
1

Promoting Computational Thinking Skills
in Non-Computer Science Students

Gamifying Computational Notebooks to Increase Student Engagement
Alessio De Santo, Juan Carlos Farah, Marc Lafuente Martı́nez, Arielle Moro, Kristoffer Bergram, Aditya Kumar

Purohit, Pascal Felber, Denis Gillet, Adrian Holzer

Abstract—Computational thinking (CT) skills are becoming
increasingly relevant for future professionals across all domains,
beyond computer science (CS). As such, an increasing number of
bachelor and masters programs outside of the computer science
discipline integrate CT courses within their study program. At
the same time, tools such as notebooks and interactive apps
designed to support the teaching of programming concepts are
becoming ever more popular. However, in non-CS majors, CT
might not be perceived as essential, and students might lack
the motivation to engage with such tools in order to acquire
solid CT skills. This paper presents a field study conducted with
115 students during a full semester on a novel computational
notebook environment. It evaluates computational notebooks and
CT skills in an introductory course on information technology
for first-year undergraduates in business and economics. A
multidimensional evaluation approach makes use of pre- and
post-test surveys, lectures, and self-directed lab sessions tracking
analytics. Our findings suggest that, in the process of learning
CT for non-CS students, engagement in active learning activities
can be a stronger determinant of learning outcomes than initial
knowledge. Furthermore, gamifying computational notebooks
can serve as a strong driver of active learning engagement, even
more so than initial motivational factors.

Index Terms—fieldwork learning, active learning, computa-
tional thinking, computational notebooks, gamification, motiva-
tion

I. INTRODUCTION

The use of computers, smartphones, and other connected
devices is becoming part of the daily routine of an ever-
increasing number of people around the world. The increased
usage of computing devices and their processing power allows
us to solve problems that we could not tackle before and, at
the same time, this has complexified the way society works,
leading to an increased presence of non-routine work [1]. Even
people without computing skills need to use computers to
carry out specific tasks in their daily lives. In this hyper-
connected era, individuals must be aware of how to make
the most of computers, which involves being fully capable
of communicating with them and of extracting all their com-
puting potential to solve complex problems in a wide range

Manuscript received XXX; Revised XXX, 2021.(Corresponding author:
Alessio De Santo)

This research has been co-funded by Swissuniversities.
Alessio De Santo, Arielle Moro, Kristoffer Bergram, Aditya Kumar Purohit,

Pascal Felber, and Adrian Holzer are with the University of Neuchâtel,
Switzerland (e-mail: firstname.lastname@unine.ch). Juan Carlos Farah and
Denis Gillet are with EPFL, Switzerland (e-mail: firstname.lastname@epfl.ch).
Marc Lafuente Martı́nez is an independent consultant based in Switzerland
(e-mail: marc.lafuentem@gmail.com).

Digital Object Identifier XX/TLT XXX

of domains [2]. As such, computational thinking (CT) is
part of the essential skill set that a student should master
in order to solve problems in the digital era [3]. This may
include several key concepts such as abstraction, decompo-
sition, pattern recognition, and algorithms [4]. However, the
assessment of CT competence is not straightforward [5] due
to the plethora of concepts involved, the fact that frameworks
are different across authors, and the lack of validated tools.
Furthermore, the recent COVID-19 health crisis has introduced
additional complexity as many courses can no longer rely on
in-class teaching support and have to be exclusively taught
online. These different factors mean that educators should pay
particular attention in engaging students in active learning to
increase learning gains [6], and to promote specific pedagogies
likely to increase their motivation, such as gamification [7],
[8]. In majors outside of computer science, CT might not be
perceived as essential, and students might lack the intrinsic
motivation to engage fully in learning, which may prevent
them from acquiring solid CT skills [9].

Computational notebooks are promising tools for teaching
students how to solve complex problems using a programming
language [10], [11]. These tools allow students to recreate and
simulate exercises in an interactive manner, where they can
manipulate chunks of code and observe the results of their
actions in real time.

This study tackles this specific issue and brings new insights
through a multidimensional evaluation approach of CT skills
using multiple sources of data. Quantitative scores, insights
of problem-solving strategies deployed by students, and usage
data from the computational notebook used as course support
have been analyzed. This study also includes a controlled
experiment with a gamified feedback feature. In particular, it
makes the research contributions outlined below.

A. Contributions

First, the paper introduces a novel computational notebook
environment using the Graasp open digital education platform
with associated learning scenarios [12]. The computational
notebook application offers a rich learning environment with
dynamic code execution, integrated learning analytics, and
modular gamification modules.

Second, the paper presents a field study conducted using
data captured during a full semester introductory course on
information technology for first-year undergraduate students
in business and economics. More specifically, we analyzed

This article has been accepted for publication in IEEE Transactions on Learning Technologies. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TLT.2022.3180588

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Published in IEEE Transactions and learning technologies, 2022, vol. 15, no. 3, pp. 392-405, which should be cited to refer to
this work.DOI:10.1109/TLT.2022.3180588

2

the data of 115 students who took the lecture course between
February and June 2021 and who agreed to participate in this
study.

Third, in the context of non-CS undergraduate students,
this paper investigates whether computational notebooks can
support active learning scenarios for promoting CT skills in
non-CS students (RQ1), how engagement with computational
notebooks is associated with student situational motivation
(RQ2), and how gamification can contribute to increased
engagement with computational notebooks (RQ3).

B. Roadmap

The remainder of the paper is structured as follows. Sec-
tion II defines CT and discusses related work about com-
putational notebooks and related motivational aspects and
gamification mechanisms that may influence engagement in
the context of CT knowledge acquisition. Section III presents
Graasp, the education platform used for this study, as well
as the learning scenarios. Section IV presents the research
case study, the data used to carry out the analysis, and the
techniques applied to address this research. Section V presents
the results about each research question. Finally, Sections VI
and VII conclude the paper and summarize the main insights.

II. RELATED WORK

CT and its use in educational settings stems from the
work of Seymour Papert at the Massachusetts Institute of
Technology in the second half of the 20th century [13]. Papert
proposed that computers should be an integral tool of young
people’s learning, and put forward the use of programming
languages such as Logo. The topic of CT has re-emerged as
an increasingly relevant issue in education over the past few
years. Jeanette Wing—considered to be the author who coined
the term CT—asserts that it is a fundamental competence for
everyone, not just for computer scientists [14]. Although there
is a plethora of definitions and conceptualizations of the term,
Jeanette Wing has conceived CT as the thought processes
involved in formulating problems and their solutions so that
the solutions are represented in a form that can be effectively
carried out by an information-processing agent. However, the
promotion of CT in the classroom is challenging because—
among other reasons—research on how to teach and learn CT
in the classroom is scarce and does not provide clear measures
as to which pedagogical methods are most effective [15]. If
we want to improve these teaching practices at the university
level, we must be able to distinguish effective methodologies
and motivational affordances, such as gamification. The tools
built up to now to evaluate CT in higher education are,
to the best of our knowledge, still somewhat limited [16].
A literature review of computational notebooks, motivational
aspects, gamification mechanics, and existing evaluation tools
in a CT educational context is presented below.

A. Computational notebooks

Previous studies demonstrated that students increase their
conceptual comprehension, critical thinking, and interpersonal

skills when they participate actively in their study [17]. Such
active participation is better known in the literature as active
learning and is a teaching method that pushes students to
continually assess their understanding by doing things. Active
learning is an effective alternative to more passive types of
knowledge acquisition, such as attending lectures [17]. One
way to apply active learning in CT-related knowledge acqui-
sition relies on blended learning. Blended learning combines
traditional face-to-face learning with digital interaction in class
or at home [18]. The shift to blended learning has been a
key trend in education in the past decade. Currently, most
learning activities are delivered using a blended approach
to some degree [19], [20]. Blended learning also provides
digital education platforms with the possibility to integrate
learning analytics into the instructor’s awareness and reflection
processes, potentially allowing instructors—and other stake-
holders (e.g., parents, researchers)—to assess how students are
performing and to predict student success or failure early on in
the course [21]. Furthermore, a blended learning approach can
also potentially be used in a fully online learning context [22].

Blended learning is particularly applicable to introductory
programming courses [23], which often incorporate rich learn-
ing environments with dynamic code integration, such as
computational notebooks. Computational notebooks, which
are widely used in data science education [24], combine code
snippets and text with other multimedia content to create rich
interactive environments for data exploration and program-
ming [25]. Combining an online coding environment without
the need for external software, and the ability to run code
embedded in text and multimedia content, make computational
notebooks a tool well suited to teaching CT [26]. Previous
work has explored the use of computational notebooks to teach
CT in different learning activities. For instance, researchers
evaluated their use for (i) lectures, (ii) reading, (iii) homework,
and (iv) exams [26].

