of occurrence of allographs in
relation to each character is created, which represents a
prototype of a writer’s style.

Approaches based on Neural Networks, H M Ms, or
a set of shapes (e.g., codebooks, allographs) risk hav-
ing an average yet incomplete representation; however,
brute force methods which consider all possible character
shapes tend to be computationally over-expensive [34].

Asserting writer identity based on IPs avoids bina-
rization and segmentation required by other approaches.
IPs offer the advantage of quickly narrowing down pro-
cessing to areas with relevant information (c.f. Figure 2).
Woodward et al. [35] first proposed to use an occur-
rence histogram of vector-quantized IP descriptors for
writer identification, relying on probabilistic latent seman-
tic analysis (pLSA) to identify the writer.

A codebook of Scale Invariant Feature Transform
(S I F T)-descriptors created with k-means is used in a
method based on Bag-of-S I F T-Words (B O S) [7]. With
respect to the codebook, a histogram of occurrences is cre-
ated which characterizes a writer. Using the χ2 distance
as similarity measure between histograms, the authors re-
port a 90.8% top-1 and 97.5% top-10 identification rate
on the IAM database [29]. Wu et al. [15] combine a S I F T-
descriptor codebook-based approach computed from IP
descriptors with a histogram of scales and orientations of
IPs, relying on binarization and heuristic word segmen-
tation. They use a descriptor codebook and generate a
scales and orientation histogram of the IPs. Experiments
on the IAM dataset show a 98.5% top-1 identification
rate. Jain and Doermann [13] combine features of con-
tour gradients, edge-base features extracted from charac-
ter contours, and Speeded Up Robust Features (S U R F).
They use the Fisher Vector for feature pooling and a lin-
ear combination of the distances to fuse the features. They
report a 99.2% and 97.4% identification rate on the IC-
DAR 2013 Greek [36] and the ICDAR 2013 English [36]
dataset respectively.

Descriptors
The hypothesis of this paper is that the writers’ repeat-
ing patterns and practices are revealed in fundamental
information of script parts and their respective relation-
ships. Thus, we propose a set of simple descriptors based
on IPs that capture such information at multiple scales:
the distribution of orientations present in writing, and the
geometrical relationships of script parts (e.g., stroke seg-
ments, loops, crossings, characters). The orientation is
computed from the so-called dominant orientation, which
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Table 1. Descriptors and their dimensions.

Descriptor Name Dimension

p(Iφ ) Local-Angle Distribution 12
p(Iθ ) Orientation Distribution 12
p(Iθ , Iφ ) Orientation-Local-Angle Distribution 144

p(Is, Iφ ) Scale-Local-Angle Distribution 108
p(Is, Iθ ) Scale-Orientation Distribution 108

p(IBOS) Bag-of-S I F T-Words (B O S) Descriptor 300

describes the prevailing direction of local gradients in an
image patch around an IP. Geometric relations between
IPs are expressed in terms of angles within a local neigh-
borhood. Additionally, we combine these features with
the IPs scales, i.e., their spatial extend, allowing for a
multi-scale description of the writing. Our descriptors are
computed as 1D or 2D histograms, and normalized to a
Probability Density Function (P D F). They are listed in
Table 1.

Using these simple descriptors extracted directly
from the original image, we avoid errors originating in
preceding image processing steps. Furthermore, when
compared with codebook-based methods, we circum-
vent the risk of having an incomplete feature represen-
tation and the computationally expensive codebook gen-
eration and matching. As proof of concept, we adopt the
Difference-of-Gaussian (D O G) IP detector introduced by
Lowe [37], yet other detectors such as S U R F, Harris, or
Laplace could also be used.

In order to assess the potential of descriptor combi-
nation as well as run-time differences, we furthermore in-
clude a simple S I F T-codebook-based descriptor p(IBOS)
proposed by [7].

Scale-Independent Descriptors
In the following, we describe three descriptors which are
computed on all IPs regardless of their scale.

Local-Angle Distribution p(Iφ )
This histogram captures the geometric relationships be-
tween IPs in terms of the angles formed between their
connecting line and the horizontal line. The locations of
IPs depend on the writing style, thus their spatial distri-
bution and geometric relationships captures information
about the writing.

