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Abstract

Locally Rotation Invariant (LRI) operators have shown great potential to robustly identify
biomedical textures where discriminative patterns appear at random positions and orien-
tations. We build LRI operators through the local projection of the image on circular
harmonics followed by the computation of the bispectrum, which is LRI by design. This
formulation allows to avoid the discretization of the orientations and does not require any
criterion to locally align the descriptors. This operator is used in a convolutional layer re-
sulting in LRI Convolutional Neural Networks (LRI CNN). To evaluate the relevance of this
approach, we used it to segment cellular nuclei in histopathological images. We compared
the proposed bispectral LRI layer against a standard convolutional layer in a U-Net archi-
tecture. While they performed equally in terms of F-score, the LRI CNN provided more
robust segmentation with respect to orientation, even when rotational data augmentation
was used. This robustness is essential when the relevant pattern may vary in orientation,
which is often the case in medical images.

Keywords: Local Rotation Invariance, Convolutional Network, Deep Learning, Segmen-
tation, Bispectrum

1. Introduction

Robustness of Convolutional Neural Networks (CNNs) to changes in orientations of the in-
put structures (e.g. nucleus, glands) has been little investigated and may have an important
impact on the usability of the methods in practice. Biomedical textures are composed of
local patterns that appear at random positions and orientations. Local Rotation Invariant
(LRI) operators have been shown to be crucial to characterize such texture (Depeursinge
et al., 2018). A common strategy to design LRI operators is to align local descriptors.
This includes the Maximum Response 8 (MR8) filterbank (Varma and Zisserman, 2005)
and Local Binary Patterns (LBP) (Ojala et al., 2002; Ahonen et al., 2009). Other methods
relying on steerability have been proposed to avoid error due to orientation sampling, such
as steerable filters (Unser and Chenouard, 2013; Zhao and Blu, 2020; Fageot et al., 2021),
Riesz (Dicente Cid et al., 2017), and steerable wavelets (Depeursinge et al., 2017; Puspoki
et al., 2019). Another well known method is the scale-invariant feature transform (Lowe,
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2004). These methods typically require discretizing orientations and an arbitrary criterion
to select the dominant local orientation on which the descriptor is aligned. Built-in LRI
approaches have been proposed to avoid using such arbitrary criterion. For instance, the
power spectrum was used in (Depeursinge et al., 2018; Andrearczyk et al., 2019) which al-
lows obtaining a LRI operator continuously defined on the rotation domain. In this work, we
design a LRI operator based on a similar but more evolved descriptor, i.e. the bispectrum,
that can be embedded in a CNN.

CNNs have revolutionized the field of computer vision and biomedical image analy-
sis. Rotation invariance in CNNs is still mainly induced via data augmentation either at
training- or test-time. However, built-in rotation equivariance was shown to outperform
both training- and test-time augmentation on histopathological image analysis (Lafarge
et al., 2021). Rotation-equivariant networks also showed improved robustness to geometric
adversarial perturbations (Dumont et al., 2018). A large body of research has focused on
designing networks with built-in rotation equivariance and are mainly based on discretized
rotations (i.e. group equivariant CNN) or steerable filters (Weiler et al., 2018, 2017; Cohen
and Welling, 2016; Bekkers, 2019; Kondor and Trivedi, 2018; Cohen et al., 2019).

In this work, we propose a CNN design that is invariant to local rotations rather than ro-
tation equivariant. The motivation is that such a design will provide substantial robustness
to changes in pattern orientation when identifying biomedical textures. Furthermore, the
proposed LRI operators are also globally rotation equivariant (Andrearczyk et al., 2020).
While global rotation invariance may be obtained by data augmentation, invariance to local
rotation can not be achieved in this way. In (Andrearczyk et al., 2020), the authors proposed
two different designs to implement LRI CNNs, one with steerable filters and another one
based on the power spectrum. In (Eickenberg et al., 2017), the power spectrum was used
within the scattering transform framework (Ablowitz et al., 1974) to obtain global rotation
equivariant feature maps. Those works closely relate to our design. One key difference
is that we use the bispectrum rather than the power spectrum. Our design relies on the
shift invariance property of the bispectrum which translates into rotational invariance for
functions defined on the circle. We chose the bispectrum over the power spectrum for its
completeness, i.e. the bispectrum completely characterizes a function up to a shift (Kakar-
ala, 2012). We evaluated this design with a simple U-Net (Ronneberger et al., 2015) on
histopathological images. The evaluation were greatly inspired by the work of Lafarge et al.
(2021), in order to have an external comparison. However, our results are not directly
comparable since we did not use the same training/testing/validation split.