The Jupyter Notebook [27] (henceforth Jupyter)—a popular
computational notebook—has seen a particularly significant
increase in popularity over the past few years, becoming a
valuable teaching tool. One of the keys for Jupyter’s rise in
popularity is its support for the Python programming language,
whose simplicity and readability make it attractive as an
introductory programming language [28]. As such, Jupyter is
becoming more popular in introductory Python courses [29],
[30], despite the fact that there are many other web-based tools
that have been suggested for teaching Python [31], [32]. This
preference for Jupyter could be explained by the fact that it
offers many features aimed at students, including the ability to
work on coding assignments without having to switch between
the assignment’s instructions and the coding software [33].
Furthermore, Jupyter includes many tools that are specifically
made for teaching, such as grading modules [33]. Certain per-
sonalized learning environments (PLEs) allowing the creation
of rich interactive learning spaces, gamified learning expe-
riences, and learning analytics, have also started to provide
support for computational notebook integration [12].

Nevertheless, these notebooks can also have a negative
effect on learning. Some argue that they encourage poor
coding practices, given that it is not straightforward to break

This article has been accepted for publication in IEEE Transactions on Learning Technologies. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TLT.2022.3180588

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3

down code into smaller, reusable modules, and that it is
hard to write and run tests [27]. Furthermore, the fact that
computational notebooks are used both for exploratory and
explanatory purposes can also lead to complications, since
it takes a lot of effort to transform a messy exploratory
notebook into a clean one that can be shared with others [34].
Moreover, these environments lack support for greater inter-
action, collaboration, activity awareness, access control, and
other features [25]. Therefore, it has been argued that while
computational notebooks can be useful for introductory-level
students, they are not suitable for more experienced learn-
ers [35]. To address this issue, notebooks can be customized
according to learning preferences, programming experience,
and learning context [26]. The above observations lead to the
following research question:

(RQ1) Can computational notebooks support active learn-
ing scenarios for promoting CT skills in non-CS students?

B. Motivation

As active learning scenarios rely on voluntary student en-
gagement, it raises the question of the underlying motivations
that drive or hinder engagement. As non-CS undergraduates
may not perceive CT as essential, which could potentially
make it difficult for them to develop strong computational
thinking skills [9], it is critical to understand the motivational
aspects of students engaging in active learning scenarios. This
observation leads to the following research question:

(RQ2) How is the engagement with computational note-
books associated with student situational motivation?

Over the past 60 years, self-determination theory (SDT) has
emerged as a fundamental theory of human motivation [36].
SDT’s basic premises propose that motivation operates on
three levels: global, contextual, and situational [37], [38].
Motivation on a global scale reflects how an individual
interacts with his or her surroundings in general [38]. A
motivating tendency toward a certain setting, such as a job or
education, is known as contextual motivation [37]. Situational
motivation relates to the “here and now” of motivation, or
the motivation felt when participating in a certain activ-
ity [37]. All three levels can be further refined and described
by various constructs, among them the motivational factors
proposed by SDT [39], [40]: intrinsic motivation, identified
regulation, external regulation and amotivation, constituting
a self-determination continuum from self-determined to non-
self-determined motivation. Intrinsically motivated behaviors
are those that are done for the purpose of doing them, or for
the pleasure and satisfaction that comes from doing them [39].
In contrast, extrinsic motivation refers to a wide range of
behaviors in which the goals of action are not limited to
those that are inherent in the activity. [39]. Different types
of extrinsic motivations have been proposed by SDT; these
are external and identified regulations [39], [40]. External
regulation happens when behavior is regulated by rewards or
to avoid negative consequences. Identified regulation, on the
other hand, happens when a behavior is valued and viewed
as one’s own choice. However, the motivation still remains
extrinsic because the activity is done as a means to an aim

rather than for its own sake. Amotivation defines a completely
non-autonomous behavior, with no drive to speak of and likely
struggling to have any of one’s self needs met. To measure
a person’s situational motivation, the Situational Motivation
Scale (SIMS) can be used, as it demonstrates good reliability
and factorial validity in educational context [41].

C. Gamification

For the use of gamified settings to promote CT, Kotini and
Tzelepi [42] find that the use of gamification—e.g., using
grading characteristics comparable with those of video games,
such as points or levels—can increase the engagement of
students. There are many types of settings one can apply,
and instructional design has to be careful not to only promote
external goals, such as points and prizes related to perfor-
mance, because this would only lead to increasing the extrinsic
motivation of students. The educational setting also has to
integrate aspects that can grow students’ interest in mastering
their learning, thus leading to promoting intrinsic motivation
as well. One key element is whether gamification can provide
feedback and scaffolding for students and, if so, by which
means. Providing feedback for learning activities has long
been identified as an important component allowing students to
identify gaps and to assess their learning progress [43]. Some
experiments [44] have shown that gamified environments
where the digital environment itself produces the scaffolds
necessary so that students’ acquisition of CT skills can be
implemented. In another study, where a mobile app game was
used to promote CT [45], the authors found that, generally,
the average time that students spent on a level in the game
increased with the level of progression. Other studies [46]
found that it is the didactic sequence itself that scaffolds the
students to acquire CT, and the authors report an increasing
learning rate in the experimental group compared to the control
group.

However, the literature does not clarify what role gamifi-
cation can play in affecting learning outcomes and student
engagement in the context of higher education, specifically
in the case of non-CS students aiming to acquire CT skills.
Given the different kinds of tools that appear in the literature,
it seems wise to use a combination of tools that can provide
greater reliability to evaluate students’ CT skills and cover the
different facets of their competence. This is precisely the per-
spective that will be adopted in this paper, where we will use
multiple instruments to assess a student’s CT expertise based
both on programming and non-programming activities. The
above observations lead to the following research question:

(RQ3) How can gamification contribute to increased en-
gagement with a computational notebook?

D. Tools for evaluating CT skills

Compentency-based tests propose abstract items for assess-
ing CT skills. For example, Gouws et al. created a test to
evaluate CT performance in higher education students [47].
Sometimes, tests created for other purposes have been used
as a tool to measure CT skills (e.g., including tasks related
to conservation or probabilistic reasoning). That is the case

This article has been accepted for publication in IEEE Transactions on Learning Technologies. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TLT.2022.3180588

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4

for the GALT test [48], which was used, for instance, in the
context of higher education [49]. Recently, Lafuente et al. [50]
developed a psychometric test to evaluate algorithmic thinking
skills. The authors validated the test based on factor analyses
and opinions of experts in the field, obtaining a 20-item test
capable of discriminating experts in CT from students without
any training in computational issues.

Self-assessment tools have been developed so that students
can evaluate by themselves to what extent they have mas-
tered different skills related to CT [51], [52]. These tests
have been validated by researchers and used by students in
higher education. However, self-reported questionnaires may
yield measurement errors based on an overestimation of the
student’s own skills or lack of understanding of the concepts
involved in the questionnaire [53]. This type of tool also
includes interviews, which are used to extract qualitative
evidence, mainly of the thought processes used by students
to solve CT tasks [54].

Exams and other ad hoc tools are probably the most
frequently used tools to evaluate CT [55]. The authors usually
construct an artifact with tasks that resemble very much the
ones used in the classroom for teaching and learning the
subject (i.e., the evaluation tool is an exam), and very often
the tools include the use of programming in a language that
students have been learning in the class. These tools are
mainly oriented to evaluating a student’s CT-related knowl-
edge. Likewise, portfolios and reports constructed by students
are also used to evaluate CT competence, using evidence of
understanding and achievement in CT-related activities [56].
Furthermore, the ability to properly assess a student’s acquisi-
tion of CT skills could also provide valuable insight into how
CT should be taught in the classroom, which is an active area
of research [57].

This paper will make use of this body of research to design,
implement, and evaluate adequate support for promoting CT
skills.

III. GRAASP DIGITAL NOTEBOOK

The digital notebook environment studied in the paper is
built using the Graasp personalized learning environment.
Graasp is an open digital education platform providing two
interfaces [12]. An authoring view allows instructors to com-
bine and configure resources that they use to create their online
lessons, which we refer to as learning capsules. Learning
capsules can then be broken down into step-by-step exercises,
which can be contextualized with text, images, links, chat-
rooms, and other interactive content (Figure 1). The second
interface is the live view, a student-oriented environment that
can be accessed through a link. By clicking on the link,
students can take part in the online lesson, navigating through
pages that contain lectures and exercise materials prepared by
the instructor.

