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Abstract The concept of graph edit distance constitutes one of the most flexible graph
matching paradigms available. The major drawback of graph edit distance, viz. the expo-
nential time complexity, has been recently overcome by means of a reformulation of the
edit distance problem to a linear sum assignment problem. However, the substantial speed
up of the matching is also accompanied by an approximation error on the distances. Major
contribution of this paper is the introduction of a transformation process in order to convert
the underlying cost model into a utility model. The benefit of this transformation is that it
enables the integration of additional information in the assignment process. We empirically
confirm the positive effects of this transformation on five benchmark graph sets with respect
to the accuracy and run time of a distance based classifier.

Keywords Structural pattern recognition · Graph matching · Greedy graph edit distance ·
Utility matrix

1 Introduction

The use of feature vectors for pattern representation implicates two limitations. First, vectors
are based on a predefined set of features, and thus all vectors in a given application have to
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preserve the same length regardless of the size or complexity of the corresponding pattern.
Second, there is no direct possibility to describe binary (or higher-order) relationships that
might exist among different parts of a pattern. These two drawbacks are severe, particularly
when the patterns under consideration are characterized by complex structural relationships
rather than the statistical distribution of a fixed set of pattern features.

Graphs are able to overcome both limitations and are thus regarded as versatile alternative
to feature vectors. Due to their power and flexibility graphs found widespread application
in pattern recognition and related fields [10,17]. However, one drawback of graphs, when
compared to feature vectors, is the significant increase of the complexity of many algorithms.
Regard, for instance, the algorithmic comparison of two patterns (which is actually a basic
requirement for many pattern recognition algorithms). Due to the homogeneous nature of
feature vectors, pairwise comparisons is straightforward and can be accomplished in linear
time with respect to the length of the two vectors. However, the same task for graphs is much
more complex, as one has to identify common parts of the graphs by considering all of their
subsets of nodes.

With the rise of graph kernels [18] as well as graph embedding methods [39], the gap
between vector based and graph based pattern recognition has been bridged. However, both
approaches crucially depend on similarity or dissimilarity computation on graphs, commonly
referred to as graph matching. The overall aim of graph matching is to find a correspondence
between the nodes and edges of two graphs that satisfies some, more or less, stringent con-
straints. In the last 4 decades a huge number of procedures for graph matching have been
proposed in the literature (e.g. [11,20,47]).

Graph edit distance [8,48], introduced about 30 years ago, is still one of the most flexible
graph distance models available and topic of various recent research projects. In fact, the
concept of graph edit distance is particularly interesting because it is able to cope with
directed and undirected, as well as with labeled and unlabeled graphs. If there are labels on
nodes, edges, or both, no constraints on the respective label alphabets have to be considered.

In order to compute the graph edit distance often tree search techniques endowedwith some
heuristics are employed (e.g. [16]). However, this type of search algorithm is exponential
in the number of nodes of the involved graphs. In [38] authors of this paper introduced an
algorithmic framework for a suboptimal computation of graph edit distance. The basic idea
of this approach is to reduce the difficult problem of graph edit distance to a linear sum
assignment problem (LSAP), for which an arsenal of efficient (i.e. cubic time) algorithms
exist [9]. In two recent papers [41,42] the optimal algorithm for the LSAP has been replaced
with a suboptimal greedy algorithmwhich runs in quadratic time.Due to the lower complexity
of this suboptimal assignment process, a substantial speed up of the complete approximation
procedure has been observed. However, it was also reported that the distance accuracy of
this extension is slightly worse than with the original algorithm. Major contribution of this
paper is to improve the overall distance accuracy of this recent procedure by means of an
elaborated transformation of the underlying cost model.

This paper is based on a preliminary contribution presented in [45]. The current paper
has been extended with respect to both the theoretic foundation and the underlying method.
Moreover, the description of the novel approach as well as the underlying concepts are more
detailed as in the preliminary paper. Last but not least, compared to the preliminary contri-
bution the experimental evaluation as well as the discussion has been substantially extended.
In particular, two additional real world data sets are employed for empirical investigations.

The remainder of this paper is organized as follows. Next, in Sect. 2, the computation of
graph edit distance is reviewed. In particular, it is shown how the graph edit distance problem
can be reduced to a linear sum assignment problem. In Sect. 3, the transformation of the cost
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model into a utility model is thoroughly described. Eventually, in Sect. 4, we empirically
confirm the benefit of this transformation in a classification experiment on five graph data
sets. Finally, in Sect. 5, we conclude the paper and outline possible future research activities.

2 Graph Edit Distance

Originally, the paradigmof edit distance has been proposed for sequential data structures such
as strings [28,58]. Eventually, the idea of edit distance has been extended to more general
data structures such as trees [49] and graphs [8,13,48,56,57].

Definition 1 (Graph) A graph g is defined as g = (V, E), where V refers to the finite set of
nodes and E ⊆ V × V is the set of edges.