2. Methods

In this section, we develop the theoretical background as well as the implementation details
to design a LRI CNN. The main idea is to obtain a LRI convolutional layer that is func-
tionally identical to a standard convolutional layer. Then, we evaluate our layer in a CNN
and compare it to a CNN with the same architecture but with standard layers. This work
focuses on developing 2D CNNs that are invariant to the orientation at which local patterns
appear. The proposed design relies on the rotation invariance property of the bispectrum.
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2.1. Notations

We consider 2D images as functions I ∈ L2(R2), where the value I(x) ∈ R corresponds to
the pixel intensity at location x = (x1, x2) ∈ R2. The rotation of an image I is written as
I(R·), where R ∈ SO(2) is the corresponding 2D rotation matrix.

The circle is denoted as S1 = {x ∈ R2 : ||x||2 = 1}. Polar coordinates are defined as
(x1, x2) = (ρ cos(θ), ρ sin(θ)) with ρ ≥ 0 and θ ∈ [0, 2π). We use the following notation for
the mapping from polar to cartesian: ρ(x) = ||x|| and θ(x) the standard mapping from
x to its polar angle. For clarity purposes, we often do not disclose the dependency on
x for ρ and θ. We consider square-integrable functions defined on the circle f ∈ L2(S1)
and express them as functions of the polar angle f(θ). The inner product is defined by
⟨f , g⟩L2(S1) =

∫ 2π
0 f(θ)g(θ)dθ. The rotation of a function f by an angle θ0 is simply the

function “shifted” by that angle i.e. f(· − θ0). The Fourier transform of the function f is
defined as f̂ [n] =

∫ 2π
0 f(θ)e−jnθdθ for any n ∈ Z. The triangle function is referred to as

x ∈ R 7→ tri(x) and is defined as tri(x) = 1− |x| if |x| < 1 and tri(x) = 0 otherwise.

2.2. LRI Operators

Our mathematical formalism relies on the concepts of image operators acting over con-
tinuous images, as presented in (Depeursinge and Fageot, 2017). This work focuses on
image operators G that are LRI as previously introduced in (Andrearczyk et al., 2020). An
operator G is LRI if it satisfies the three following properties:

• Locality : there exists ρ0 > 0 such that, for every x ∈ R2 and every image I ∈ L2(R2),
the quantity G{I}(x) only depends on local image values I(y) for ∥y − x∥ ≤ ρ0.

• Global equivariance to translations: For any I ∈ L2(R2),

G{I(· − x0)} = G{I}(· − x0) for any x0 ∈ R2.

• Global equivariance to rotations: For any I ∈ L2(R2),

G{I(R0·)} = G{I}(R0·) for any R0 ∈ SO(2).

The simplest example of a LRI operator is the convolution with filter

G{I}(x) = (I ∗ h)(x), (1)

where h is isotropic with finite support, i.e. h(x1, x2) = h(ρ) is purely radial and vanishes for
ρ > ρ0 for some fixed ρ > 0 (Andrearczyk et al., 2020, Prop. 1). However, isotropic filters
are limited since they discard local directional information. We will now see how we can
extend this notion of equivariance to directional sensitive operators using the bispectrum.

2.3. Bispectral LRI Operators and Layers

We introduce the theoretical background and methodology to implement our bispectral
image operators. They have the advantage of being LRI and sensitive to directional infor-
mation. We also detail how these operators can be embedded into a convolutional layer.
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2.3.1. The Bispectrum: A Complete Set of Rotation Invariant Features

We first focus on features H : L2(S1) → R of circular functions that are rotation invariant,
i.e. such that

H{f(θ)} = H{f(θ − θ0)} (2)

for any function f and any angle θ0 ∈ [0, 2π). The typical example is the power spectrum of
f defined from its Fourier series coefficients f̂ [n]. For any fixed discrete frequency n0 ∈ Z,
the Fourier feature f 7→ |f̂ [n0]|2 is easily shown to be rotation invariant in the sense of (2).
However, the power spectrum discards the phase information of f̂ and thus, does not allow
for the complete characterization of a polar function.