To provide a context resembling computational notebooks,
we designed an open source coding application (henceforth
the code app1) to provide a ready-made Python environment
within Graasp. The code app uses the Pyodide2 library to

1Code App: github.com/graasp/graasp-app-code
2Pyodide: github.com/iodide-project/pyodide

Fig. 1. Graasp authoring view.

execute Python directly on the browser without any addi-
tional dependencies. Students can read and write files, provide
manual input, and generate graphics using libraries such as
Matplotlib [58]. The code app also includes a command-line
interface to display output and to allow students to navigate
a virtual file system, as well as a feedback functionality that
allows instructors to review and annotate the code written by
students. To enable advanced features such as custom config-
uration, saving student-generated code, and tracking learning
analytics, the code app can leverage application programming
interfaces (APIs) exposed by digital education platforms. In
our case, we use Graasp’s API to preconfigure the code app
with sample code, data files, and instructions for students.
Within the live view, students could then write, execute and
save code, review feedback provided by the instructor, and
visualize any graphical output.

The code app was then coupled with two others Graasp apps
to gamify the active learning experience. The first additional
app is a simple answer app,3 which allows students to enter an
answer and get feedback if it is correct or not. The second app
is a point counter app.4 This point counter is a gamification
app added to the learning space which reads the output of the
answer app, i.e., it adds points to the score if an answer is
correct, and removes points if a hint is displayed.

A. Learning scenario 1: active lectures

This learning scenario supports knowledge transmission by
an instructor in a live session, whether remote or in-class. It
aims to make traditional lectures more interactive by providing
dynamic slides to students who can write and execute their
own code during the lecture. The goal is that in a first step,
students follow the code that the instructor presents. Then, in a
second step, students are encouraged to deviate from the code
presented, in order to test some corner cases or validate some
expected behaviors. Using the computational notebook, this
scenario allows instructors to structure the course content into
blocks or slides, each with an independent space to write and
execute code and possibly images, videos, or other interactive
content. In this real-time learning scenario, it is expected
that students move along the slides at the same pace as the
instructor. Figure 2 shows a typical example of a learning
capsule with different slides (e.g., definition, memory). In the
selected slide (Definition) there is a block of static text with the
interactive code app below. Concretely, the learning activity in

3Answer App: https://github.com/graasp/graasp-app-submit-answer
4Point counter app: https://github.com/alessio265/graasp-app-levelvis

This article has been accepted for publication in IEEE Transactions on Learning Technologies. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TLT.2022.3180588

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5

Figure 2 depicts one of the Python lessons and showcases one
of the hands-on exercises performed during the theoretical part
of the course. In this example, students are presented with a
list they should print and index, providing an introduction to
the concept of list in Python.

Fig. 2. Interactive lecture: a computational notebook learning capsule on
Graasp. The instructor and students can write and execute code during the
course.

B. Learning scenario 2 — self-guided labs

This learning scenario aims to support self-guided knowl-
edge acquisition during lab sessions. The idea is to present
students with exercises and to include auto-correction and
formative feedback. Several tools can be included within the
learning capsule to provide formative feedback. A simple
input app allows students to submit text, while a real-time
communication app enables students to spontaneously ask
questions and to respond to multiple-choice questions posed
by the instructor. Students could also use the app to complete
homework assignments and provide answers to the problems
presented during the lab sessions. Figure 3 shows three apps
in the learning capsule to support lab sessions. The first is
the code app, which allows students to run code. It should be
noted that it can make use of hidden lines of code that can be
executed before or after the visible code. Second, there is the
answer app, which allows students to enter an answer and get
feedback if it is correct or not correct. This app also allows
teachers to set a hint for each question. Such a hint can then
be displayed by students if they wish. Third, there is the point
counter app on the right-hand side of the live view. This point
counter app reads the output of the answer app, illustrating
accumulation of points for each correct answer given, but also
the loss of points when asking for a hint. The goal was to
increase the time spent by students on activities by decreasing
their need for help, i.e., the number of hints asked for.

IV. METHODOLOGY

In this section, we present the research case study, the data
we used to carry out this analysis, and the techniques we
applied to address our research questions. The case study for
this paper is a full semester introductory course on information
technology for first-year undergraduate students in business
and economics (February–June 2021). This course consisted of
two 45-minute periods per week of theoretical lectures and two

Code App Answer App

Point counter

App

Fig. 3. Lab support with Graasp. A self-guided learning activity with visual
point feedback.

TABLE I
COURSE OUTLINE

Week Lecture Lab session
1 Pre-test survey CT concepts
2 CT concepts
3
4
5
6
7
8

Spreadsheet formulas and
computational models

9 Python – variables and conditions
10 Python – loops
11 Python – lists
12 Python – functions
13 Web technologies
14 Questions & Answers Post-test survey

45-minute periods per week of lab sessions (see Table I). This
course covers an introduction to CT concepts (2 weeks), intro-
duction to spreadsheet formulas and computational models (5
weeks), Python programming (4 weeks), web technologies (2
weeks), and a final week with an exam dry run. The course is
evaluated through a one-hour online exam. During the first and
the last week, respectively, students filled in a pre- and a post-
test survey, which inquired about their CT skills and attitudes.
Out of the 115 students in the course, 112 gave their consent
for this study.

A. Learning outcome data

There were no prerequisites for this course, and the learning
outcomes of the course were for students (1) to be able to
conceptualize problems computationally, i.e., use CT princi-
ples to describe and attempt to solve problems, and (2) to
be able to solve simple problems algorithmically using the
Python programming language. These learning outcomes were
measured informally at the beginning (pre-test) and at the end
of the course (post-test), and formally during the written exam
at the end of the semester.

The pre- and post-tests were each composed of six problem-
solving questions and six Python programming questions
(examples are given in Figures 4 and 5). The problem-solving
questions were extracted from the Algorithmic Thinking Test
for Adults [50]. For all questions, there was one correct
answer. For all problem-solving questions, besides asking

This article has been accepted for publication in IEEE Transactions on Learning Technologies. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TLT.2022.3180588

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6

students for an answer, we asked them to provide a textual
description of their problem-solving strategy for tackling the
problem. This second part was not taken into account for the
scoring of their answer, but allowed us to get an impression
of how many CT concepts and higher levels of thinking were
used in the process of solving or attempting to solve the
questions.

You have been given 9 coins of the same value, but one of
them is fake which you could tell because it is lighter than
the rest. You have a scale like the one in the picture to
weigh the coins, and each weighing can result in “the scale
leans to the right”, “the scale leans to the left”, or “the scale
rests stable”.

Question: How many weighings are necessary and
sufficient to identify the fake coin?

Please describe your strategy for solving this question:

$ $ $

$ $ $

$ $ $

Fig. 4. Example of a general problem-solving question. Note that the question
has two components. The first is quantitative and requires a precise answer,
the second is qualitative and requires an open-ended answer describing the
problem-solving strategy.

What is the output of the code below:

def lila(home, run, bat):
 home = home + 1
 return home + bat
print(lila(10, 50, 40))

What is the output of the code below:

isGreat = False
nb_students = 30
travel = 0
if isGreat or nb_students > 5:
 travel = 9
else:
 travel = 5
print(travel)

What is the output of the code below:

grades = [1,2,3,4,5,10]
print(grades[4])

Fig. 5. Example of three basic programming questions. These questions each
require a precise answer.

More specifically we analyzed the six problem-solving
questions of the pre- and post-tests, where students had
to explain their reasoning process. We sought to determine
whether the key terms and concepts presented during the
course had been assimilated and reused in the explanations
given by the students using an approach inspired by grounded
theory [59], [60] and open coding techniques, making the
categories emerge from theoretical content of the courses,
resulting in 22 different concepts:

decomposition, sub-problem, rule, specification, repetition, generaliza-
tion, variables, function, instruction, abstraction, model, class, algorithm,
loop, repeat, sequence, condition, trial, error, iteration, increment, test.

For each word of the student explanations and for each
target concept presented here above, we performed lemma-
tization to transform words with roughly the same semantics
to one standard form. Lemmatization was performed through
WordNet corpus of the Python Natural Language Toolkit
(NLTK). WordNet is a large, freely and publicly available lex-
ical database for the English language, establishing structured
semantic relationships between words. 5

The final exam consisted of five open-ended Python ques-
tions, asking for simple functions or programs, such as: “Write
a function that takes two parameters as input (a string called
word and an integer called n) and returns a new string made
of n times the word”.

5https://www.nltk.org/howto/wordnet.html

B. Lecture data

During the lectures, we used learning analytics in Graasp to
track student attendance and visual analysis to evaluate if the
student followed the lecture. As an example, Figure 6 shows
a learning dashboard to track user activity. More specifically,
it shows the order in which each student has visited the pages
available in the live view, as well as the time spent on each
of them. If the instructor uses the live view at the same time,
then the instructor’s data can be compared against the student’s
data. Each color represents a page inside the live view. If
students were to be perfectly synchronized with the instructor,
their color patterns would all be the same. The activity of each
student could then be visually evaluated assigning a score of
0 if the student was absent, of 1 if participation was passive
and 2 if active (pefectly synchronized).

