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Significance: Chronic wounds are associated with significant morbidity, marked
loss of quality of life, and considerable economic burden. Evidence-based risk
prediction to guide improved wound prevention and treatment is limited by
the complexity in their etiology, clinical underreporting, and a lack of studies
using large high-quality datasets.
Recent Advancements: The objective of this review is to summarize key
components and challenges in the development of personalized risk prediction
tools for both prevention and management of chronic wounds, while high-
lighting several innovations in the development of better risk stratification.
Critical Issues: Regression-based risk prediction approaches remain important for
assessment of prognosis and risk stratification in chronic wound management.
Advances in statistical computing have boosted the development of several prom-
ising machine learning (ML) and other semiautomated classification tools. These
methods may be better placed to handle large number of wound healing risk
factors from large datasets, potentially resulting in better risk prediction when
combined with conventional methods and clinical experience and expertise.
Future Directions: Where the number of predictors is large and heterogenous,
the correlations between various risk factors complex, and very large data sets
are available, ML may prove a powerful adjuvant for risk stratifying patients
predisposed to chronic wounds. Conventional regression-based approaches
remain important, particularly where the number of predictors is relatively
small. Translating estimated risk derived from ML algorithms into practical
prediction tools for use in clinical practice remains challenging.
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SCOPE

Chronic wounds are associated with a diverse
range of etiologies and complex interactions of risk
factors. There is an urgent need for reliable, vali-
dated risk prediction tools that can better target
an individual patient’s unique set of predispos-
ing factors that influence both their risk of disease
progression and response to treatment once chro-
nic wounds develop. The aim of this review is to
summarize recent advancements in computing
technologies to support risk prediction in other dis-
eases and describe both the challenges in trans-
ferring these tools into clinical support for chronic
wounds (Table 1).

TRANSLATIONAL RELEVANCE

Recent advancements in computing power and
statistical risk prediction in cardiovascular and
endocrine disease may be transferrable to complex,
high-burden diseases such as chronic wounds. The
growing availability of large clinical databases,
disease registries, and administrative datasets
provides a fertile base for the study and develop-
ment of risk prediction tools for the targeted tria-
ging and management of chronic wounds.

CLINICAL RELEVANCE

Improved risk prediction is essential for the
early identification of patients at highest risk for
progressing to chronic wounds. This may enable
early intervention in clinical practice to both pre-
vent disease progression and support targeted,
personalized management of disease once pro-
gressed, accounting for an individual patient’s
unique set of risk factors.

INTRODUCTION
Complex wounds that fail to progress through

expected healing phases in a timely manner are
classified in the group of hard-to-heal wounds or
chronic wounds.1 Chronic wounds are associated
with significant morbidity, marked loss of quality
of life and utility, and considerable economic and
societal burden, both within the United States and
globally.2 Recent US estimates across all wound
types put Medicare spending alone at USD 28–97
billion annually.3 Data from other countries fur-
ther support the considerable costs of chronic
wounds. Canadian expenditure on diabetic foot
ulcers alone is estimated at $509 million annually,4

while chronic wound expenditure in the United
Kingdom is estimated to be e 4.5–5.3 billion.5–8

A 2017 systematic review of 36 international
cost-of-illness studies covering payer, hospital,
patient, and societal perspectives estimated mean
1-year costs to the public payer ranging from
$11,000 (USD) per chronic venous leg ulcer up
to $44,200 for every diabetic foot ulcer.4 Current
projections suggest that these costs will continue to
increase into the future.

Despite chronic wounds representing a major
public health challenge, current cost estimates
likely underestimate the true burden of disease
due to underreporting,1,9 and a lack of quality
prevalence studies, particularly at the global
level.1 Critically, the timely identification, inter-
vention, and personalized management of complex
chronic wounds are further limited by a lack of
reliable, validated risk prediction and prognostic
tools. This is, in part, secondary to the complex-
ity and range of comorbidities associated with
chronic, often treatment-refractory wounds.7 These
include such diverse chronic conditions as diabe-
tes, chronic renal disease, venous insufficiency,
peripheral vascular disease, and hypertension, in
addition to pressure injuries secondary to lack of
mobility and/or poor nutrition.