We create an angle histogram of IP locations. Fig-
ure 3 visualizes the computation, with circles denoting

φI

N

Figure 3. Angle computation for p(Iφ ). The line connecting the

current IP I (green) with its neighbor N (red) and the horizontal line

enclose angle φ . Further neighboring IPs are depicted grey.

IPs: the angle φ is formed by the intersection of the line
connecting the current IP I (green) with its neighbor N
(red) and the horizontal line. For each IP I we compute the
angle φ to its n-nearest neighbors N. Angles are mapped
onto [0°,180°] and quantized with angle step α resulting
in a histogram with 180/α bins.

Orientation Distribution p(Iθ )

This descriptor captures the distribution of the stroke ori-
entations present as well as orientations of larger struc-
tures such as characters and words (e.g., the orientation
of the baseline, or mean line of a word, c.f. blue vectors
in Figure 4).

We create a histogram of dominant orientations
quantized with angle step β , resulting in a histogram with
360/β bins. An IP’s dominant orientation θ is computed
as the maximum peak of a histogram h of magnitude-
weighted gradient orientations in a local image patch.
At locations with multiple peaks of similar magnitude
(≥ 0.8 ∗max(h)), several IPs are created with the same
location and scale but different orientations (see Figure 4,
which shows a handwriting sample with IPs depicted as
vectors).
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Figure 4. Handwriting sample with dominant orientations Iθ de-

noted as vectors with their length, angle, and origin indicating scale,

orientation, and location, respectively. The blue vectors capture the

orientation and position of the base, mean, and toplines.

Orientation-Local-Angle Distribution p(Iθ , Iφ )
The combination of the two previous descriptors captures
geometric relations of IPs sharing the same dominant ori-
entation, i.e., it sets structures of similar orientation θ into
a geometrical relationship expressed by their angle φ . To
create the 2D histogram of size 360/β × 180/α, for each IP
with a given quantized orientation Iθ , its neighbors shar-
ing the same orientation are determined and the angle φ

is calculated.

Multi-Scale Descriptors
The following two descriptors are multi-scale views of
the previously presented descriptors, i.e., the respective
angle distributions p(Iφ ) and dominant orientations p(Iθ )
are observed separately for each scale. This allows setting
into relation structures of similar size.

Both descriptors p(Iφ ) and p(Iθ ) are computed as
2D histograms of size X×Y , with X denoting the number
of quantized scales and Y being the number of orienta-
tions or angle distributions, respectively. The scales are
determined from the parameters of the IP: using D O G,
we decompose an image into T octaves and S sub-levels,
resulting in a scale space of X =T×S. The scale si of IP i
is in the interval 1≤si≤T×S×σ×mi, with mi being the
extrema magnitude, and σ being the standard deviation
of the Gaussian kernel for creating the scale space; it is
quantized using step size σ .

Scale-Local-Angle Distribution p(Is, Iφ )
This descriptor sets IPs into geometrical relation that have
a similar scale (i.e., structures of similar size) and ex-
presses the relationship in terms of angles as p(Iφ ).

We compute angles between neighbors sharing the
same scale, rather than considering all nearest neighbors:
at each scale level Is, we compute Iφ as defined previously,
resulting in a 2D histogram.

Scale-Orientation Distribution p(Is, Iθ )
This descriptor captures the orientations present at differ-
ent granularity (scales), i.e., instead of collecting all ori-
entations into one descriptor, the distributions are built ac-
cording to the scale of the respective IPs. This allows de-
scribing orientations of stroke segments (scale of IPs sim-
ilar to the stroke width) separately to the orientations that
describe larger structures, e.g., full characters or words.

Using the same strategy as for p(Is, Iφ ), we generate
a 2D histogram collecting the dominant orientations Iθ

for each scale level Is, where Iθ is computed as defined
previously.

Additional Descriptor for Combination
In order to assess the potential performance gains of de-
scriptor combination, we implemented a Bag-of-S I F T-
Words (B O S) descriptor p(IBOS) based on [7]. The de-
scriptor is an occurrence histogram of S I F T features de-
rived from a codebook of frequent features extracted from
an independent training set.

To compute the descriptor, we extract the S I F T fea-
tures, match them against a codebook to count the oc-
currences of each codebook entry (“word”). The result-
ing descriptor is called “bag of words”. The codebook
of size 300 is computed on the training set of the CVL
database [39] using k-means clustering (with 7 documents
of 27 writers, 189 documents in total).