Instructor activity

Pages

Student activity

28.04.2021

Student nicknames

Fig. 6. Activity dashboard.

C. Lab session data

During the Python programming lab sessions, students were
randomly split into treatment (70 students) and control group
(45 students). The students went through four series of 15 ex-
ercises, a total of 60 exercises. The various series of exercises
corresponding to the different topics introduced each week
in the theoretical courses were: 1) variables and conditions,
2) loops, 3) lists, and 4) functions. The treatment group was
provided with an extensive gamified feedback, including a
level visualization (point counter App), as shown in Figure 3,
while the control group had limited feedback, only knowing
if their answers were right or wrong. The gamified feedback
appears on the right-hand side of the interface in the form of
a chain of bubbles that scrolls along with the score. To help
them in the resolution of the exercise, students could ask for
hints. For each exercise, the code block of the computational
notebook was preconfigured to perform a list of tests on the
execution of students’ code, providing validation keys. Once
the student’s algorithm could execute properly, a validation key
was returned back. For each exercise, two different validation
keys could be received back by the students. In the first case,
the algorithm acts as expected, while in the second one the
algorithm does not act as expected. There were no limits on
the number of tests and executions of the algorithms, and
students were not aware of the meaning of the validation
key received. Validation keys were randomly predefined and
therefore different for each exercise. Theses validation keys

This article has been accepted for publication in IEEE Transactions on Learning Technologies. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TLT.2022.3180588

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7

should then be submitted by the students in the answer
app. When submitting their validation key, a checkmark or
a cross allows feedback to be provided to the students on the
correctness of their algorithm. Furthermore, for each correct
answer on the first attempt, students get three points. For each
correct answer provided after the first attempt, students get
two points. For every hint revealed, students lose one point.
The control group has no visual feedback of its score. Figure 3
illustrates one exercise of the self-guided lab session regarding
Python functions. The hidden hint for that specific exercise
being “You should be able to write this algorithm in one line”.

D. Psychometric and demographic data

In addition to the above data, we also collected demographic
data, student situational motivation, and the computational
notebook usability level.

Student motivation was assessed in the post-test survey
which aimed to measure their motivation to perform the lab
sessions through the computational notebook. Situational mo-
tivation was assessed using the 16-item Situational Motivation
Scale (SIMS). SIMS is designed to assess intrinsic motivation,
identified regulation, external regulation, and amotivation [41].

In order to evaluate the usability level of the computational
notebook, the students answered ten questions about the
computational notebook, based on the system usability scale
(SUS) [61] at the end of the post-test.

E. Path model and analysis

To provide a global view of the different factors influenc-
ing the learning outcomes, we designed a path model and
conducted a partial least squares (PLS) analysis technique
using SmartPLS. PLS is a variance-based structural equation
modelling (SEM) analysis technique increasingly popular for
analyzing explanation and prediction of information systems
phenomena [62]. Central to PLS is the path model that can
be visualized by a diagram that displays the hypotheses and
variable relationships to be estimated in an SEM analysis [63].
T-statistics are used to test the proposed hypotheses for the
standardized path coefficients, by specifying the same number
of cases that existed in the dataset and bootstrapping 1000 re-
samples. The resulting design of the path model for this analy-
sis is depicted in Figure 7. It contains three main independent
variables: (1) initial skills, as measured by the score on the
pre-test, (2) situational motivation, as measured by the SIMS
scale, and (3) gamified feedback, which indicates whether the
student was in the gamified feedback condition or not. Note
that situational motivation can be further broken down into its
four components (intrinsic motivation, identified regulation,
external regulation, and amotivation). These variables poten-
tially influence lab performance positively [64], as measured
with the score on the lab exercises and the engagement on the
online platform. Engagement is measured by tracking student
interactions (i.e., number of clicks, number of code executions,
text written) on the Graasp platform. “Need for help” construct
is measured by the number of hints requested by a student (the
more hints, the greater the need for help). Gamified feedback
can motivate people to perform tasks that will increase virtual

rewards (e.g. points) [65]. ‘ As such, we hypothesize that it
will increase lab performance and reduce the need for help. In
other words, this would mean that gamification of the activity,
as well as increased motivation would lead students to try to
get the answers on their own to get more points, without asking
for hints. Finally, lab performance and initial skills potentially
positively influence the learning outcome [66], as measured
by the grade of the exam.

Initial skills

(+)

Learning outcome

Need for help

Lab performance Gamified feedback

Situational

motivation

(+)

(+)

(+)

(+)

(-)

(+)

(-)

Fig. 7. Path model. Positive influence (+) is expected among the linked
constructs of the model.

To validate the reflective constructs of our path model (i.e.,
lab performance, intrinsic motivation, identified regulation,
external regulation, and amotivation), we evaluated their re-
liability, convergence, and discriminant validity.

1) Reliability: we used composite reliability (CR) and
average variance extracted (AVE) as indicators. As shown in
Table II, the CR of the constructs was greater than 0.7 and the
AVE greater than 0.5, thus these constructs are reliable [62].

2) Convergent validity: we used the outer loadings and
the AVE as convergent validity indicators [67]. The outer
loadings of all our reflective variables were above 0.7, which
is the standard threshold [67], except for one variable in the
amotivation construct which was only above 0.5. As this study
should be deemed as exploratory research—indicators between
0.4 and 0.7 were kept, as recommended by Hair et al. [67].

TABLE II
EVALUATION OF REFLECTIVE CONSTRUCTS

Cronbach’s
Alpha

rho A CR AVE

Lab session perf. 0.727 0.761 0.878 0.783
Intrinsic motivation 0.887 0.921 0.920 0.742
Identified regulation 0.838 0.861 0.891 0.673
External regulation 0.762 0.715 0.820 0.553
Amotivation 0.784 0.921 0.856 0.606

3) Discriminant validity: We used the heterotrait–monotrait
(HTMT) ratio as a measure of discriminant validity [62].
Values lower than 0.85 are considered as acceptable for
conceptually distinct constructs [62]. As shown in Table III,
with the exception of Amotivation → Identified Regulation
which scores 0.857 and thus is on the margin, all values were
lower than 0.85, demonstrating the discriminant validity of our
constructs.

This article has been accepted for publication in IEEE Transactions on Learning Technologies. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TLT.2022.3180588

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8

W
ee

k
1
0

1
0
:1

5
 Break

1
2
:0

0

W
ee

k
1
1

1
0
:1

5

1
2
:0

0

W
ee

k
1
2

1
0
:1

5

1
2
:0

0

Break

Break

Fig. 8. Visualization of students following the lectures in Weeks 10–12.

TABLE III
HETEROTRAIT-MONOTRAIT RATIO (HTMT)

Lab
pe

rf.

In
t. moti

v.

Ide
n. reg

.

Ext.
reg

.

Amoti
v.

Lab session perf.
Intrinsic motivation 0.569
Identified regulation 0.685 0.748
External regulation 0.335 0.183 0.426
Amotivation 0.544 0.688 0.857 0.413

V. RESULTS

A. Can computational notebooks support active learning sce-
narios for promoting CT skills in non-CS students? (RQ1)

To answer the first research question, we evaluate if the
notebook was considered usable, if it was used as intended in
the learning scenarios, and whether there were learning gains.

1) Usability: The average SUS score is equal to 67.4
(N = 63), which represents okay usability [68]. There is
no significant difference t(61) = 0.74, p = 0.5 in terms of
usability between males (M = 65.8, SD = 19.7) and females
(M = 69.4, SD = 18.4).

2) Learning scenario: Using data from the learning dash-
board presented in Figure 6, we examined usage patterns from
Week 10 to Week 12 as shown in Figure 8.

The dashboard gives a visual impression of how synchro-
nized students are during the lecture. Note that the first slide
(blue on the bottom) is always a pen and paper exercise, which
explains why students are not always looking at the slide
on the computational notebook. A visual analysis shows that
during the lecture on Week 10, 62 followed at least part of the
lecture on the computational notebook and 40 of them (64.5%)
followed actively (meaning that around 80% of the lecture
material was followed in the same order as the instructor,
switching slides at around the same time), the other 22 students
are considered as following the course passively. In Week 11,
there were a total of 49 students online, among them 39 were
active (79.5%). In Week 12, there were a total of 50 online,
of whom 39 were active again (78%), and 33 were the same
as the previous lecture.

The overall engagement of students during the live online
lecture is depicted in Figure 9. It shows how many students

were mostly active, mostly passive, or absent during these
three lectures (N = 112). Of the 112 students who at some
point appeared on the course, 42 did not participate in the
online lectures, 28 were passive, and 42 were active. Among
the 96 who ended up taking the exam, 31 did not follow the
lectures, 23 were passive, and 41 were active.