This complexity in etiology, variability in the
underlying pathophysiology, and the attendant
risk factors that each condition imparts are
reflected in the large number of different guide-
lines currently available for the treatment and
management of chronic wounds. The objective of
this review is to summarize the key components
and challenges in the development of personalized
risk prediction tools for the prevention and man-
agement of chronic wounds, and highlight several
promising innovations in the development of better
risk stratification and prognosis tools, including
machine learning (ML) and other broader artifi-
cial intelligence (AI)-based applications.

Table 1. Scope: design, outcomes, and methods

Scope Component

Study design Systematic reviews
Meta-analyses
Randomized Controlled Trials
Cohort studies (prospective or retrospective)
Case–control studies

End-points and outcomes Wound healing
In-hospital amputation
Hospital-acquired pressure ulcers
Wound care management decision making

Risk prediction methods Logistic regression
Cox regression
Classification trees
Gradient-boosted decision tree models
Multiclass classification models
Machine learning classification
Bayesian classification
Random forest methods
Fuzzy clustering
Linear discriminant classification
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RISK PREDICTION AND CHRONIC WOUNDS
Personalized medicine and wound healing

As knowledge and treatments for the manage-
ment of chronic wounds evolve, treatment guide-
lines are increasingly emphasizing a more targeted
approach that combines personalized medicine
with evidence-based risk prediction for better
patient-level and health care usage cost outcomes.
Specifically, better tailoring of treatment to indi-
vidual patients means a broader consideration of
the factors that drive disease, including patient-
related factors (pathology, comorbidity, allergy,
medications, psychosocial, and pain); wound-
related factors (duration/senescence and size, area
and depth, wound bed condition, ischemia,
inflammation/infection, anatomical site, and
treatment response); health care professional skills
and knowledge; and resource treatment-related
factors (health care system, availability, suitability,
effectiveness, and cost/reimbursement).10 The de-
velopment and application of predictive tools for
risk stratification may aid both targeted prevention
of chronic wounds or improved, personalized treat-
ment and management once wounds develop.11

Barriers to targeted chronic wounds
management

Current standard of care for the management of
chronic wounds covers multiple stages, including
debridement, surgical drainage (where indicated),
wound bed preparation, dressings and antimicro-
bial management of infection, and wound biobur-
den.9 Many conventional local therapies, growth
factors, and dressing and biomaterial technolo-
gies for the management and treatment of chronic
wounds remain generic. These interventions are
commonly used in wound management irrespec-
tive of etiology or underlying risk factors that may
impair wound healing. Moreover, the large number
of available treatments for which evidence of
effectiveness across the various phases of chronic
wound disease is limited.

This lack of validated, primary evidence is more
pronounced in the biotechnological sphere, where
promising technologies such as functional bioma-
terials and dressings are often insufficiently tested
and trialled, making it difficult to establish causa-
tive associations between wound management
technology and improved clinical and/or cost out-
comes.8,12,13 These limitations extend to the eco-
nomic evaluation of treatments for chronic wounds,
both pharmaceutical and technological. A recent
systematic review of model-based economic evalu-
ations of venous leg ulcer treatments found that
the reporting quality was generally low, particu-

larly with regard to the reporting of evidence sup-
porting the structure of each model used to
translate the efficacy favoring a chronic wound
intervention reported in the clinical trial setting
into an economic cost-benefit or cost-utility.14

The heterogenous nature of chronic wounds
makes personalized ulcer management challeng-
ing. A key component of personalized treatment
of chronic wounds is better risk prediction. Being
able to reliably predict which patients are likely to
experience impaired ulcer healing would be a crit-
ical step in the tailoring of wound therapies to
the individual patient and being able to respond
in a timely manner when chronic wounds prove
refractory to initial treatment. Predictive diag-
nostics have been identified as a critical component
in the targeted prevention of various pathologies
that characteristically drive poor wound healing.11