Parameters
Parameter evaluations have been performed on the train-
ing set of the ICDAR 2011 Writer Identification Con-
test [38], a small but representative dataset for free-form
handwritten documents with homogeneous background.
An extensive parameter evaluation and more details on
the importance of adapting the IPs to the task at hand is
provided in [18].

Optimal D O G parameters were found to be [T =
3,S=6,σ =1.3, th=5,r=0], with T being the number
of octaves, S the number of sub-levels, σ the standard de-
viation of the Gaussian kernel, th the detection threshold
and r the edge threshold [37]. The value r = 0 means that
IPs located on edges are permitted.

The descriptor parameters adopted based on the eval-
uation are [α =15°,β =30°,n=10], with α and β being
the angle steps of p(Iφ ) and p(Iθ ), respectively, and n be-
ing the number of neighbors considered for p(Iφ ). The
number of neighbors is fixed and does not consider the
writing size.

Our experiments show that truncating the descriptor
vectors p(Is, Iφ ) and p(Is, Iθ ) from 216 to the first 108
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Table 2. Specifications of the evaluation datasets with the short name, the reference, number of writers, documents
written by one writer, lines per document and the scripts and/or languages the documents are written in. Every
writer contributed to each of the languages.

Dataset Ref # writers # docs/writer # lines/doc Languages and scripts

IAM modified [29] 657 2 3-14 English

ICDAR’11F
[38] 26 8

13-23 6 Latin (2 English, 2 French, 2 German),
2 GreekICDAR’11C 2

ICDAR’13 [36] 250 4 4 2 English, 2 Greek

scale levels improves the performance. Note that chang-
ing the size X of the scale space and truncating are not the
same operation since the actual scale of an IP additionally
depends on its extrema magnitude.

Evaluation
This section first lists the datasets used for the evaluation,
followed by the description of the evaluation procedure
and results. We close the section with a note on the pro-
cessing time and speed gains with respect to existing IP-
based methods that use a codebook.

Datasets
The evaluations of the descriptors were performed on the
following four datasets (an overview of the specifications
is provided in Table 2).

1IAM modified contains a subset of documents of the
IAM database [29]. Since the number of documents
available of each writer ranges from 1 to 58 doc-
uments in the original database, we modified the
dataset to have exactly two documents for each
writer according to the procedure proposed in [15]
in order to facilitate comparisons with the state of
the art. This means, for writers who contributed
more than two documents we only keep the first
two, and for writers with only one contribution, we
cut the respective documents roughly in half. This
results in 1314 documents with 8.5 text lines per
document on average.

ICDAR’11F The benchmark set of the ICDAR 2011
Writer Identification Contest [38]. This dataset con-
sists of 26 writers each of whom has written the
same 8 texts resulting in 208 documents.

ICDAR’11C The same dataset as above but cropped
such that only the first two text lines are kept.

ICDAR’13 The benchmark set of the ICDAR 2013 Com-
petition on Writer Identification [36]. The dataset
consists of 4 texts written by 250 writers resulting
in 1000 documents. The documents were cropped
to contain 4 text lines per document.

Assessing the complexity of these datasets, IC-
DAR’11F can be rated lowest, despite the fact that it con-
tains several different scripts. However, it consists of a
rather small number of writers each of whom has written
several documents. ICDAR’11C has a higher complexity
as the amount of available data is significantly less (2
lines per document). IAM modified has the highest num-
ber of writers while still providing a fair amount of data
per writer, written in only one language. ICDAR’13 has
the highest complexity: it is a reasonably large dataset
with two different scripts, while only providing a small
amount of data per document and writer.

Evaluation Procedure
Our evaluation design follows the procedure of the IC-
DAR 2011 Competition [38]. For identification, we em-
ploy a naïve nearest neighbor approach in a leave-one-out
manner using the χ2 distance metric. For a query docu-
ment q and a given reference document r, we compute
the distance between their respective descriptors h(q) and
h(r) as

χ
2(q,r) =

H

∑
i=1

(h(q)i −h(r)i)
2

h(q)i +h(r)i
, (1)

where i is the index of the bin and H is the dimensionality
of the histogram.
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Table 3. Top-1 performance of all descriptors evaluated individually and in combination on all datasets (we report
only the 5 best-performing combinations).
Top-1: an error is reported if a document of a different writer is returned as first result.