Number of students
0 40302010

A
ct

iv
e

 P
as

si
ve

 N

on
e

Pr
es

en
ce

 d
ur

in
g

le
ct

ur
es

Fig. 9. Bar chart of lecture presence during Weeks 10–12 (N = 112).

Finally, we also analyzed whether students watched the
recordings of the course that were put online after the lecture.
Figure 10 shows student engagement with the lecture (live
on the computational notebook and after the lecture viewing
videos) over three weeks. Real-time activity is reported as
a percentage of active participation in the real-time lecture
discussed above. The video watching activity is reported as
a percentage of the total time of the videos posted for the
three weeks capped at a 100%.6 The total number of videos
posted was 149 minutes for the three lectures. The results
show that a significant number of students (around 20%) did
not participate actively in the live lessons, but nevertheless
watched the videos at home. One student spent more than 900
minutes watching videos.

3) Learning gains: The main goal of this analysis is to
explore the evolution of the CT skills of the students and to see
if we can observe differences between their initial knowledge
and their learning outcomes (Python score, CT score). To
answer this question, we compared student scores on the pre-
and post-tests as well as the evolution of their problem-solving
strategies (CT concepts). Figure 11 provides a visual overview
of the results of the mean scores in percentage points with

6Students could watch videos several times, which could lead to some
playing times exceeding 100%.

This article has been accepted for publication in IEEE Transactions on Learning Technologies. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TLT.2022.3180588

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9

Pe
rc
en

ta
ge

Fig. 10. Student engagement with the lecture in number of minutes of attention, live on the computational notebook, or later by watching videos (N = 112).

pre-test results as baseline. To perform the analysis, mean
scores were normalized and ranged between 0 and 1, which
represents the maximum achievable score.

When it comes to the Python score, a statistically significant
difference was found for the Python exercises (t(59) =
11.25, p < 0.01) between the pre- (N = 60,M = 0.16, SD =
0.24) and post-test (N = 60,M = 0.61, SD = 0.29) scores.

Regarding CT score, a paired t-test revealed that there is a
statistically significant difference (t(59) = 3.73, p < 0.01) in
problem-solving exercises between the pre- (N = 60,M =
0.39, SD = 0.25) and post-test (N = 60,M = 0.52, SD =
0.27) scores.

Finally, in terms of CT concepts, we analyzed student
answers to the CT questions from a semantic and linguistic
point of view. To observe the potential evolution of the use
of such conceptual terms in the problem-solving explanations
given by the students, we compared the appearance frequency
of each concept in students’ pre- and post-test explanations.
The results show a statistically significant (t(59) = 2.31, p <
0.05) positive evolution between the pre- (N = 60,M =
0.43, SD = 0.79) and post-test (N = 60,M = 0.97, SD =
1.65) scores.

CT scorePython score CT concepts

Pe
rc

en
ta

ge
 (1

00
%

 b
ef

or
e)

0
100
200
300
400

Pre-test Post-test

*** **

Mean score

Fig. 11. Pre-test and post-test results (pre-test used as baseline).
*** p < 0.01, ** p < 0.05.

4) Learning outcome: Figure 12 gives an overview of the
final grades of the course (N = 96) between 1 (worst) and 6
(best) with the passing grade being 4. The pass rate for this
course was 60.4%. There is also no significant difference t(94)
= 0.26, p = 0.8 in grades between males (M = 3.9, SD = 1.3)
and females (M=3.9, SD= 1.4).

Looking at engagement with the lecture material in real-time
on the computational notebook a median-split of the student
grade results (pass/fail) ordered according to the time that they
spent following the lecture created two natural groups: one

with high engagement and one with low engagement. A χ2 test
of independence indicated a significant association between
lecture engagement and having a passing final grade in the
course χ2 (1, n = 96) = 6.27, p = 0.012. In fact, the group
with high lecture engagement was about 50% more likely to
pass the course (35 students had a passing grade (76%) in
the high engagement group compared to 23 (48%) in the low
engagement group. To assess whether engagement with videos
was also associated with a higher pass rate, we performed
a median-split of student grade results (pass / fail) ordered
according to the time spent watching the videos. However, no
significant difference was found.

1N
um

be
r o

f s
tu

de
nt

s

0

20

15
10

5

2 3 4 5 6
Grades

Fig. 12. Distribution of raw grades. M = 3.88, SD = 1.30, N = 96.

B. How is the engagement with computational notebooks
associated with students situational motivation? (RQ2)

To answer this second research question we evaluate if the
engagement with computational notebooks is associated with
students’ intrinsic motivation, identified regulation, external
regulation, and amotivation. The analysis was performed on
the subsample of 84 students who filled the pre-test sur-
vey, numbering 46 males and 38 females. As measured by
the SIMS scale, the mean of student motivational aspects
were calculated. Figure 13 presents student motivational as-
pects in participating to lab sessions during week 10 to
12. The highest motivational aspect was identified regulation
(M = 3.93, SD = 0.73), followed by the external regulation
(M = 3.54, SD = 0.76) and then the intrinsic motivation
(M = 3.37, SD = 0.82), with only little overall amotivation
(M = 2.24, SD = 0.73). To evaluate the outcome of this
research question, we relied on our path model analysis
(Figure 14). The path model analysis allows us to evaluate
how the constructs of intrinsic motivation, identified reg-
ulation, external regulation, and amotivation [41] influence
the students’ behavior on computational notebook activities.

This article has been accepted for publication in IEEE Transactions on Learning Technologies. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TLT.2022.3180588

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10

●●

●

●

1 2 3 4 5

AM

ER

IR

IM

+

+

+

+

Level

Fig. 13. Student mean intrinsic motivation (IM), identified regulation (IR),
external regulation (ER), and amotivation (AM), as measured by the SIMS
scale, to use computational notebooks in the context of Weeks 10 to 12 lab
sessions.

More precisely, we investigate how the students’ behavior is
influenced by motivational aspects during the lab sessions. We
were particularly interested in the influence on student lab
performance and on students’ need for help. As illustrated
in Figure 14, coefficients of our path analysis indicate that
intrinsic motivation had a significant effect (p < 0.05) on lab
session performance (0.272). Intrinsic motivation did not have
any significant influence on the need for help (i.e., hints re-
quested). Identified regulation influenced (0.323) significantly
(p < 0.05) students’ lab session performance, but not the
amount of hints requested. While external regulation influ-
enced (0.347) significantly (p < 0.01) the students’ quantity
of hints requested but not the final lab session performance.
Amotivation does not have any influence on students’ lab
session performance or on the number of hints requested.

Motivation

0.347***

0.479***

0.323**

0.272**

0.351***

External Regulation

Intrinsic Motivation

Amotivation

Identified Regulation

Initial skills

*** p < 0.01, ** p < 0.05, * p < 0.1

-0.402***

0.315***

R2 = 0.294

Learning

outcome

Need for
help

Lab

performance

Gamified

feedback

R2 = 0.446

R2 = 0.355

Fig. 14. PLS Model results. *** p < 0.01, ** p < 0.05

C. How can gamification contribute to increased engagement
with a computational notebook? (RQ3)

To answer this research question we evaluate if the gamifica-
tion of the lab sessions contributed to increasing the lab session
performance and allowed a decrease of undesired behavior,
in this case need for help. The analysis was performed
on the same subsample and the same path model as for
RQ2 (Figure 14). The gamified feedback functionality was
implemented as shown in Figure 3, rewarding students for
accurate answers and penalizing them for hints revealed. A
control group (N = 29) was defined with no visual gamified
feedback. The aim was two-fold: (1) to increase lab session
engagement through the scoring system and engagement, and
(2) to decrease the need for help (hints requests).

1) Increasing lab session engagement: Figure 14 shows
that the link between gamified feedback and lab session
performance is significant (p < 0.01) and positive (0.351).
Furthermore, gamified feedback has been found to be the
most influencing construct on the lab performance, more
influential than identified regulation or intrinsic motivation.
Overall lab performance was predicted at 44.6%. As depicted
in Figures 15 and 16, students receiving gamified feedback
engaged more (M = 14473.24, SD = 13862.91) and per-
formed better (M = 87.6, SD = 61.06) in the lab sessions
than students from the control group, with respectively (M =
13128.83, SD = 13329.82) and (M = 63.24, SD = 51.74).

●

0 10000 20000 30000 40000 50000

Control

Treatment

+

+

Interactions

Fig. 15. Lab session engagement, resulting from activity tracking on Graasp,
for students with gamified feedback (treatment) versus students without
gamified feedback (control).

0 50 100 150 200

Control

Treatment

+

+

Score

Fig. 16. Lab session scores for students with gamified feedback (treatment)
versus students without gamified feedback (control).