In this work we consider graphs to be labeled. Formally, we use μ : V → LV and
ν : E → LE as node and edge labeling functions, respectively. The label alphabets LV

and LE for both nodes and edges are generally not restricted to any domain. That is, the
alphabets can be given by the set of integers L = {1, 2, 3, . . .}, the vector space L = R

n , a
set of symbolic labels L = {α, β, γ, . . .}, or a combination of various label alphabets from
different domains. Note that unlabeled graphs can be seen as special cases of labeled graphs
by assigning the same (empty) label ∅ to all nodes and edges, i.e. LV = LE = {∅}.

The idea of graph edit distance is to define a dissimilarity measure based on the number
as well as the strength of so called edit operations that have to be applied to transform a graph
g1 = (V1, E1, μ1, ν1) into another graph g2 = (V2, E2, μ2, ν2). These edit operations are
commonly given by insertions,deletions, and substitutions of both nodes and edges.However,
other edit operations such as merging or splitting might be useful in some applications but
not considered in the current work (we refer to [3] for an application of additional edit
operations). We denote the substitution of two nodes u ∈ V1 and v ∈ V2 by (u → v), the
deletion of node u ∈ V1 by (u → ε), and the insertion of node v ∈ V2 by (ε → v), where ε

refers to the empty node. For edge edit operations we use a similar notation.

Definition 2 (Edit Path) A set {e1, . . . , ek} of k edit operations ei that transform g1 com-
pletely into g2 is called an edit path λ(g1, g2) between g1 and g2.

Note that edge edit operations are unambiguously defined via node edit operations. That
is, whether an edge (u, v) is substituted, deleted, or inserted, depends on the edit operations
actually performed on both adjacent nodes u and v. Formally, let u, u′ ∈ V1 ∪ {ε} and
v, v′ ∈ V2 ∪ {ε}, and assume that both edit operations (u → v) and (u′ → v′) are present
in the edit path λ(g1, g2) under consideration. Depending on whether or not there is an edge
(u, u′) ∈ E1 and/or an edge (v, v′) ∈ E2, the following three cases can be distinguished.

1. If there are edges e1 = (u, u′) ∈ E1 and e2 = (v, v′) ∈ E2, the edge substitution
(e1 → e2) is implied by (u → v) and (u′ → v′).

2. If there is an edge e1 = (u, u′) ∈ E1 but no edge e2 = (v, v′) ∈ E2, the edge deletion
(e1 → ε) is implied by (u → v) and (u′ → v′). Obviously, if v or v′ refers to the empty
node ε there cannot be any edge (v, v′) ∈ E2 and thus the edge deletion (e1 → ε) is
necessary.

3. If there is no edge e1 = (u, u′) ∈ E1 but an edge e2 = (v, v′) ∈ E2, the edge insertion
(ε → e2) is implied by (u → v) and (u′ → v′). Again, if u = ε or u′ = ε there cannot
be any edge (u, u′) ∈ E1.
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Thus, it is in general sufficient that an edit path λ(g1, g2) covers the nodes from V1
and V2 only. From now on we assume that an edit path λ(g1, g2) explicitly describes the
correspondences found between the graphs’ nodes V1 and V2, while the edge edit operations
are implicitly given by these node correspondences.

Commonly, one introduces a cost c(e) for every edit operation e, measuring the strength of
the corresponding operation. The idea of such a cost is to define whether or not an edit oper-
ation e represents a strong modification of the graph. Clearly, between two similar graphs,
there should exist an inexpensive edit path, representing low cost operations, while for dis-
similar graphs an edit path with high cost is needed. Consequently, the edit distance of two
graphs is defined as follows.

Definition 3 (Graph Edit Distance) Let g1 = (V1, E1, μ1, ν1) and g2 = (V2, E2, μ2, ν2)

be two graphs. The graph edit distance dλmin (g1, g2), or dλmin for short, between g1 and g2
is defined by

dλmin (g1, g2) = min
λ∈ϒ(g1,g2)

∑

ei∈λ

c(ei ) , (1)

where ϒ(g1, g2) denotes the set of all complete edit paths transforming g1 into g2, c denotes
the cost function measuring the strength c(ei ) of node edit operation ei (including the cost
of all edge edit operations implied by the operations applied on the adjacent nodes of the
edges), and λmin refers to the minimal cost edit path found in ϒ(g1, g2).

There might be two (or more) edit paths with equal minimal cost in ϒ(g1, g2). That is,
the minimal cost edit path λmin ∈ ϒ(g1, g2) is not necessarily unique. Moreover, graph edit
distance does not build a metric function in general. In practice, however, the definition of
some weak conditions on the cost function c are sufficient such that the graph edit distance
becomes a metric function [8].