Risk prediction may also need to appreciate sys-
tematic differences in health care delivery across
different settings.15

Of the various etiologies or underlying disease
that may present as chronic wounds, diabetes is
one area that has seen recent advancements in
personalized diabetes care. The development of
risk prediction models that combine clinical and
phenotypic data with biomarkers and genetic data
to estimate individualized risk of diabetic compli-
cations have be used to risk-stratify and monitor
patients to prevent or delay the development of
such complications.16 However, while analytical
tools for the development of robust risk prediction
for the prevention or targeted management of chro-
nic wounds are evolving rapidly, their application
in real-world clinical practice remains limited.

Building risk prediction models for
chronic wounds

In its simplest form, risk prediction models are
mathematical equations that combine various
patient-level risk factor data to estimate the prob-
ability of a future adverse event or poor clinical
outcome, whether that be the initial development
of a chronic wound or its subsequent response to
therapy.17 As such, a critical component of any risk
prediction tool is the availability of high-quality
risk factor data. Risk factors can be divided into
potentially modifiable risk factors (e.g., smoking,
alcohol, obesity, malnutrition, diabetes cardiovas-
cular disease) and nonmodifiable factors (e.g., age,
genetic predisposition). Accessing a reasonably
complete suite of risk factors required for reli-
able risk prediction in chronic wound can be chal-
lenging, given the large number of demographics,
lifestyle, comorbidity, and other clinical factors
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that predispose to chronic wound disease or mod-
erate their response to treatment.18–20

Despite so-called ‘‘big data’’ being recognized as
generally lacking in wound healing outcome anal-
ysis,21 high-quality real-world data such as dis-
ease registries are proving an increasingly
valuable source of chronic wound risk factor data.
These include high-coverage, national quality
registries such as the Swedish National Quality
Registry for Ulcer Treatment (RiksSår),22–24 and
the Danish National Patient Register.25

Such large, national disease registries are typi-
cally characterized by excellent coverage and data
quality and, unlike clinical trials, cover a broad
spectrum of patient type and risk factor profiles
that better characterize real-world clinical prac-
tice. Powering risk prediction tools on data col-
lected from real-world clinical settings further
improves the generalizability and utility of such
tools to every-day clinical practice. The capacity
to further link these registries to administrative
data and electronic health records also provides

opportunities to use novel methods such as ML and
data mining to better identify relevant combina-
tions of risk factors in the building of targeted,
personalized risk prediction.26,27

Definitions and terminology. AI, ML, and deep
learning tend to be used interchangeably and
therefore, it is essential to define those concepts
separately. AI can be defined as ‘‘the science and
engineering of making intelligent machines, espe-
cially intelligent computer programs that exhibit
characteristics associated with intelligence in
human behavior including among other faculties of
reasoning, learning, goal seeking, problem solving,
and adaptability.’’28 ML and deep learning are
the subsets of AI, and deep learning is a subset of
ML (Fig. 1). To paraphrase Arthur Samuel, who
coined the term, ML is a method for developing the
models by using mathematical methods to make
classifications and predictions, and discover pat-
terns without being explicitly programmed.29 Deep
learning is the subcategory of ML that uses mul-

Figure 1. Difference between Artificial Intelligence, Machine Learning, and Deep Learning.
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tiple layers of artificial neural networks to discover
intricate structure in large data sets.30 Figure 2
describes the typical stages involved in developing
and validating an ML model.

Apart from the above-depicted definitions,
considerable confusion exists around the indi-
vidualized or personalized medicine approach. In
the medical literature, several terms can be found
(personalized medicine, precision medicine,
stratified medicine, P4, and patient- and person-
centered medicine), which are not synonyms,
although frequently used interchangeably. From
a very ambitious definition of ‘‘personalized
medicine,’’ which often is described as ‘‘genomics-
based knowledge that promises the ability to ap-
proach each patient as the biological individual he
or she is,’’31 the challenge of predicting individual
outcomes has led to a gradual reinterpretation
of the term ‘‘personalized medicine,’’ being re-
placed by ‘‘stratified medicine’’ in United King-
dom32,33 and by ‘‘precision medicine’’ in the
United States.34