Descriptor IAM mod. ICDAR’11F ICDAR’11C ICDAR’13

In
di

vi
du

al

(1) p(Iφ ) 19.5 69.2 20.2 7.8
(2) p(Iθ ) 49.2 87.5 63.0 34.9
(3) p(Iθ , Iφ ) 68.5 97.1 69.7 58.0
(4) p(Is, Iφ ) 26.9 90.3 40.9 22.1
(5) p(Is, Iθ ) 81.9 98.6 87.5 81.4

(6) p(IBOS) 82.3 99.5 80.7 80.1

C
om

bi
na

tio
n (1,2) p(φ), p(Iθ ) 55.6 88.4 63.9 39.0

(3,4) p(Is,φ), p(Is, Iθ ) 80.4 98.5 84.1 81.3
(2,5) p(Iθ ), p(Is, Iθ ) 77.9 98.6 82.2 77.3
(5,6) p(Is, Iθ ), p(IBOS) 86.9 98.6 87.3 85.5
(1-6) All descriptors 86.1 98.6 86.7 84.1

Table 4. Results on the ICDAR’11F and ’11C dataset.
Soft evaluation: an error is reported if no document of the same writer is returned in the n first results.
Hard evaluation: an error is reported if a document by a different writer is returned in the n first results.

Method
Soft Evaluation Hard Evaluation

’11F ’11C ’11F ’11C

Top-1 Top-10 Top-1 Top-10 Top-2 Top-7 Top-2 Top-7

ECNU 84.6 88.9 65.9 86.5 51.0 0.0 39.4 0.0
QUQA-a 90.9 99.0 74.0 96.2 76.4 20.2 52.4 3.4
QUQA-b 98.1 100.0 67.3 94.7 92.3 41.4 47.6 6.3
TSINGHUA 99.5 100.0 90.9 99.5 95.2 41.4 79.8 12.5
GWU 93.8 99.0 74.0 95.2 80.3 20.2 51.4 6.3
CS-UMD 99.5 99.5 66.8 89.9 91.8 22.1 51.9 3.4
TEBESSA 98.6 100.0 87.5 99.5 97.1 50.0 76.0 14.4
MCS-NUST 99.0 99.5 82.2 97.6 93.3 38.9 71.6 11.1
Wu et al. [15] 99.5 100.0 95.2 100.0 98.6 63.9 88.5 31.3

p(Is, Iθ ) 98.6 100.0 87.5 98.6 92.7 43.3 73.6 9.1
p(Is, Iθ ), p(IBOS) 99.0 100.0 87.3 99.0 94.7 52.9 74.2 11.1

We report the Top-n results as soft- and hard-
evaluation. Soft evaluation means that at least one doc-
ument of the same writer has to be returned within the n
first results, while hard evaluation is stricter, and counts
an error if a document by a different writer is returned
in the n first results. Significance is measured with the
Chi-square test (α = 0.05).

Results
In the following, we first report the results of the indi-
vidual descriptors introduced in the previous section, and
the results of their respective combinations. This is fol-
lowed by a detailed evaluation and comparison of our
best-performing descriptors with the state of the art.
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Table 5. Results on the ICDAR’13 dataset.
Soft evaluation: an error occurs if no document of the same writer is returned in the n first results.
Hard evaluation: an error occurs if a document by a different writer is returned in the n first results.

Method Soft Evaluation Hard Evaluation

Top-1 Top-2 Top-5 Top-10 Top-2 Top-3

CS-UMD-a 95.1 97.7 98.6 99.1 19.6 7.1
CVL-IPK 90.9 93.6 97.0 98.0 44.8 24.5
HANNOVER-b 91.5 94.2 97.0 98.0 54.3 27.3
Wu et al. [15] 94.8 96.7 98.0 98.3 63.2 36.5
QATAR-b 78.4 85.8 91.5 95.1 34.6 16.5
TEBESSA-c 93.4 96.1 97.8 98.5 62.6 36.5

p(Is, Iθ ) 81.4 88.2 92.8 96.2 36.3 16.9
p(Is, Iθ ), p(IBOS) 85.5 92.1 95.6 97.7 41.1 19.3

Table 3 presents the Top-1 performance of all de-
scriptors on all datasets. The descriptors proposed and
the B O S descriptor in the first half, and best-performing
combinations in the second. Descriptor combination is
performed using linear combination with equal weights.