An adequate definition of cost functions is not only important for building a metric, but
also for the effectiveness of edit distance based pattern recognition (see [52] for an extensive
review on different cost functions for graph edit distance). In case of unlabeled graphs, the
cost is usually defined via unit cost for all deletions and insertions of both nodes and edges,
while substitutions are free of cost. Formally,

c(u → ε) = c(ε → u′) = c((u, v) → ε)

= c(ε → (u′, v′)) = 1

c(u → u′) = c((u, v) → (u′, v′)) = 0

for all nodes u, v ∈ V1 and u′, v′ ∈ V2 as well as all edges (u, v) ∈ E1 and (u′, v′) ∈ E2.
In general, however, the cost c(e) of a particular edit operation e is defined with respect

to the underlying label alphabets LV and LE . For instance, for numerical node and edge
labels, i.e. for label alphabets LV , LE = R

n , a Minkowski distance can be used to model
the cost of a substitution operation on the graphs. The Minkowski cost function defines the
substitution cost proportional to theMinkowski distance of the two corresponding labels. The
basic intuition behind this approach is that the more dissimilar two labels are, the stronger is
the distortion associated with the corresponding substitution.

In other applications the node and/or edge labels might be not numerical and thus
non-numerical distance functions have to be employed to measure the cost of a particu-
lar substitution operation. For instance, the label alphabet can be given by the set of all
strings of arbitrary size over a finite set of symbols. In this case a distance model for strings,
as for instance the string edit distance [28,58], could be used for measuring the cost of a
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substitution. In other problem domains, the label alphabet might be given by a finite set of
n symbolic labels LV/E = {α1, α2, . . . , αn}. In such case a substitution cost model using a
Dirac function, which returns zero when the involved labels are identical and a non-negative
constant otherwise, could be the method of choice.

The definition of application specific cost functions, which can be adopted to the pecu-
liarity of the underlying label alphabet, accounts for the flexibility of graph edit distance.
However, prior knowledge about the labels and their meaning has to be available. If in a
particular case this prior knowledge is not available, automatic procedures for learning the
cost model from a set of sample graphs are available as well [12,30–32,53].

2.1 Computation of Graph Edit Distance

The exact computation of graph edit distance dλmin (g1, g2) is often based on A* [5,16,21,
40]. A* is a best-first search algorithm [22] which always finds an optimal solution if the
underlying heuristic function is admissible.

However, for graphs with m and n nodes the time complexity of these complete and
admissible search algorithms is in O(mn). Hence, the computation of exact edit distance
is limited to graphs of rather small size. In fact, graph edit distance belongs to the family
of quadratic assignment problems (QAPs) [26], which in turn belong to the class of N P-
complete problems (see [7,36] for details on formulating the GED problem as QAP). That
is, an exact and efficient algorithm for the graph edit distance problem can not be developed
unless P = N P .1

Various methods address the high complexity of graph edit distance computation. Local
optimization criteria [6,33,54], for instance, are used to solve the error-tolerant graph match-
ing problem in a more efficient way. Another idea for efficient graph edit distance is to prune
the underlying search tree and consequently reduce both the search space and the matching
time [34]. Linear programming for computing the edit distance of graphs with unlabeled
edges is proposed in [25]. Finding an optimal match between the sets of subgraphs by means
of dynamic programming [13,14] is another possibility for speeding up the computation of
graph edit distance.

2.1.1 Cubic Time Approximation of Graph Edit Distance

Authors of this paper introduced an algorithmic framework which allows the approximate
computation of graph edit distance in a substantially faster way than traditional methods
on general graphs [38]. The basic idea of this approach is to reduce the quadratic assign-
ment problem of graph edit distance computation to an instance of a Linear Sum Assignment
Problem (LSAP). LSAPs are similar to QAPs in the sense of also formulating an assign-
ment problem of entities. However, in contrast with QAPs, LSAPs are able to optimize the
assignment problem with respect to a linear term only.

For solving LSAPs a large number of algorithms exist (see [9] for an exhaustive survey).
They range from primal–dual combinatorial algorithms [24,27,29], to simplex-like methods
[2,35] and other approaches [1,55]. The time complexity of the best performing exact algo-
rithms for LSAPs is cubic in the size of the problem. Hence, LSAPs can be—in contrast with
QAPs—quite efficiently solved.

LSAPs are concerned with the problem of finding the best bijective assignment between
the independent entities of two sets S1 = {s(1)

1 , . . . , s(1)
n } and S2 = {s(2)

1 , . . . , s(2)
n } of equal

1 www.claymath.org/millennium-problems/p-vs-np-problem.
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size. In order to assess the quality of an assignment of two entities, a cost ci j is commonly

defined thatmeasures the suitability of assigning the i-th element s(1)
i ∈ S1 to the j-th element

s(2)
j ∈ S2 (resulting in n × n cost values ci j (i, j = 1, . . . , n)).