The PROGRESS consortium defined stratified
medicine as the targeting of treatments (pharma-
cological or nonpharmacological) according to the
biological or clinical characteristics shared by
subgroups of patients.35 They highlight the dis-
tinction between purely prognostic factors (that
affect outcome irrespective of treatment) and those
predictive of treatment response.36 However,
recently introduced ‘‘patient-centric medicine’’
has a much broader scope defined as ‘‘individual’s
specific health needs and desired health out-
comes’’ as ‘‘the driving force behind all health care
decisions and quality measurements’’ in which
‘‘patients are partners with their health care
providers, and providers treat patients not only
from a clinical perspective, but also from an emo-
tional, mental, spiritual, social, and financial
perspective.’’37

The risk prediction models typically include
clinical, genetic, and care-related factors and envi-
ronmental, demographic, and other factors of
importance for patient-related outcomes. Although
judging based on the spectrum of factor, category,
and outcome measures used in the risk prediction
models, they can be described in certain situations
as developments under the scope of patient-centric
medicine. However, still, the majority of risk pre-
diction models has a humbler approach and can
be instead described under the scope of stratified/
precision medicine. Even today, we lack a consistent
analytical approach that can account for multiple
patient attributes combined to inform treatment
decisions adequately at the individual level.

Access to high-quality and representative data is
just the first of several key phases in the develop-
ment of clinically meaningful risk prediction mod-
els. Ideally, models balance statistical performance
with clinical usefulness, achieving a satisfactory
level of discrimination, calibration, and face valid-
ity.23 Current best practice guidelines highlight
the importance of appropriate variable selection
strategies, assessment of model performance, and
external validation as three of the key steps in the
development of good risk prediction.24 Variable
selection, the identification of which combination of
strong risk or prognostic factors best predicts the
clinical outcome of interest, is a key determinant of
both model performance and its ultimate utility in
clinical or value-based payment settings. Although
conventional selection methods generalized from
linear regression analyses such as forward selec-
tion and backward elimination remain popular,25

such approaches have many disadvantages, such
as instability of the selection and suboptimal model
performance.

Moreover, these standard selection methods
may be less practical for real-world risk prediction
in chronic wound, where the number of potential
candidate risk factors is typically large and the
a priori evidence-based supporting of one variable
over another is often limited. In the case of chronic
wounds, the use of shrinkage of estimated regres-
sion coefficients, penalized likelihood, resampling,
and stability testing may offer better alternatives
to standard automated step-wise variable selec-
tion, particularly when combined with expert clin-
ical opinion.26

Model stability (the robustness of the model to
small changes in the training dataset), calibration
(agreement between the estimated and observed
event risks), and discrimination (the ability of the
model to correctly identify which chronic wound
patients progress to an adverse clinical outcome
and which do not) are key elements in assessing
performance. These can be assessed at internal
validation of a risk prediction model, that is, with-
out access to new, independent data, for example,
using bootstrapping techniques. External valida-
tion is central to establishing the model’s gener-
alizability to different or new subgroups of chronic
wound patients.14,27–29 External validation typi-
cally takes the form of assessing the performance
of a risk prediction model in a separate dataset
and can reveal key mismatches between a model’s
discrimination and calibration, which may reflect
genuine differences in the cohort used to derive
of the original prediction model and real-world
settings.
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One well-publicized example involved the
Framingham Risk Score (FRS), commonly used in
risk prediction for cardiovascular endpoints,33

whereas an FRS-based risk prediction model of
coronary artery disease (CAD) returned similar

levels of discrimination in Asian and non-Asian
cohorts; only on subsequent external validation
was it apparent that the same model markedly
overestimated the absolute risk of CAD, by 276% in
men and 102% in women.34 Similarly, an American

Figure 2. Typical Machine Learning model development steps.
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College of Cardiology/American Heart Association
(ACC/AHA) risk model overestimated CAD risk by
75% to 150% in validation cohorts.34 These exam-
ples highlight the common problem of poor cali-
bration of absolute risk predictions.32