Table 3 reveals that geometric relations between IPs
p(Iφ ) as well as dominant orientations p(Iθ ) as single
descriptors are not discriminative enough to characterize a
writer. Combining local angles and orientations p(Iθ , Iφ )
does not yield competitive scores. However, introducing
scale as a second dimension in p(Is, Iφ ) and p(Is, Iθ ) leads
to a significant increase in performance on all datasets.

Combining all descriptors (1-6) does not yield better
results than the best-performing descriptor combination
(5,6), because their performance is lowered by the less
distinctive descriptors. However, on large datasets such
as IAM and ICDAR’13, combination with the B O S ap-
proach significantly boosts the performance with respect
to both the B O S-method1 and the geometrical descrip-
tors introduced in this paper, showing that our descriptors
capture complementary information.

1Note that the performance reported on the IAM dataset
(90.8) by the authors is not directly comparable to the literature
since they used only a subset of documents for evaluation: writ-
ers with only one sample are not evaluated, and 2 to 58 reference
samples are kept for identification, while for each writer we keep
only one reference sample in our evaluation. It is inherent that
fewer writers and more reference samples result in better perfor-
mance. To assess whether our implementation is comparable to
the original, we evaluated it according to the strategy explained
in their paper [7], achieving a slightly better identification rate of
92.4 compared to the rate they reported (90.8). Thus, we assume
our implementation to be comparable.

Table 6. Top-1 performance comparison of our best-
performing descriptors and two complex IP-based
state-of-the-art methods on the IAM modified.

Method Top-1 Top-5 Top-10

Wu et al. [15] 98.5 99.1 99.5
Jain & Doermann [13] 94.7 98.1 98.7

p(Is, Iθ ) 81.9 90.4 94.1
p(Is, Iθ ), p(IBOS) 86.9 91.6 94.7

Table 4 and Table 5 compare the performance of
our best-performing descriptor p(Is, Iθ ) and feature com-
bination p(Is, Iθ ), p(IBOS) to the participants of the IC-
DAR 2011 Competition and the ICDAR 2013 Competi-
tion [36], respectively. On ICDAR’11F and ’11C the per-
formance of our method is competitive with the state of
the art, being only weaker compared to the top method on
the cropped dataset. On ICDAR’13 and also IAM modified
(see Table 6) our descriptors are still able to produce good
results, especially when considering their simplicity.

A simple ranking of all documents of a dataset with
respect to their distance to a query document gives in-
sight into the performance of the features. Figure 5 shows
such a ranking with respect to the descriptor p(Is, Iθ ) for
all documents of ICDAR’11F with respect to a randomly
selected query document2.Each document is depicted as
data point color-coded according to its language. We
adopted the color-coding to allow assessing potential dif-

2Document 2 of writer 9, ICDAR’11F (English text).
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Figure 5. Ranking of all documents of ICDAR’11F compared to document 2 of writer 9 (randomly selected) according to the descriptor

p(Is, Iθ ). The distances of the documents by writer 9 are smaller than for all other writers, and the documents for each respective writer are

clustered with respect to the query document. Note the outlier in writer 1’s documents.

(a) writer 1, crop of page 1 (b) writer 1, two crops of page 5

Figure 6. Comparison of the two Greek documents of writer 1 from ICDAR’11F. The characters γ, δ , and λ are highlighted with color-coded

ellipses.

ferences in languages and scripts. Greek script is different
to all other Latin scripts, and accents in French writings
might change the script in a way different to German and
English. This ranking allows several observations: Firstly,
as expected, documents of the same writer have a smaller
distance with respect to the query document than the doc-
uments of all other writers. Secondly, we can see that the
documents of each writer form clusters, even across dif-
ferent languages and scripts. For the majority of writers,
the respective scripts cluster within a writer’s cluster (dif-
ferences between German and English writing are negli-
gible). This cluster behavior of documents written by the
same author can be interpreted as a performance indicator:
we can expect a high identification performance based on
such a discriminative distance measure.

In our data analysis, we found a single outlier in the
ICDAR’11F dataset: the fifth document of writer 1 (c.f.