Definition 4 (Linear Sum Assignment Problem (LSAP)) Given two disjoint sets S1 =
{s(1)
1 , . . . , s(1)

n } and S2 = {s(2)
1 , . . . , s(2)

n } and a cost ci j for every pair of entities (s(1)
i , s(2)

j ) ∈
S1 × S2, the Linear Sum Assignment Problem (LSAP) is given by finding

min
(ϕ1,...,ϕn)∈Sn

n∑

i=1

ciϕi

where Sn refers to the set of all n! possible permutations of n integers.

By reformulating the graph edit distance problem to an instance of an LSAP, three major
issues have to be resolved.

1. First, LSAPs are generally stated on independent sets with equal cardinality. However,
in our case the elements to be assigned to each other are given by the sets of nodes (and
edges) with unequal cardinality in general.

2. Second, solutions to LSAPs refer to assignments of elements in which every element of
the first set is assigned to exactly one element of the second set and vice versa (i.e. a
solution to an LSAP corresponds to a bijective assignment of the underlying entities).
However, graph edit distance is a more general assignment problem as it explicitly allows
both deletions and insertions to occur on the basic entities (rather than only substitutions).

3. Third, graphs do not only consist of independent sets of entities (i.e. nodes) but also of
structural relationships between these entities (i.e. edges that connect pairs of nodes).
LSAPs are not able to consider these relationships in a global and consistent way.

The first two issues can be simultaneously resolved by adding an appropriate number of
empty nodes ε to both graphs g1 and g2. Assuming that |V1| = n and |V2| = m, we extend
V1 and V2 according to

V+
1 = V1 ∪

m empty nodes︷ ︸︸ ︷
{ε1, . . . , εm}

and

V+
2 = V2 ∪ {ε1, . . . , εn}︸ ︷︷ ︸

n empty nodes

.

The LSAP can now be carried out on these extended node sets. Formally, based on the
extended node sets

V+
1 = {u1, . . . , un, ε1, . . . , εm} and V+

2 = {v1, . . . , vm, ε1, . . . , εn}
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of g1 and g2, respectively, a cost matrix C can be established as follows.

C =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1 v2 ... vm ε1 ε2 ... εn

u1 c11 c12 · · · c1m c1ε ∞ · · · ∞
u2 c21 c22 · · · c2m ∞ c2ε

. . .
...

...
...

...
. . .

...
...

. . .
. . . ∞

un cn1 cn2 · · · cnm ∞ · · · ∞ cnε

ε1 cε1 ∞ · · · ∞ 0 0 · · · 0

ε2 ∞ cε2
. . .

... 0 0
. . .

...
...

...
. . .

. . . ∞ ...
. . .

. . . 0
εm ∞ · · · ∞ cεm 0 · · · 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

Entry ci j thereby denotes the cost c(ui → v j ) of the node substitution (ui → v j ), ciε denotes
the cost c(ui → ε) of the node deletion (ui → ε), and cε j denotes the cost c(ε → v j ) of the
node insertion (ε → v j ).

Obviously, the left upper part of the cost matrix C = (ci j ) represents the costs of all
possible node substitutions, the diagonal of the right upper part the costs of all possible node
deletions, and the diagonal of the bottom left part the costs of all possible node insertions.
Every node can be deleted or inserted at most once. Therefore any non-diagonal element of
the right-upper and left-lower part can be set to∞. The bottom right part of the cost matrix is
set to zero since substitutions of the form (ε → ε) should not cause any cost. In [46,50,51]
alternative definitions of a cost matrix C have been proposed in order to decrease the size of
the assignment problem.

The third issue stated above is about the edge structure of both graphs which cannot be
considered by LSAPs. In fact, so far the cost matrix C = (ci j ) considers the nodes of both
graphs only, and thus the assignment algorithm does not take any structural constraints into
account. In order to integrate knowledge about the graph structure, to each entry ci j , i.e. to
each cost of a node edit operation (ui → v j ), the minimum sum of edge edit operation costs,
implied by the corresponding node operation, is added.

This particular encoding of the minimum matching cost arising from the local edge struc-
ture enables the LSAP to consider information about the local, yet not global, edge structure
of a graph. Hence, this heuristic procedure partially resolves the third issue (a complete
solution for this third problem would be equivalent to an exact computation of graph edit
distance, which would be unreasonable of course). Several other attempts have been made
to include more adjacency information into the assignment process of [38] (e.g. [19,44]).
However, in this paper we make use of the original version of the algorithm.

The permutation (ϕ1, . . . , ϕ(n+m)) that minimizes the sum of cost

(n+m)∑

i=1

ciϕi

actually corresponds to a bijective assignment

ψ = {(u1 → vϕ1), (u2 → vϕ2), . . . , (um+n → vϕm+n )}
of the extended node set V+

1 of g1 to the extended node set V+
2 of g2. That is, assignment

λ includes node edit operations of the form (ui → v j ), (ui → ε), (ε → v j ), and (ε → ε)
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(the latter can be dismissed, of course). In other words, the permutation (ϕ1, . . . , ϕ(n+m))

perfectly corresponds to a to an admissible and complete edit path between the graphs under
consideration, i.e. ψ ∈ ϒ(g1, g2). The sum of costs of ψ gives us an approximation value
dψ(g1, g2), or dψ for short, for the graph edit distance.