The emergence of large, high-quality national
wound registries provides further opportunities to
optimize the performance of chronic wound risk
prediction by dividing these large databases into
meaningful training and testing datasets, includ-
ing by region or health care provider.33 Similarly,
electronic medical records (EMRs) are proving an
increasing valuable resource for both developing
and validating risk prediction in chronic wounds.
A 2020 study of 620,356 chronic wounds (various
etiologies) from the EMRs of 261,398 patients in
the United States was able to predict wound heal-
ing with an area under the curve of 0.72,34

although this was less than the accuracy observed
in other studies. Whatever the data source or
stage of model development, it is essential that the
future of risk prediction in chronic wounds follows
best practice recommendations both in terms of
model development17,35 and in reporting.36

Innovative methods for improving risk
prediction in chronic wounds

What is broadly acknowledged is that risk pre-
diction in chronic wounds is challenging, given the
high level of heterogeneity in patient, disease,
monitoring, treatment, and health care system fac-
tors that correlate with the various clinical out-
comes. Conventional risk prediction models based
on linear combinations of risk factors remain an
important cornerstone of any attempt to quantify a
patient’s individual risk status.37 Decision tree
models are also well established in risk stratifi-
cation and can be useful for both clinical outcome
prediction and ranking the relative importance of
competing risk factors to that prediction, may
result in adequate risk prediction relative to con-
ventional linear regression.

Risk prediction studies in chronic wound
research employing conventional or algorithmic
classification schemes generally tend to focus on
three main outcomes: (1) wound healing; (2) in-
hospital adverse events; and (3) wound manage-
ment decision making (for example, specialist
referral or optimal treatment recommendation).
Characteristics of a selection of risk prediction
studies for each of these outcomes are summarized
in Tables 2–4, respectively.

A U.S study of 620,356 chronic wounds (multi-
ple etiologies) from 261,398 patients reported
that a classification tree-based prediction model

(AUC = 0.72) was broadly equivalent to conven-
tional regression modeling (AUC = 0.71) in pre-
dicting wound healing within 12 weeks.38 This
study highlights the importance of power and the
availability of large datasets for driving reliable
classification-based risk prediction. ML may not
always outperform traditional approaches, and
indeed may return relatively poor classification or
prognostication, particularly where the training
datasets are small.23,36,37 The very large number of
risk factors at play, frequent interactions between
competing risk factors, and nonlinear relationships
between risk factors and, for example, delayed
healing time, motivate the application of more in-
novative and sophisticated statistical solutions.39

Promising new approaches include ML methods.
ML employs automated statistical algorithms to
identify and then learn to recognize patterns in
data, for example, combinations of risk factors that
optimally predict development of a chronic wound.
Three basic classes of ML methods are commonly
used in risk prediction: supervised, unsupervised,
and reinforcement learning.40 Supervised learning
algorithms (where the outcome is known, and the
aim is to learn what covariate patterns best pre-
dict the outcomes) have been suggested to be
associated with superior accuracy in identifying
treatment responders in other diseases.19,41

These techniques can be applied to large, real-
world datasets such as patient registries, admin-
istrative datasets, and electronic health records to
efficiently risk stratify patients based on their
underlying risk factor profile. A recent 2021 study
of 1,220,576 wounds from 425,163 patients,
sourced from electronic health records in the Uni-
ted States, reported that ML-derived risk predic-
tion models accurately predicted wounds at risk of
not healing (AUC 0.86).39 The sheer volume of risk
factors studied (187 demographic, comorbidity, and
wound characteristics) coupled to the very large
sample size of over 1 million wounds would have
been logistically and computationally challenging.
In another study, ML models based on Light Gra-
dient Boosting Machine (LightGBM) algorithms
could accurately classify the risk of major inpati-
ent amputation (AUC 0.86) in a large, real-world
cohort of patients with diabetic foot ulcers.42