For this reason, we consider a more elaborated Fourier-based feature, named the bis-
pectrum, that retains the rotation invariance while keeping the phase information (Bartelt
et al., 1984; Kakarala, 2012). The bispectrum of a function f : L2(S1) → R is defined for
any n1, n2 ∈ Z as

bf [n, n
′] = f̂ [n]f̂ [n′]f̂ [n+ n′]. (3)

One readily verifies that, for any n, n′ ∈ Z, the feature f 7→ bf [n, n
′] is rotation invariant.

The bispectrum is complete (Kakarala, 2012) in the sense that it discriminates between two
functions up to a rotation which motivates our choice of using it over the power spectrum
to design LRI layers.

2.3.2. Bispectral LRI Operators

The bispectrum is defined for circular functions in L2(S1) and can be used to build image
operators. In this section, we fix a radial function h(ρ) ∈ L2(R2) and consider the steerable
kernel κn(ρ, θ) = h(ρ)ejnθ associated to the discrete frequency n ∈ Z. We moreover intro-
duce the convolution operator Cn{I}(x) = (I ∗ κn)(x). We observe that we can write, for
any fixed position x0 ∈ R2,

Cn{I}(x0) =

∫ 2π

0

(∫ +∞

0
(I(x0 − ·)) (ρ, θ)h(ρ)ρdρ

)
e−jnθdθ.

We can interpret the circular function θ 7→ Ihx0
(θ) :=

∫ +∞
0 (I(x0 − ·) (ρ, θ)h(ρ)ρdρ as the

radial projection of the shifted image I(x0−·) against the radial profile h. Hence, Cn{I}(x0)
performs the nth Fourier coefficient of the periodic function Ihx0

.
For any n, n′ ∈ Z, we define the image operator Gn,n′ as

Gn,n′{I}(x) = Cn{I}(x)Cn′{I}(x)Cn+n′{I}(x). (4)

Then, we see by comparing (4) with (3) that, for any fixed position x0, Gn,n′{I}(x0) is
the bispectrum of the projection Ihx0

∈ L2(S1). We call Gn,n′ the bispectral operator of
frequencies n, n′. Its main invariance properties are summarized in Theorem 1, whose proof
is provided in Appendix A.

Theorem 1 Let n, n′ ∈ Z and ρ 7→ h(ρ) a radial profile with finite support. Then, the
bispectrum operator Gn,n′ is LRI.
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2.3.3. Implementation of the LRI Layer

yℓ

[∑Cin
i=1 yℓ ∗ h

i,o
n ejnθ

]
o,n

Gn,n′ = CnCn′C∗
n+n′

Concatenate + non-linearity

1× 1 conv

yℓ+1

H ×W × Cin

H ×W × Cout ×N + 1

H ×W × Cout × L

H ×W × Cout · L′

H ×W × Cout

Figure 1: The proposed bispectrum-
based LRI convolutional
layer.

We fix a maximal order N ≥ 0 and consider the bis-
pectral operators Gn,n′ for any n, n′ ≥ 0 such that
n + n′ ≤ N . By doing so, we only consider angular
frequencies smaller than N . Moreover, we only com-
pute non-repeating pairs as Gn,n′ = Gn′,n. We define
L as the number of combinations of n, n′ such that
n ≤ n′ and n+ n′ ≤ N .

For any n, n′, the application of the bispectral
operator Gn,n′ at each layer of the bispectral LRI
network is implemented in four steps as depicted
in Fig. 1. First, the feature maps are computed
as a complex convolution Co

n(x0) =
∑C

i=1(yi(x) ∗
hi,on (x)e−jnθ(x))(x0), with yi the ith channel of the
previous feature maps, hi,on the filters that are learned
by gradient descent. The parametrization of the fil-
ters hi,on is detailed in Section 2.3.4. The indices i and
o run through [1, . . . , Cin] and [1, . . . , Cout] respec-
tively and represent the input and output channels
of the layer.

The second step consists in applying (4) to the
feature maps Co

n(x), yielding the desired operator
Gn,n′ .

The third step is the concatenation of the real
and imaginary part of Gn,n′ , which is followed by a
point-wise non-linearity of the following form σ(x) =
sign(x) log(1+ |x|). This choice is made to avoid van-
ishing and exploding gradients with the cubic nature
of the bispectral feature maps (see Eq. (4)). Learned
biases are added to the resulting feature maps and
Rectified Linear Unit (ReLU) is applied.