2) Decreasing need for help: Figure 14 shows that the link
between gamified feedback and need for help is significant
(p < 0.01) and negative (−0.402). During the lab sessions,
students receiving gamified feedback requested fewer hints
(M = 4.78, SD = 7.73) than students from the control group
(M = 14.62, SD = 20.82) (Figure 17).

● ● ●

● ●●

0 10 20 30 40 50 60

Control

Treatment

+

+

Hints requested

Fig. 17. Need for help (i.e., hints requested) for students with gamified
feedback (treatment) versus students without gamified feedback (control).

VI. DISCUSSION

This study provides the results of a semester-long field study
with 115 non-CS students on the use, and the gamification,
of an innovative computational notebook environment aimed
at developing CT skills. The field study was conducted in
an introductory course on information technology for first-
year undergraduates in business and economics, where CT
may not be seen as necessary by the students. This research
assessed computational notebooks and CT skills making use
of pre- and post-test surveys, learning analytics, and student-
generated data from lab sessions. We showed that it is feasible

This article has been accepted for publication in IEEE Transactions on Learning Technologies. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TLT.2022.3180588

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

11

and valuable to teach CT competence to non-CS students,
and that computational notebooks are an appropriate tool for
introducing CT and programming to students with less tech-
nical academic backgrounds. Furthermore, our results convey
the fact that gamification can increase engagement with these
notebooks. A detailed discussion is presented below, with
limitations and potential further work.

A. Computational notebooks in a distance learning context

The pre-post approach and the multifaceted pool of as-
sessment tools that we used, allowed us to find that students
gained CT skills both in terms of general problem-solving (CT
score) and programming skills (Python score), as well as in
terms of adopting more analytical problem-solving strategies
(CT concepts). The integrated aspect of the computational
notebooks allowed, among other things, students to avoid
having multiple opened files and programs on their computers,
which at the same time avoids installation issues. Still, the
nature of such notebooks enabled dynamic class activities.

As such, this study endorses the notion that computational
notebooks can support active learning scenarios for promoting
CT skills in non-CS students (RQ1). Unsurprisingly, we found
that initial knowledge—operationalized with the programming
scores of the pre-test—was strongly linked to the learning
outcomes. Yet, this study demonstrated that self-directed lab
performance was an even more important predictor of the
learning outcomes. The better a student performed in the
online labs, the better their final grades. Furthermore, initial
knowledge was not a significant predictor of self-directed lab
performance, which indicated that students were not put off
by the technology.

Our analyses showed that participating in the real-time
lecture was associated with an increased pass rate compared to
students who chose not to attend or only had limited engage-
ment in the live online lectures. This finding supports previous
research, which shows that active learning is more effective
for knowledge acquisition [17]. However, this finding is not
completely aligned with literature claiming the importance of
active learning in both live and remote learning context [69],
[70]. In fact, we admit some reservations about remote offline
active teaching scenarios which did not, in this context and
in contrast with real-time scenarios, have links with learning
outcomes. These distance-teaching observations have been
made in the particular context of COVID-19 in which this
study took place, where in-class teaching was at that time not
possible. Students could either follow the course in real-time
online or watch recorded videos of the course at home. This
study showed that the pass rate of the more active students
was 76%, whereas the pass rate of the less active was only
47%. It should be noted, however, that around 32% of the
students who took the exam were not engaged at all with the
real-time lectures. This result should be seen in perspective
with a previous preliminary study, which showed around 90%
of students actively following the lecture in a physical in-class
setting [10].

This work is not without limitations. Indeed, although this
study covered one course during a full semester with 115

students, the conclusions could be more generalizable if the
results integrated more courses with more instructors. In fact,
our results are valid for our own class, but not necessarily
for all other non-CS classes, as we do not know if this class
would be representative for all other classes. From the point
of view of remote learning, this study was able to demonstrate
the strengths of tools such as Graasp, but the measure of
remote engagement is always subject to variables that cannot
be easily controlled. For instance, remote engagement via
videos replayed offline is potentially subject to overcounting or
undercounting as a video can be viewed by a student without
them paying attention to it. Finer-grained learning analytics
and links between several dissociated learning systems (LMS,
computational notebook, and video repository) could inform
about such differences. It would be interesting to conduct
a similar study over a longer period of time with a larger
number of participants allowing the positive long-term results
to be verified. Future work could investigate the added value
of lectures viewed on replay and on what kind of scenarios,
the student’s learning can be supported. This is especially
important with remote teaching becoming more prevalent.

Another limitation lays in the simple but innovative ap-
proach used to measure the evolution of students’ CT concepts.
The approach was to ask participants to adopt a kind of
think-aloud approach to describe how they approached the
problem. The strategy used for the analysis was rudimentary
(counting the frequency of keywords) and could be extended
and improved in future work. This syntactic analysis of the
cognitive approach to solving CT problems seemed to be an in-
teresting line of investigation and also deserves to be explored
further. It should be noted that we first conducted an analysis
using advanced lexical analysis tools, such as the software
called Linguistic Inquiry and Word Count (LIWC) to extract
linguistic features [71], more precisely the 2015 version of the
LIWC dictionary [72]. However, such tools did not appear to
generate valid results as a simple and inconsistent problem-
solving strategy description such as “Yes” received a higher
score than some obviously more appropriate ones such as
“By trial and error”. Future research making use of problem-
solving reflections and interpretation of these advanced tools
such as LIWC deserve, in our opinion, to be conducted further.

B. Computational notebooks motivational aspects and gami-
fication

This study has found motivation and gamified feedback to
be strong predictors of lab performance. This finding supports
previous research that finds that technological platforms can
provide scaffolding for CT skills acquisition in gamified
settings [45]. This study has shown how various motivational
aspects may influence student performance and behavior in
gamified settings. The results of this research have shown that
the engagement with computational notebooks is associated
with student situational motivation (RQ2). Specifically, we
found that the influences of intrinsic and extrinsic motivation
were completely different: while intrinsic motivation led to
better lab performance and better learning outcomes, extrinsic
motivation (as understood by external regulation) decreased

This article has been accepted for publication in IEEE Transactions on Learning Technologies. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TLT.2022.3180588

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

12

a student’s self-regulation, making them look for more hints
to quickly solve the task. Moreover, this study demonstrated
that gamification can contribute to increased engagement with
the computational notebook (RQ3). This study showed that
gamified feedback influenced positively self-directed lab per-
formance (score and engagement), and it also showed that
gamified feedback influenced negatively unwanted behavior,
such as the hints requested to complete the exercises in a
quick and possibly less thoughtful way. We believe that the
use of computational notebook environments such as Graasp,
integrated with other applications, especially those introducing
gamification, can open doors to other interesting avenues of
research. The results presented in this article have already
demonstrated the benefits of such a gamification approach,
aligning with previous studies [44], [45] showing that the
technological environment itself can successfully encourage
feedback to drive CT skills learning in gamified settings. These
results demonstrate that learning activity designers can encour-
age certain desired behaviors and at the same time discourage
certain undesirable ones by using a well-designed gamifi-
cation mechanism. Computational notebook environments—
when used in combination with multiple instruments allowing
us to assess students’ CT expertise and covering different
facets of students’ knowledge acquisition—are clearly opening
a new perspective, but it still needs to be investigated further.

Unfortunately, even though the sample size was adequate for
the results presented above, it was too small to assess more
fine-grained group differences and interaction effects (e.g.,
female vs. male, advanced vs. beginners). Future research
should assess whether the effects of gamification play out
in a similar direction for such subgroups. It is particularly
important to confirm that students with less initial knowledge
or who are less inclined toward CT are not left behind or
negatively affected by certain gamification features. Based on
such finer grained analysis, personalized gamification mech-
anisms could be deployed to adequately motivate students if
no one-size-fits-all mechanism is found. We believe that future
research and development on more integrated computational
notebook environments will be encouraged by our results.
The combination of learning analytics with real-time coding
support and gamification features was central to our study.
Nevertheless, most computational notebooks do not yet allow
the composition of such rich learning activities. Open format
and the availability of tracking data on student activities should
be encouraged across the various computational notebook
environments; this would potentially open the doors to further
improvements in knowledge acquisition of complex skills such
as CT.

VII. CONCLUSION

This paper addressed the issue of teaching CT to non-CS
students. We conducted a field study in a real classroom with
115 students using a computational notebook app as support.
This study evaluated computational notebook support for non-
CS students from multiple perspectives. In order to evaluate
the progress of the students in terms of competence in CT, we
carried out a pre- and a post-test composed of problem-solving

and programming questions. Students were also monitored
during live lectures and self-directed lab sessions, allowing
us to observe not only differences between real-time and
replayed student engagement, but also influences of motiva-
tional aspects and gamified feedback on lab performance and
learning outcome. We conclude by noting that computational
notebooks can support active learning scenarios for promoting
CT skills in non-CS students, that engagement with compu-
tational notebooks is associated with student motivation, and
that gamification can contribute to increased engagement with
the computational notebook. Finally, this study underlines the
importance of continuing to investigate methods to engage
people with little apparent interest in CT with active learning,
computational notebooks and gamification mechanisms.