ML models may be additionally useful as screen-
ing tools.43 Furthermore, an ML model trained on
the electronic health records of 50,851 admissions
to tertiary intensive care units outperformed the
Braden score in predicting patients who subse-
quently developed chronic pressure ulcers.43 ML
can also be used in decision support. Mombini et al
applied ML to the analysis of a large volume of
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patient and image data of visual wound features
to accurately predict treatment and referral deci-
sions.44 More broadly, studies combining tele-
medicine with automated computational learning
approaches for monitoring wound development
and predicting patients in need of intervention or
a change in treatment are currently underway.45

Another promising class of risk prediction
methods is the use of multistate models to allow for
dynamic risk prediction.46,47 A limitation of con-
ventional approaches to risk prediction in chronic
wounds is a patient’s risk for, say delayed wound
healing, is often assessed at a single point-in-time
only (e.g., at baseline). However, a chronic wound

Table 2. Characteristics of wound risk prediction studies with wound healing outcome

Study Observation Period End-Point Sample Size Model Predictors Model Type and Performance

Cho et al
(2019)

January 2014–
September 2018

Wound healing by end
week 12

620,356 wounds from
261,398 patients

Demographic (including age,
sex, and smoking status)

Patient level clinical
(including wound number
and comorbidities)

Wound factors (area,
location, and etiology)

Logistic model AUC: 0.712
Classification tree model: 0.717

Berezo et al
(2021)

January 2012–
July 2021

Wound not healing by
end week 4, 8 and 12
from treatment start

1,220,576 wounds 187 covariates, including
patient demographics,
comorbidities, and wound
factors.

Machine learning gradient-boosted
decision tree models AUC:

4 weeks: 0.854
8 weeks: 0.855
12 weeks: 0.853

Chakraborty
(2019)

Not reported Wound healing 153 images of wounds Visual wound features Fuzzy c-means clustering for wound image
segmentation vs standard
computational learning schemes
including decision tree, naive Bayesian
and random forest.

Accuracy:
Fuzzy clustering = 93.8%
Decision Tree = 84.3%
Linear Discriminant = 85.7%
Naive Bayesian = 78.7%

Fife and Horn
(2020)

July 2003–
July 2011

Venous leg ulcer healing 26,713 venous leg
ulcers (split 90%
development model &
10% validation
sample)

Various demographic,
clinical, and wound
factors

Test-validate logistic regression confirmed
wound size, age (days), number of
concurrent wounds, evidence of
infection/bioburden, being non-
ambulatory and hospitalization for any
reason significantly predicted healing.

Ubbink et al
(2015)

November 2007–
April 2012

Time to complete wound
healing

1660 wounds Various demographic,
clinical, and wound
factors identified from the
literature and national
expert panel

Cox and linear regression analysis
identified five independent predictors:
wound location, infection, size, duration,
and patient age.

Table 3. Characteristics of wound risk prediction studies—in-hospital outcomes

Study
Observation

Period Endpoint Sample Size Model Predictors Model Type and Performance

Xie et al
(2021)

2009–2020 In-hospital amputation
in patients with
diabetic foot ulcer

618 patients Demographic features, medical
and medication history,
clinical and laboratory data,
Wagner Ulcer Classification,
Wound, Ischemia, foot
Infection (WIfI) Classification

Light Gradient Boosting Machine
multiclass classification model AUC:

Minor amputation: 0.85
Major amputation: 0.86
Nonamputation: 0.90

Cramer et al
(2019)

2001–2012 Hospital-acquired
pressure ulcers in
intensive care units

50,581 admissions Demographic parameters,
diagnosis codes, laboratory
values, and vitals in the first
24 h of admission.

Braden score vs machine learning
weighted linear regression.

Braden score:
Precision = 0.09
Recall = 0.50
ML weighted:
Precision = 0.09
Recall = 0.71
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patient’s real-world risk profile is likely to vary and
fluctuate over time, depending upon how their
underlying disease is being managed or otherwise.
Multistate models allow a patient to move between
varying risk states, and can result in better esti-
mation of the true level risk associated with a
particular factor.