In the last step, the number of features maps is reduced by a 1×1 convolution to obtain
Cout output channels. This whole process results in a layer that takes as an input Cin

feature maps and outputs Cout feature maps like a standard convolutional layer.

2.3.4. Parametrization of the Radial Profiles

The radial profiles hi,on are parametrized as follows:

hi,on (ρ) =

J∑
j=0

wi,o
n,jψj(ρ), (5)

where the wi,o
n,j are the learnable parameters of the layer, i ∈ [1, · · · , Cin], o ∈ [1, · · · , Cout]

and 0 ≤ n ≤ N . The radial functions ψj are chosen as ψj(ρ) = tri(ρ− j).
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2.4. Dataset

We tested our design on a subset of the dataset proposed in the MoNuSeg 2018 chal-
lenge (Kumar et al., 2019) which consists of 24 Hematoxylin and Eosin (H&E) stained
images selected from whole slice images acquired at the commonly used 40× magnifica-
tion provided by The Cancer Genome Atlas (Koboldt et al., 2012). This subset contains 6
1000 × 1000 images per tissue type for a total of four different tissue types (breast, liver,
kidney, and prostate). Nuclei instance segmentation is available for these 24 images. We
followed a similar splitting scheme than proposed by (Lafarge et al., 2019), namely 4 × 3
images for training, 4 × 1 for validation and 4 × 2 for testing. We repeated ten random
splits to evaluate the variation of the models. As preprocessing, we used the method de-
scribed in (Macenko et al., 2009) to normalize the H&E images. We adapted the code from
https://github.com/schaugf/HEnorm_python to fit our needs.

2.5. Network Architecture and Training

The networks used in this work were based on the U-Net architecture (Ronneberger et al.,
2015). However, we used a lighter version of the U-Net, as proposed in (Lafarge et al., 2021),
which contains only two levels of down-sampling. All the convolutional layers have a kernel
size of 5× 5 and are connected to a batch normalization followed by a ReLU. The encoder
path includes three convolutions layers with max-pooling to reduce the spatial dimension.
The number of feature maps for each layer respectively are 8, 16, and 32. The decoder path
contains 2 layers preceded by a bi-linear upsampling. The final prediction is modeled as a
three classes probability, i.e. nucleus core, nucleus border, and background. The prediction
is computed with a 1× 1 convolution with a softmax activation. The final output is post-
processed to obtain instance segmentation of each nucleus. This post-processing consists in
binarizing the prediction with a threshold of 0.5, then the core and border prediction are
respectively used as seed and landscape for a watershed algorithm1 (Falcão et al., 2004).

The networks were trained by minimizing the class-balanced cross-entropy with an Adam
optimizer and a learning rate of 10−3. The models were trained on patches of 60 × 60
randomly drawn from the training set with a batch size of 16. We applied multiple of 90◦

rotation as data augmentation2 as well as random brightness shift. The training was run for
a maximum number of epochs of 200 and we applied an early stop monitoring the F-score.
The experiments were performed on an Nvidia Tesla K80. The code for the implementation
is available on our GitHub repository3.

2.6. Metrics and Evaluation

Two types of experiments were conducted. We first evaluated the performance of our
bispectral LRI U-Net against a standard U-Net. The metric used for this experiment is the
F-score and we considered a match when the predicted nucleus had more than 50% overlap
with the ground-truth nucleus. Since the radial profiles of the proposed LRI layer do not
cover the entire 5 × 5 kernel, we used masked kernels in the standard U-Net to ensure a

1. docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.watershed_ift.html, March 2022.
2. We also evaluated the training without this augmentation, but did not observe any significant changes.
3. github.com/voreille/2d_bispectrum_cnn, March 2022.
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fair comparison. The masked kernel consists of removing the four pixels in the corners.
All models were trained and tested on the same 10 train/validation/testing splits to assess
performance variation.

In the second experiment, we evaluated the robustness of the predictions made by the
two designs in terms of 90◦-rotation equivariance. We fed the networks with the same image
rotated at different orientations. Then, we applied the inverse rotation to the output maps
and compare the difference in pixel-wise prediction. We used the Root Mean Square Error
(RMSE) on the three classes of raw probabilities prediction as well as the Dice Similarity
Coefficient (DSC) on the post-processed probability to measure the overlap of predictions for
each orientation, indicating the robustness of prediction with respect to input orientation.