Figure 5, writer 1). While all other documents cluster well
with respect to their writer, we found this specific outlier.
In order to allow assessing the differences, we included
the two Greek documents of writer 1 in Figure 6. We can
observe consistent differences in the character shapes be-
tween the two documents, such as γ , δ , or λ . While the
writing style of the characters is consistent within a doc-
ument, it is different between the documents. In order to
assess the inherent variance in the writer’s documents, we
made several plots shown in Figure 7, that clearly demon-
strate document 5 as an outlier. Figure 7 (a) shows that
documents written in another language and script to the
query document (Greek) are closer than the outlier; (b)
shows the overall larger distances of all documents with
respect to the outlier, and (c) illustrates the distances with
respect to a document written in English.
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Pages 1, 3-8

(c) Query: page 2
      (English)

D
is

ta
nc

e

Pages 2-8

(a) Query: page 1
      (Greek)

Pages 1-4, 6-8

(b) Query: page 5
      (Greek)

Figure 7. Ranking of the documents of writer 1 according to the

descriptor p(Is, Iθ ). According to their distance to (a) document 1,

(b) document 5, (c) document 2.

Table 7. Comparison of the processing time of two
IP-based methods: our best performing descriptor
p(Is, Iθ ) and the B O S descriptor inspired by [7] ex-
pressed in O-Notation and measured on ICDAR’11F.

Desc. Training Test

O min O min

p(Is, Iθ ) - - O(k) 2.0
p(IBOS) O(nmk+1 logn) 81.79 O(mnk) 3.3

Processing Time
In order to assess the speed of our approach and the po-
tential gain in processing time with respect to existing
IP-based methods, we compared our best-performing de-
scriptor p(Is, Iθ ) with our implementation of the B O S
method [7] on a standard desktop computer (Intel i7 3.4
GHz processor, 32 GB RAM). A summary is presented
in Table 7.

The B O S descriptor needs a training phase prior to
identification, in which the codebook of size k is created
with k-means clustering in O(nm∗k+1 logn) time, where
m is the dimension of the feature vector, and n the number
of IPs to be clustered. The creation of the codebook, using
the training set of the CVL dataset takes 82 minutes on the
test machine. Our descriptors do not require any training
and can be applied out-of-the-box to an unseen dataset.

Since both methods are based on IPs, we do not need
to consider the processing time for extracting the IPs from
the document images for the run-time comparison. Also

both methods need to normalize their histograms, which
can be assumed to take linear time with respect to the
histogram size.

Methods requiring a codebook are also time-
consuming at run-time: for each extracted feature the cor-
responding codebook entry is searched to create the oc-
currence histogram. Thus, such methods lead to a total
run-time complexity of O(mnk) for one query document,
where m is the codebook size, n is the number of IPs on
the document, and k is the size of the descriptor. The com-
plexity is composed of the cost of creating the descriptor
O(mn) and the distance computation O(k).

In contrast, our method directly computes the de-
scriptor from the IP properties; thus, it has a linear run-
time complexity of only O(k) for a k-dimensional descrip-
tor. Thus, in practice we cut down the processing-time by
1/3 compared to the B O S descriptor at run-time measured
on ICDAR’11F with our test setup.

Conclusion
This paper proposed a set of novel descriptors for writer
identification that is simple and fast to compute. The de-
scriptors capture the distribution of elementary stroke
orientations at multiple scales, and the geometrical con-
figuration of a local neighborhood of script parts de-
fined by angles. Building upon interest points, we avoid
(pre)processing such as binarization and segmentation.

Experiments on widely-used datasets show the po-
tential of our descriptors by themselves and in combina-
tion with others. While we cannot always match the re-
sults of competition winners, our descriptors have a com-
pelling performance considering their simplicity and low
dimensionality. Having a very sparse image representa-
tion and no need of matching descriptors against a code-
book, we reduce the processing time by about 1/3 com-
pared to traditional codebook-based methods at runtime.

A limitation of our method is the amount of data
needed to create a stable identification model especially
on large datasets. However, we showed that combin-
ing our descriptor set with a simple bag-of-S I F T-words-
based method significantly boosts the performance for
both methods, demonstrating its ability to capture com-
plementary information.

Future work includes assessing our descriptors’ per-
formance when combined with more powerful additional
methods, and using advanced machine-learning for the
identification. We suggest including the Scale Orienta-
tion Distribution in future interest-point-based methods
for its performance, ability to capture complementary in-
formation, and fast computation.
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