A critical aspect when making the leap from
prognosis to a treatment recommendation is the
causality. Risk prediction should thus form only
one part of a decision support system to guide
choices in the management of chronic wounds. The
volume and heterogeneity of potential confounders
of treatment response in chronic wound manage-
ment make it difficult to isolate potentially causal
pathways amenable to treatment, particularly
when the risk prediction models are trained and
tested in real-world datasets. This has, in part,
formed an important driver of the increased pop-
ularity of ML in this field.46

Although the application of deep-learning mod-
els for building confounder-invariant risk predic-
tion in chronic wounds has thus far been limited,
the method has recently shown promise in the use
of MRIs in the diagnosis of HIV,47 and the predic-
tion of lung adenocarcinoma through CT.48 The
combination of such methods for data-driven cau-
sal hypothesis and future application of causal in-
ference methods may bring personalized, targeted
chronic wound management one step closer.49–51

Nevertheless, such novel ML methods should be
taken with caution and should not be universally
applied to any research question, despite demon-
strated superiority in specific areas. A 2020 review
of 453 articles published between 2015 and 2019 on
ML predictive models for the diagnosis of chronic
diseases noted the large variety of ML methods
employed and the lack of standard methods for
determining the optimal approach.43 This may, in
part, reflect the recency and novelty of many of
these ML approaches.

CLINICAL USEFULNESS

Routine clinical practice requires simple, inter-
pretable models of risk that use predictors that are
easy to measure and not overly time-consuming.17

Although ML methods are attractive, they are very
data dependent. Those models can lack the inter-
pretability of predictor models grounded in subject

matter knowledge. Furthermore, the clinical util-
ity of algorithmic predictions needs to consider the
benefit-harm consequences for patients of false
positive and false negatives. For example, a higher
rate of false positives may be acceptable in real-
world clinical practice if it avoids undue harm.32,51

The trade-off between these choices should there-
fore be balanced with practical clinical needs. ML
may play an important role for identifying complex
combinations and/or interactions between various
risk factors if large data sets are available.

However, the ultimate tool for use in real-world
clinical practice needs to be pragmatic, intuitive,
and actionable. Some performance measures have
been proposed recently to quantify the ability of a
prediction model to improve decision making.25,52,53

These measures consider the differential clinical
consequences of false-positive versus true-positive
classifications in a summary measure for clinical
usefulness. ML-based risk prediction is not in itself
sufficient to establish causal relationships between
risk factors and wound outcomes and the general
lack of standards or best practice in the develop-
ment and application of the reviewed ML-based
risk prediction has likely contributed to this lack
of transparency and the relatively poor uptake of
such technology in the clinical setting.

In terms of future work assessing the clinical
usefulness of ML in wound management, this
study group is currently undertaking a formal
study applying ML methods to real-world data
from the Swedish RiksSår quality registry for pa-
tients with difficult-to-heal wounds, to identify
clusters of predictive factors that best predict
wound class (healable vs maintenance vs non-
healable) in clinical practice.

CONCLUSION

Conventional regression-based approach to
risk prediction will remain important, particu-
larly where the number of predictors is relatively
small, and assumptions underlying the chosen
model form such as linearity are carefully assessed.
Furthermore, translating estimated risk derived
from ML algorithms into practical, standalone
prediction tools for use in everyday clinical prac-
tice (such as personalized risk calculators or
nomograms) can be challenging. Where the num-
ber of predictors is large and heterogenous (as is

Table 4. Characteristics of wound risk prediction studies–wound management decision-making outcomes

Study Observation Period Endpoint Sample Size Model Predictors Model Type and Performance

Mombini
et al (2021)

Not reported Wound care
decisions

Not reported Amount and presence of unhealthy
tissue, wound visual features

Machine learning-based Shapley logistic regression:
F1 score = 0.938
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characteristic of chronic wounds), the
relationships and correlations between
various risk factors are complex, and
very large data sets are available, ML
may prove a powerful adjuvant for risk-
stratifying patients predisposed to or
living with chronic wounds.
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