ACKNOWLEDGMENTS

This research was partially funded by Swissuniversities
through the P8 project titles Transversal CT—supporting re-
sponsible computational problem-solving across domains.

REFERENCES

[1] J. C. Neubert, J. Mainert, A. Kretzschmar, S. Greiff et al., “The
assessment of 21st century skills in industrial and organizational psy-
chology: Complex and collaborative problem solving,” Industrial and
Organizational Psychology, vol. 8, no. 2, pp. 238–268, 2015.

[2] D. Barr, J. Harrison, and L. Conery, “Computational Thinking: A Digital
Age Skill for Everyone,” Learning & Leading with Technology, vol. 38,
no. 6, pp. 20–23, 2011.

[3] A. Yadav, N. Zhou, C. Mayfield, S. Hambrusch, and J. T. Korb, “Intro-
ducing Computational Thinking in Education Courses,” in Proceedings
of the 42nd ACM Technical Symposium on Computer Science Education.
ACM, 2011, pp. 465–470.

[4] A. Juškevičienė and V. DagienĖ, “Computational thinking relationship
with digital competence,” Informatics in Education, vol. 17, no. 2, pp.
265–284, 2018.

[5] X. Tang, Y. Yin, Q. Lin, R. Hadad, and X. Zhai, “Assessing computa-
tional thinking: A systematic review of empirical studies,” Computers
& Education, vol. 148, p. 103798, 2020.

[6] A. Peterson, H. Dumont, M. Lafuente, and N. Law, “Understanding in-
novative pedagogies: Key themes to analyse new approaches to teaching
and learning,” 2018.

[7] A. Domı́nguez, J. Saenz-de Navarrete, L. De-Marcos, L. Fernández-
Sanz, C. Pagés, and J.-J. Martı́nez-Herráiz, “Gamifying learning expe-
riences: Practical implications and outcomes,” Computers & education,
vol. 63, pp. 380–392, 2013.

[8] J. Hamari, J. Koivisto, and H. Sarsa, “Does gamification work?–a
literature review of empirical studies on gamification,” in 2014 47th
Hawaii international conference on system sciences. Ieee, 2014, pp.
3025–3034.

[9] L. Leifheit et al., “The role of self-concept and motivation within the”
computational thinking” approach to early computer science education,”
Ph.D. dissertation, Eberhard Karls Universität Tübingen, 2021.

[10] J. C. Farah, A. Moro, K. Bergram, A. K. Purohit, D. Gillet, and
A. Holzer, “Bringing Computational Thinking to non-STEM Undergrad-
uates through an Integrated Notebook Application,” in Proceedings of
the Impact Papers at the 15th European Conference on Technology-
Enhanced Learning (EC-TEL 2020), T. Broos and T. Farrell, Eds., 2020.

[11] E. Eriksson, O. S. Iversen, G. E. Baykal, M. Van Mechelen, R. Smith,
M.-L. Wagner, B. V. Fog, C. Klokmose, B. Cumbo, A. Hjorth et al.,
“Widening the scope of fablearn research: Integrating computational
thinking, design and making,” in Proceedings of the FabLearn Europe
2019 Conference, 2019, pp. 1–9.

[12] D. Gillet, A. Vozniuk, M. J. Rodrı́guez-Triana, and A. Holzer, “Agile,
Versatile, and Comprehensive Social Media Platform for Creating,
Sharing, Exploiting, and Archiving Personal Learning Spaces, Artifacts,
and Traces,” in The World Engineering Education Forum, 2016.

[13] S. Papert, Mindstorms: Children, computers, and powerful ideas. Basic
books, 1980.

This article has been accepted for publication in IEEE Transactions on Learning Technologies. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TLT.2022.3180588

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

13

[14] J. Wing, “Research notebook: Computational thinking—what and why,”
The link magazine, vol. 6, 2011.

[15] C. Wang, J. Shen, and J. Chao, “Integrating computational thinking in
stem education: A literature review,” International Journal of Science
and Mathematics Education, pp. 1–24, 2021.

[16] C. Lu, R. Macdonald, B. Odell, V. Kokhan, C. Demmans Epp, and
M. Cutumisu, “A scoping review of computational thinking assessments
in higher education,” Journal of Computing in Higher Education, pp.
1–46, 2022.

[17] R. DiYanni and A. Borst, “Active learning,” in The Craft of College
Teaching. Princeton University Press, 2020, pp. 42–60.

[18] L. Johnson, S. Adams Becker, M. Cummins, V. Estrada, A. Freeman,
and H. Ludgate, NMC Horizon Report: 2013 Higher Education Edition,
2013.

[19] M. Oliver and K. Trigwell, “Can ‘Blended Learning’ Be Redeemed?”
E-learning and Digital Media, vol. 2, no. 1, pp. 17–26, 2005.

[20] M. J. Rodrı́guez-Triana, L. P. Prieto, A. Vozniuk, M. S. Boroujeni, B. A.
Schwendimann, A. Holzer, and D. Gillet, “Monitoring, Awareness and
Reflection in Blended Technology Enhanced Learning: A Systematic Re-
view,” International Journal of Technology Enhanced Learning, vol. 9,
no. 2-3, pp. 126–150, 2017.

[21] S. Van Goidsenhoven, D. Bogdanova, G. Deeva, S. vanden Broucke,
J. De Weerdt, and M. Snoeck, “Predicting Student Success in a Blended
Learning Environment,” in Proceedings of the 10th International Con-
ference on Learning Analytics & Knowledge, 2020, pp. 17–25.

[22] R. Collopy and J. M. Arnold, “To Blend or Not to Blend: Online-
Only and Blended Learning Environments,” Issues in Teacher Education,
vol. 18, no. 2, 2009.

[23] Q. Chu, X. Yu, Y. Jiang, and H. Wang, “Data Analysis of Blended
Learning in Python Programming,” in International Conference on
Algorithms and Architectures for Parallel Processing. Springer, 2018,
pp. 209–217.

[24] S. Kross and P. J. Guo, “Practitioners teaching data science in industry
and academia: Expectations, workflows, and challenges,” in Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems,
2019, pp. 1–14.

[25] A. Y. Wang, A. Mittal, C. Brooks, and S. Oney, “How Data Scientists
Use Computational Notebooks for Real-Time Collaboration,” Proceed-
ings of the ACM on Human-Computer Interaction, vol. 3, no. CSCW,
pp. 1–30, 2019.

[26] K. O’Hara, D. Blank, and J. Marshall, “Computational Notebooks for
AI Education,” in The Twenty-Eighth International Flairs Conference,
2015.

[27] J. M. Perkel, “Why Jupyter is Data Scientists’ Computational Notebook
of Choice,” Nature, vol. 563, no. 7732, pp. 145–147, 2018.

[28] A. Radenski, ““Python First”: A Lab-Based Digital Introduction to
Computer Science,” SIGCSE Bulletin, vol. 38, no. 3, pp. 197–201, 2006.

[29] A. Cardoso, J. Leitão, and C. Teixeira, “Using the Jupyter Notebook as
a Tool to Support the Teaching and Learning Processes in Engineering
Courses,” in Intl. Conference on Interactive Collaborative Learning.
Springer, 2018, pp. 227–236.

[30] M. Zastre, “Jupyter Notebook in CS1: An Experience Report,” in Pro-
ceedings of the Western Canadian Conference on Computing Education,
2019, pp. 1–6.

[31] S. H. Edwards, D. S. Tilden, and A. Allevato, “Pythy: Improving the
Introductory Python Programming Experience,” in Proceedings of the
45th ACM Technical Symposium on Computer Science Education, 2014,
pp. 641–646.

[32] P. J. Guo, “Online Python Tutor: Embeddable Web-Based Program
Visualization for CS Education,” in Proceeding of the 44th ACM
Technical Symposium on Computer Science Education, 2013, pp. 579–
584.

[33] Project Jupyter, D. Blank, D. Bourgin, A. Brown, M. Bussonnier,
J. Frederic, B. Granger, T. Griffiths, J. Hamrick, K. Kelley, M. Pacer,
L. Page, F. Pérez, B. Ragan-Kelley, J. Suchow, and C. Willing,
“nbgrader: A Tool for Creating and Grading Assignments in the Jupyter
Notebook,” Journal of Open Source Education, vol. 2, no. 16, p. 32,
2019.