3. Results

0.0 1.0 0.0 0.4
Class probability Absolute di�erence

S
a
m

p
le

 1
S
a
m

p
le

 2

H&E image Bispectral U-Net Standard U-Net

Figure 2: Illustration of the prediction robust-
ness with respect to input orientation.
The middle and right columns depict
the probability prediction of the nu-
cleus border class for the bispectral and
standard U-Nets, respectively. The red
color map indicates the mean pixel-
wise differences averaged across the six
pairs of 90◦ rotations. These differ-
ences are almost null for the bispectral
U-Net.

Fig. 3 relates the F-score for varying maxi-
mum degree N of the bispectral U-Net and
standard U-Net. The best performing bis-
pectral U-Net had an F-score of 0.7157 ±
0.0328 with a maximum degree N = 7 and
136,147 parameters (standard U-Net 71,571
parameters). Thus, we trained a standard
U-Net with more feature maps to increase
the number of parameters (134,709 param-
eters) which obtained an average F-score of
0.7324 ± 0.0326.

To account for the discrepancy in the
number of parameters at different maximal
degrees N , we trained a bispectral U-Net
with N = 0 and more feature maps to ob-
tain a network of 45,779 parameters (com-
parable to the number of parameters of the
network with N=3). The resulting network
achieved an average F-score of 0.6592 ±
0.0286.

Table 1 summarizes the average RMSE
and DSC between predictions of rotated im-
ages. The average was calculated on all the
images from the testing set of one split and
all pairs of 90◦ rotations. Fig. 2 illustrates
the pixel-wise variation between predictions when fed to the networks at different orienta-
tions.

4. Discussions and Conclusion

We proposed a novel 2D LRI layer based on the bispectrum that can be integrated into
any CNN architecture. This design aims to improve the robustness of the predictions when
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Figure 3: Performance of the different networks. Average F-scores are reported across ten repeti-
tions of the proposed bispectral U-Net evaluated at different maximum degrees N (blue)
and standard U-Net (red). Error bars and dashed lines indicate the standard deviation.

Table 1: Quantitative evaluation of segmentation robustness. It is worth noting that rotational
data augmentation was used during training for both approaches.

Model RMSE border RMSE core RMSE background DSC
Standard U-Net 8.49± 1.35 % 7.66± 1.72 % 9.15± 1.43 % 0.9153± 0.0205

Bispectral U-Net (N = 7) 2.50e-5 ±0.78e-5 % 2.26e-5 ±0.77e-5 % 2.53e-5 ±0.87e-5 % 0.9876± 0.0044

inputs do not have a standardized orientation, or when local structures of interest can
appear at any orientation.

We first presented the bispectral operators and demonstrated their LRI property in Sec-
tion 2.3.2 and Appendix A. We also detailed how to use them in a convolutional layer in
Section 2.3.3. Second, we incorporated the LRI layer into a U-Net to allow robust segmen-
tation of multi-organ nuclei in histopathology images. We observed that the segmentation
performance of the LRI U-Net is on par with a standard U-Net (see Fig. 3). While the
bispectral U-Net was slightly outperformed by the standard U-Net, it is difficult to evaluate
to which extent the post-processing had a role in this difference (see Appendix B).

However, an important gain was obtained in terms of robustness with respect to the
orientation of the input (see Table 1) thanks to the rotation equivariance property of the
used image operators. This robustness is crucial for most medical image analysis tasks
where structures of interest often appear at various orientations. We observed that standard
methods lack robustness, even when rotational data augmentation is used (see Table 1 and
Fig. 2). While most studies focused on classification or segmentation performance alone,
robustness to changes in input orientation was little investigated and may have important
consequences on the usability of the models.

Our work recognizes several limitations. The segmentation performance presented in
Fig. 3 is not at the level of the state of the art on this dataset. Our goal was to compare
with standard baseline methods such as the U-Net without using refinements e.g. postpro-
cessing of the segmentation maps or ensembling. Future work includes the extension of the
bispectral operator to 3D and extensive comparisons with group-equivariant approaches.
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Appendix A. Proof of Theorem 1

For any n ∈ Z, the operator I 7→ Cn{I} = I ∗ κn is equivariant to translations (as a
convolution) and local (due to the fact that h, and therefore κn(ρ, θ) = h(ρ)ejnθ, have
a finite support). Then, the operator Gn,n′ inherits these properties, as is clear from its
definition in Eq. (4).