Note that the edge operations are only added to the edit path ψ after the optimization
process has been terminated. This is because LSAP solving algorithms are not able to take
information about assignments of adjacent nodes into account during run time. In other
words, for finding the edit path ψ ∈ ϒ(g1, g2) based on the cost matrix C = (ci j ) the
structural information of the graphs is considered in an isolated way only (single nodes and
their adjacent edges). Hence, ψ ∈ ϒ(g1, g2) is a suboptimal edit path with cost greater than,
or equal to, the optimal edit path λmin (see [43] for a formal proof).

For the remainder of this paperwe denote this graph edit distance approximation algorithm
with BP-GED (Bipartite Graph Edit Distance).2

2.1.2 Quadratic Time Approximation of Graph Edit Distance

From a high level perspective, the algorithmic framework presented in [38] consists of the
following three major steps.

1. In a first step the graphs to be matched are subdivided into individual nodes including
local structural information.

2. Next, in step 2, an algorithm that solves the LSAP is employed in order to find an optimal
assignment of the nodes (plus local structures) of both graphs.

3. Finally, in step 3, an approximate graph edit distance is derived from the assignment of
step 2.

For the second step of BP-GED Munkres’ algorithm [29], also referred to as Kuhn–
Munkres, or Hungarian algorithm, is deployed in the existing framework [38]. The time
complexity of this particular algorithm (as well as the best performing other algorithms for
LSAPs) is cubic in the size of the problem, i.e. O((n +m)3) in our case. There exist several
studieswhere different LSAP solving algorithms for this particular graphmatching procedure
have been compared with each other [15,23,51].

Recently, it has been proposed to solve the LSAP stated on C with an approximation
rather than with an exact algorithm [41,42]. While for the optimal solution of LSAPs quite
an arsenal of algorithms is available, only a few works are concerned with the suboptimal
solution of general LSAPs (see [4] for an early survey).

A basic greedy algorithm that suboptimally solves the LSAP stated on cost matrix C is
formalized in Algoritm 1. This algorithm iterates through C from top to bottom through
all rows and assigns every element to the minimum unused element in a greedy manner.
More formally, for each row i in the cost matrix C = (ci j ) the minimum cost entry ϕi =
argmin

∀ j
ci j is determined and the corresponding node edit operation (ui → vϕi ) is added

to ψ . By removing column ϕi in C it is ensured that every column of the cost matrix is
considered exactly once (i.e. ∀ j refers to available columns in C). Clearly, the complexity of
this suboptimal assignment algorithm is O((n + m)2).

In contrast with optimal LSAP solvers, the quadratic time assignment method operates in
a greedy manner. That is, this approach is not able to undo a certain node assignment once it

2 The assignment problem can also be formulated as finding a matching in a complete bipartite graph and is
therefore also referred to as bipartite graph matching problem.
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Algorithm 1 Greedy-Assignment(C = (ci j ))
1: ψ = {}
2: for i = 1, . . . , (m + n) do
3: ϕi = argmin

∀ j
ci j

4: Remove column ϕi from C
5: ψ = ψ ∪ {(ui → vϕi )}
6: end for
7: return ψ

has been added to ψ . Hence, this particular method crucially depends on the order in which
the nodes are processed. However, the nodes of a graph and thus the first n rows (and m
columns) in C are arbitrarily ordered.

In order to take this observation into account, we reorder the first n rows ofC in ascending
order with respect to the minimum cost entry per row (before the assignment is carried out).
Formally, we sort the cost matrix C such that

min∀ j
c1 j ≤ min∀ j

c2 j ≤ . . . ≤ min∀ j
cnj .

That is, in the first row the overall minimum cost assignment can be found, while the second
rowcontains the second smallest rowminimum, the third row the third smallest rowminimum,
and so on.

This heuristic ensures that the most evident assignments, i.e. the assignments with overall
lowest cost, are considered first by our greedy assignment. For the remainder of this paper
we denote the graph edit distance approximation where the basic node assignment (i.e. step
2 of BP-GED) is computed by means of this greedy procedure with GR-GED.

3 Building the Utility Matrix

Major contribution of this paper is the introduction of a novel matrix to solve the graph
matching problem. Similar to [41,42] we aim at solving the basic LSAP in O(n2) time in
order to approximate the graph edit distance with a greedy assignment. However, in contrast
with this previous approach, which considers the cost matrix C = (ci j ) directly as its basis,
we transform the given cost matrix into a utility matrix with equal dimension as C and work
with this matrix instead.