We moreover observe that, for any rotation matrix Rθ0 associated with the angle θ0, we
have that

I(Rθ0 ·) ∗ κn = (I ∗ κn(R−1
θ0

·))(Rθ0 ·) = ejnθ0(I ∗ κn)(Rθ0 ·), (6)

where the first inequality comes from the relation f(Rθ0) ∗ g = (f ∗ g(R−1
θ0

·))(Rθ0 ·) valid for

any f, g ∈ L2(R2) and the second uses that κn(Rθ0 ·) = ejnθ0κn. This implies that, for any
image I and any x ∈ R2,

Cn{I(Rθ0 ·)} = I ∗ (κn(Rθ0 ·)) (x) = ejnθ0Cn{I}(Rθ0x). (7)

We have therefore that

Gn,n′{I(Rθ0 ·)}(x) = ejnθ0ejn
′θ0ej(n+n′)θ0Cn{I}(Rθ0x)Cn′{I}(Rθ0x)Cn+n′{I}(Rθ0x)

= Gn,n′{I}(Rθ0x)

and the operator Gn,n′ is globally rotation equivariant. Being local and equivariant to shifts
and rotations, Gn,n′ is LRI.

Appendix B. Additional Results

In this Appendix, we report additional results. First, we computed additional metrics to
investigate the performance difference between the bispectral and the standard U-Nets.
The precision and recall for the bispectral U-Net (N=7) were 0.7004 ± 0.0617 and 0.7500
± 0.0350, respectively. For the standard U-Net, we obtained 0.7156 ± 0.0505 and 0.7686
± 0.0400. We also trained a standard U-Net without masking the kernels, obtaining an
F-score of 0.7318 ± 0.0220.

Second, we compare the computational time between the two approaches. The average
forward time on 80 1000x1000 images for the bispectral U-Net with N = 0, 2, 4, and 7 were
0.14, 0.42, 1.05, and 2.17 seconds respectively. The average forward time for the standard
U-Net was 0.07 seconds.

Finally, we report some examples of predictions made by the bispectral and standard
U-Net. Fig. 4 illustrates the predictions on a patch where the bispectral U-Net outperforms
the standard U-Net. Fig. 5 shows a patch where the bispectral U-Net over segments and
thus performs worse than the spectral U-Net.
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Figure 4: Illustration of predictions where the bispectral U-Net outperforms the standard
U-Net. The F-score on this patch for the bispectral and standard U-Net are,
respectively, 0.8929 and 0.7931. The colors in the top row images are used to
highlight the different nucleus instances obtained after the application of the
watershed algorithm.
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Figure 5: Illustration of predictions where the bispectral U-Net over segments. The F-score
on this patch for the bispectral and standard U-Net are, respectively, 0.6667 and
0.7619. The colors in the top row images are used to highlight the different
nucleus instances obtained after the application of the watershed algorithm.

The quantitative results seem to indicate that the bispectral U-Net always performed a
little worse than the standard U-Net. However, as highlighted in Fig. 4 and 5, it is difficult
to assess whether these differences come from the post-processing step.

Appendix C. Comparison with Spectral U-Net

This appendix describes the results with a similar architecture to the bispectral U-Net.
However, the invariant used here is the spectrum yielding a spectral U-Net, which is very
similar to the design proposed in (Eickenberg et al., 2017) or in (Andrearczyk et al., 2020).
The design of the LRI layer is almost the same and the associated LRI operator is defined
as:

Gn{I}(x) = Cn{I}(x)Cn{I}(x). (8)
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Figure 6: Performance evaluation of the different networks. The average F-scores across 10
repetitions of the proposed bispectral (blue) and spectral (orange) U-Net evalu-
ated at different maximum degrees N are reported.

This invariant is equivalent to taking the modulus, i.e. spectrum, of the Fourier coeffi-
cients Cn. The results are reported in Fig. 6.

The results suggest slightly better performance for the bispectral U-Net, but the differ-
ence remains too marginal to conclude.
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