Basically, for each assignment (ui → v j ) the cost ci j is assessed with respect to all cost
entries in the i-th row and j-th column of C. That is, we define a utility of this particular edit
operation in relation to all other possible assignments that involve ui or v j .

Let us consider the i-th row of the cost matrix C and let row-mini and row-maxi denote
the minimum and maximum value occurring in this row, respectively. Formally, we have

row-mini = min
j=1,...,(n+m)

ci j

and

row-maxi = max
j=1,...,(n+m)

ci j .

If the node edit operation (ui → v j ) is selected, one might interpret the quantity

row-wini j = row-maxi − ci j
row-maxi − row-mini

123



700 K. Riesen et al.

as a win for (ui → v j ), when compared to the locally worst case situation where vk with
k = argmax j=1,...,(n+m) ci j is chosen as target node for ui . Likewise, we might interpret

row-lossi j = ci j − row-mini
row-maxi − row-mini

as a loss for (ui → v j ), when compared to selecting the minimum cost assignment which
would be possible in this row. Note that both row-wini j and row-lossi j are normalized to the
interval [0, 1]. That is, when ci j = row-mini we have a maximum win of 1 and a minimum
loss of 0. Likewise, when ci j = row-maxi we observe a minimum win of 0 and a maximum
loss of 1.

Overall we define the utility of the node edit operation (ui → v j ) with respect to row i as

row-utilityi j = row-wini j − row-lossi j

= row-maxi + row-mini − 2ci j
row-maxi − row-mini

.

Clearly, when ci j = row-mini we observe a row utility of + 1, and vice versa, when
ci j = row-maxi we have a row utility of − 1.

So far the utility of a node edit operation (ui → v j ) is quantified with respect to the i-th
row only. In order to take into account information about the j-th column, we seek for the
minimum and maximum values that occur in column j by

col-min j = min
i=1,...,(n+m)

ci j

and

col-max j = max
i=1,...,(n+m)

ci j .

Eventually, we define

col-wini j = col-max j − ci j
col-max j − col-min j

and

col-lossi j = ci j − col-min j

col-max j − col-min j
.

Similarly to the utility of the node edit operation (ui → v j ) with respect to row i we may
define the utility of the same edit operation with respect to column j as

col-utilityi j = col-wini j − col-lossi j

= col-max j + col-min j − 2ci j
col-max j − col-min j

.

To finally estimate the utility ui j of a node edit operation (ui → v j ) we apply one of the
following three rules.

– Min:

ui j = min(row-utilityi j , col-utilityi j )
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– Max:

ui j = max(row-utilityi j , col-utilityi j )

– Sum:

ui j = row-utilityi j + col-utilityi j

Since both row-utilityi j and col-utilityi j lie in the interval [− 1, 1], we observe ui j ∈
[− 1, 1] for thefirst and second rule,whileui j ∈ [− 2, 2] accounts for the third rule.Wedenote
the final utility matrix by Umin, Umax, or Usum (depending on the rule actually employed)
from now on.

We aim at employing the same greedy assignment procedure on U as used for GR-GED
(see Algorithm 1.3) Hence, we also reorder the first n rows of U. However, this time in
descending order with respect to the maximum utilities in each row. That is, in the first row
the overall maximum utility can be found, the second row contains the second highest row
utility, and so on. Formally, we sort the utility matrix such that

max∀ j
u1 j ≥ max∀ j

u2 j ≥ . . . ≥ max∀ j
unj .

This heuristic again ensures that the most evident assignments, i.e. the assignments with
highest utility, are considered first by our greedy assignment.

The rationale behind the transformation of C to U is based on the following observation.
When picking the minimum element ci j from cost matrix C, i.e. when assigning node ui to
v j , we exclude both nodes ui and v j from any future assignment. However, it may happen that
node v j is not only the best choice for ui but also for another node uk . Because v j is no longer
available, we may be forced to map uk to another, very expensive node vl , such that the total
assignment cost becomes higher than mapping node ui to some node that is (slightly) more
expensive than v j . In order to take such situations into account, we incorporate additional
information in the utility matrix about the the minimum and maximum value in each row,
and each column.

Example 1 Let us consider a simple toy example with a 3 × 3 cost matrix.

C =
⎡

⎣

v1 v2 v3

u1 1 2 3
u2 4 3 3
u3 3 5 10

⎤

⎦

With a greedy algorithm we would find the assignment

ψ = {u1 → v1, u2 → v2, u3 → v3}
with a total assignment cost of 14.

The row and column utilities computed on C are given by

⎡

⎣

v1 v2 v3

u1 1 0 −1
u2 −1 1 1
u3 1 3

7 −1

⎤

⎦ and

⎡

⎣

v1 v2 v3

u1 1 1 1
u2 −1 1

3 1
u3 − 1

3 −1 −1

⎤

⎦

3 Applying the greedy assignment on utilities rather than costs means that we replace argmin
∀ j

by argmax
∀ j

, of

course.
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Table 1 The mean and max
number of nodes and edges in the
data set

Data ∅|V | ∅|E | max |V | max |E |
AIDS 15.7 16.2 95 103

MUTA 30.3 30.8 417 112

PROT 32.6 62.1 126 149

PAH 20.7 24.4 28 34

MAO 18.4 19.6 27 29

Then, the final utility matrix (using the sum rule) is defined as

Usum =
⎡

⎣

v1 v2 v3

u1 2 1 0
u2 −2 4

3 2
u3

2
3 − 4

7 −2

⎤

⎦

resulting in the greedy assignment

ψ = {u1 → v1, u2 → v3, u3 → v2}
with a lower total assignment cost, viz. 9, than directly achieved on C.

4 Experimental Evaluation

4.1 Setup and Data Sets

In the experimental evaluation we aim at investigating the benefit of using the utility matrix
U instead of the cost matrix C in the framework GR-GED. In particular, we aim at assessing
the quality of the different distance approximations by means of comparisons of the sum of
distances and by means of a distance based classifier. Actually, a nearest-neighbor classifier
(NN) is employed. There are various other approaches to graph classification that make use
of graph edit distance in some form. However, the nearest neighbor paradigm is particu-
larly interesting for the present evaluation because it directly uses the distances without any
additional classifier training.

For the experimental evaluations three data sets from the IAM graph database repository
[37] and two data sets from GREYC’s dataset repository4 are used. In Table 1 the mean and
max number of nodes and edges for each data set is given.

Four data sets consist of graphs representingmolecular compounds from different applica-
tions, viz. AIDS,MUTA,MAO, and PAH (all of these data sets represent two class problems)
and one data set consists of graphs that represent proteins stemming from six different classes
(PROT).

The molecular structures, which consist of atoms and covalent bonds, are converted into
graphs in a very natural and straightforward manner by representing atoms as nodes and the
covalent bonds as edges. Nodes are labeled with their corresponding chemical symbol and
edges by the valence of the linkage.

The proteins are converted into graphs by representing the structure, the sequence, and
chemical properties of a protein by nodes and edges. Nodes represent secondary structure

4 https://brunl01.users.greyc.fr/CHEMISTRY/index.html.

123

https://brunl01.users.greyc.fr/CHEMISTRY/index.html


On the Impact of Using Utilities Rather than Costs for... 703

Table 2 The mean run time for one matching (∅t), the relative increase/decrease of the sum of distances
compared with BP-GED, and the recognition rate (rr) of a nearest-neighbor classifier using a specific graph
edit distance algorithm

Data Reference systems Novel systems

BP-GED(C) GR-GED(C) GR-GED(Umin ) GR-GED(Umax )
(%)

GR-GED(Usum )
(%)

AIDS ∅t 3.6 × 10−3 s 1.3 × 10−3 s 1.3 × 10−3 s

sod – 2.1% 2.3% 2.3 2.4

rr 99.1% 99.0% 99.0% 98.9 99.0

MUTA ∅t 33.9 × 10−3 s 4.8 × 10−3 s 5.1 × 10−3 s

sod – 1.3% 0.7% 0.3 0.7

rr 70.2% 69.6% 71.7% 71.2 71.6

PROT ∅t 25.6 × 10−3 s 14.1 × 10−3 s 14.1 × 10−3 s

sod – 9.9% 3.8% 8.3 2.7

rr 67.5% 64.5% 66.0% 66.5 66.0

PAH ∅t 3.3 × 10−3 s 3.0 × 10−3 s 3.1 × 10−3 s

sod – −4.5% −6.6% −6.1 −6.7

rr 63.8% 64.9% 64.9% 66.0 64.9

MAO ∅t 2.4 × 10−3 s 1.9 × 10−3 s 1.9 × 10−3 s

sod – 18.1% 67.2% 75.7 67.2

rr 85.3% 75.0% 80.9% 83.8 82.4

elements (SSE) within the protein structure, labeled with their type (helix, sheet, or loop) and
their amino acid sequence. Every pair of nodes is connected by an edge if they are neighbors
along the amino acid sequence (sequential edges) or if they are neighbors in space within
the protein structure (structural edges). Every node is connected to its three nearest spatial
neighbors. In case of sequential relationships, the edges are labeled with their length in amino
acids, while in case of structural edges a distance measure in Ångstroms is used as a label.

For molecular compounds the following cost model has been employed. For node and
edge deletions/insertions constant positive costs τnode and τedge have been used. The node
substitution cost is measured via Dirac function returning 0 if the two symbols are equal, and
2τnode otherwise. Edge substitutions are free of cost.

For the protein graphs a cost model based on the amino acid sequences is used. For node
substitutions the type of the involved nodes is compared first. If two types are identical, the
amino acid sequences of the nodes to be substituted are compared by means of string edit
distance [58]. For edge substitutions, we measure the dissimilarity with a Dirac function
returning 0 if the two edge types are equal, and 2τedge otherwise.

4.2 Results and Discussion

In Table 2 the results obtained with five different graph edit distance approximations are
shown. The first algorithm is BP-GED(C), which solves the LSAP onC in an optimal manner
in cubic time [38]. The second algorithm is GR-GED(C), which solves the LSAP on C in
a greedy manner in quadratic time [41,42]. These two systems act as reference systems for
our novel approach. The remaining algorithms are GR-GED(U), which employ the greedy

123



704 K. Riesen et al.

algorithm on a utility matrix U instead of C using the three rules for the definition of the
utilities (Min, Max, and Sum).

We first focus on the mean run time for one matching in ms (∅t) and compare BP-GED
with GR-GED that both operate on the original cost matrix C. On all data sets substantial
speed-ups of the greedy approach can be observed. On the AIDS data set, for instance, the
greedy approach GR-GED(C) is approximately three times faster than BP-GED. On the
MUTA data set the mean matching time is decreased from 33.9 to 4.8 ms (seven times faster)
and on the PROT data the greedy approach approximately halves the matching time (25.6
vs. 14.1ms). Also on PAH and MAO slight decreased run times are observed.

Comparing GR-GED(C) with GR-GED(U) we observe no, or only negligible, increases
of the matching time when the latter approach is used (we show only one mean time for
all utility matrices as no differences are observable between the three strategies). The slight
increase of the run time, which is actually observable on MUTA and PAH only, is due to the
computational overhead that is necessary for transforming the cost matrix C to the utility
matrix U.

Next, we focus on the distance quality of the greedy approximation algorithms. All of the
employed algorithms return an upper bound on the true edit distance, and thus, the lower the
sum of distances of a specific algorithm is, the better is its approximation quality. For our
evaluation we take the sum of distances returned by BP-GED as reference point and measure
the relative increase or decrease of the sum of distances when compared with BP-GED (sod).

For instance, we observe that GR-GED(C) increases the sum of distances by 2.1% on the
AIDS data when compared with BP-GED. On three other data sets, viz. MUTA, PROT, and
MAO, the sum of distances is also increased (by 1.3, 9.9 and 18.1%, respectively). On PAH
we observe a decrease of the sumof distance by 4.5%.By using the utilitymatrixU rather than
the cost matrix C in the greedy assignment algorithm, we observe smaller sums of distances
on the MUTA, PAH, and PROT data sets. On the other data sets our novel approach leads to
higher approximation errors (on MAO, for instance, the approximation error is substantially
increased). Note, however, that increased distances are not necessarily disadvantageous. For
instance, increasing the distances between two graph stemming from different classes might
be beneficial for distance based classifiers. Thus, we finally focus on the recognition rate (rr)
of a NN-classifier that uses the different distance approximations.

We observe that the NN-classifier that is based on the distances returned by GR-GED(C)
achieves lower recognition rates than the same classifier that uses distances fromBP-GED(C)
(on all data sets but PAH). This loss in recognition accuracy may be attributed to the fact
that the approximations in GR-GED are coarser than those in BP-GED. However, our novel
procedure, i.e. GR-GED(U), improves the recognition accuracy on four out of five data sets
when compared to GR-GED(C). For instance, on the MUTA data set the recognition rate
is increased from 69.6 to 71.7% when Umin rather than C is used. In fact, this result on the
MUTA data set refers to the overall best recognition rate among all competing algorithms.
Also on the PAH data set our novel approach (using Umax) achieves the overall best result.

Comparing the three different utility matrices Umin, Umax, and Usum with each other, we
observe that the Max rule achieves the best result on three out of five data sets (PROT, PAH,
and MAO), while Min and Sum achieve the best result on two and one data set, respectively.

5 Conclusions and Future Work

In this paper we propose to use a utility matrix instead of a cost matrix for the assignment of
local substructures in a graph. The motivation for this transformation is based on the greedy
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behavior of the basic assignment algorithm. More formally, with the transformation of the
cost matrix into a utility matrix we aim at increasing the probability of selecting a correct
node edit operation during the optimization process.

With an experimental evaluation on five real world data sets, we empirically confirm that
our novel approach is able to increase the accuracy of a distance based classifier, while the
run time is nearly not affected (or even decreased). In particular, our novel approach is up to
seven times faster than BP-GED(C) and improves the classification accuracy on four out of
five data sets when compared with the same algorithm operating on cost (rather than utility)
matrices [GR-GED(C)].

In future work we aim at testing other (greedy) assignment algorithms on the utility matrix
U. Moreover, there seems to be room for developing and researching variants of the utility
matrix with the aim of integrating additional information about the trade-off between wins
and losses of individual assignments. Last but not least, we plan to evaluate this as well as
other transformations not only on real world but also on artificial graphs in order to better
understand the benefits and limitations of matrix transformations in the context of graph
matching.
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