[34] A. Rule, A. Tabard, and J. D. Hollan, “Exploration and Explanation in
Computational Notebooks,” in Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems, 2018, pp. 1–12.

[35] M. Borowski, J. Zagermann, C. N. Klokmose, H. Reiterer, and R. Rädle,
“Exploring the Benefits and Barriers of Using Computational Notebooks
for Collaborative Programming Assignments,” in Proceedings of the 51st
ACM Technical Symposium on Computer Science Education, 2020, pp.
468–474.

[36] M. Gagné and E. L. Deci, “The history of self-determination theory in
psychology and management.” 2014.

[37] R. J. Vallerand, “Toward a hierarchical model of intrinsic and extrinsic
motivation,” Advances in experimental social psychology, vol. 29, pp.
271–360, 1997.

[38] ——, “A hierarchical model of intrinsic and extrinsic motivation in sport
and exercise,” Advances in motivation in sport and exercise, vol. 2, pp.
263–319, 2001.

[39] E. L. Deci and R. M. Ryan, “Motivation and self-determination in human
behavior,” NY: Plenum Publishing Co, 1985.

[40] ——, “A motivational approach to self: Integration in personality.” 1991.
[41] F. Guay, R. J. Vallerand, and C. Blanchard, “On the assessment of

situational intrinsic and extrinsic motivation: The situational motivation
scale (sims),” Motivation and emotion, vol. 24, no. 3, pp. 175–213, 2000.

[42] I. Kotini and S. Tzelepi, “A gamification-based framework for devel-
oping learning activities of computational thinking,” in Gamification in
education and business. Springer, 2015, pp. 219–252.

[43] D. L. Butler and P. H. Winne, “Feedback and self-regulated learning:
A theoretical synthesis,” Review of educational research, vol. 65, no. 3,
pp. 245–281, 1995.

[44] L.-K. Lee, T.-K. Cheung, L.-T. Ho, W.-H. Yiu, and N.-I. Wu, “Learning
computational thinking through gamification and collaborative learning,”
in International Conference on Blended Learning. Springer, 2019, pp.
339–349.

[45] C. W. Tan, P.-D. Yu, and L. Lin, “Teaching computational thinking using
mathematics gamification in computer science game tournaments,” in
Computational Thinking Education. Springer, Singapore, 2019, pp.
167–181.

[46] F. Pires, F. M. M. Lima, R. Melo, J. R. S. Bernardo, and R. de Freitas,
“Gamification and engagement: Development of computational thinking
and the implications in mathematical learning,” in 2019 IEEE 19th
International Conference on Advanced Learning Technologies (ICALT),
vol. 2161. IEEE, 2019, pp. 362–366.

[47] L. Gouws, K. Bradshaw, and P. Wentworth, “First year student perfor-
mance in a test for computational thinking,” in Proceedings of the South
African Institute for Computer Scientists and Information Technologists
Conference, 2013, pp. 271–277.

[48] V. Roadrangka, R. H. Yeany, and M. J. Padilla, “The construction and
validation of group assessment of logical thinking (galt),” in Paper
Presented at the National Association for Research in Science Teaching
Annual Meeting, Dallas, TX, 1983.

[49] B. Kim, T. Kim, and J. Kim, “and-pencil programming strategy toward
computational thinking for non-majors: Design your solution,” Journal
of Educational Computing Research, vol. 49, no. 4, pp. 437–459, 2013.

[50] M. Lafuente, O. Lévêque, I. Benı́tez, C. Hardebolle, and J. Dehler-
Zufferey, “Assessing computational thinking: Development and valida-
tion of the algorithmic thinking test for adults,” Journal of Educational
Computing Research, in press.

[51] Ö. Korkmaz, R. Çakir, and M. Y. Özden, “A validity and reliability
study of the computational thinking scales (cts),” Computers in human
behavior, vol. 72, pp. 558–569, 2017.

[52] M. Yağcı, “A valid and reliable tool for examining computational
thinking skills,” Education and Information Technologies, vol. 24, no. 1,
pp. 929–951, 2019.

[53] S. Herzog and N. A. Bowman, Validity and Limitations of College
Student Self-Report Data: New Directions for Institutional Research,
Number 150. John Wiley & Sons, 2011, vol. 110.

[54] T. T. Yuen and K. A. Robbins, “A qualitative study of students’
computational thinking skills in a data-driven computing class,” ACM
Transactions on Computing Education (TOCE), vol. 14, no. 4, pp. 1–19,
2014.

[55] S. Atmatzidou and S. Demetriadis, “Advancing students’ computational
thinking skills through educational robotics: A study on age and gender
relevant differences,” Robotics and Autonomous Systems, vol. 75, pp.
661–670, 2016.

[56] Y.-H. Lai, S.-Y. Chen, C.-F. Lai, Y.-C. Chang, and Y.-S. Su, “Study on
enhancing aiot computational thinking skills by plot image-based vr,”
Interactive Learning Environments, pp. 1–14, 2019.

[57] T.-C. Hsu, S.-C. Chang, and Y.-T. Hung, “How to learn and how to teach
computational thinking: Suggestions based on a review of the literature,”
Computers & Education, vol. 126, pp. 296–310, 2018.

[58] J. D. Hunter, “Matplotlib: A 2D Graphics Environment,” Computing in
Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.

[59] A. L. Strauss, Qualitative analysis for social scientists. Cambridge
university press, 1987.

[60] A. Strauss and J. Corbin, Basics of qualitative research. Sage
publications, 1990.

This article has been accepted for publication in IEEE Transactions on Learning Technologies. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TLT.2022.3180588

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

14

[61] J. Brooke, “Sus: a ’quick and dirty’ usability scale,” Usability evaluation
in industry, vol. 189, 1996.

[62] J. Hair, C. L. Hollingsworth, A. B. Randolph, and A. Y. L. Chong, “An
updated and expanded assessment of PLS-SEM in information systems
research,” Industrial Management and Data Systems, pp. 442–458, 2017.

[63] K. A. Bollen, “Latent variables in psychology and the social sciences,”
Annual review of psychology, pp. 605–634, 2002.

[64] N. Gillet, R. J. Vallerand, M.-A. K. Lafreniere, and J. S. Bureau,
“The mediating role of positive and negative affect in the situational
motivation-performance relationship,” Motivation and Emotion, vol. 37,
no. 3, pp. 465–479, 2013.

[65] S. Subhash and E. A. Cudney, “Gamified learning in higher education:
A systematic review of the literature,” Computers in human behavior,
vol. 87, pp. 192–206, 2018.

[66] I. J. Quitadamo and M. J. Kurtz, “Learning to improve: using writing
to increase critical thinking performance in general education biology,”
CBE—Life Sciences Education, vol. 6, no. 2, pp. 140–154, 2007.

[67] J. F. Hair Jr, G. T. M. Hult, C. Ringle, and M. Sarstedt, A primer on
partial least squares structural equation modeling (PLS-SEM). Sage
publications, 2016.

[68] A. Bangor, P. T. Kortum, and J. T. Miller, “An empirical evaluation of the
system usability scale,” Intl. Journal of Human–Computer Interaction,
vol. 24, no. 6, pp. 574–594, 2008.

[69] A. S. Kim, S. A. Khan, A. Carolli, and L. Park, “Investigating teaching
and learning during the coronavirus disease 2019 pandemic.” Scholar-
ship of Teaching and Learning in Psychology, 2021.

[70] O. A. Pilkington, “Active learning for an online composition classroom:
Blogging as an enhancement of online curriculum,” Journal of Educa-
tional Technology Systems, vol. 47, no. 2, pp. 213–226, 2018.

[71] Y. R. Tausczik and J. W. Pennebaker, “The psychological meaning
of words: Liwc and computerized text analysis methods,” Journal of
language and social psychology, vol. 29, no. 1, pp. 24–54, 2010.

[72] J. W. Pennebaker, R. L. Boyd, K. Jordan, and K. Blackburn, “The
development and psychometric properties of liwc2015,” Tech. Rep.,
2015.

Alessio De Santo is a PhD candidate in Informa-
tion Systems at the University of Neuchâtel. He
holds a Bachelor of Science in Business Technology
and a Master of Science in Information Systems.
His current research interests cover digital support
in learning and healthcare contexts. Recently, he
joined the University of Applied Sciences of West-
ern Switzerland HES-SO, Neuchâtel, as an assistant
professor.

Juan Carlos Farah is a PhD candidate in Robotics,
Control, and Intelligent Systems at the École Poly-
technique Fédérale de Lausanne. He received a
Bachelor of Arts in Economics from Harvard Uni-
versity and a Master of Science in Computing
from Imperial College London. His current research
focuses on human–computer interaction and the
perception of anthropomorphic traits in intelligent
conversational agents.

Marc Lafuente Martı́nez is a researcher, con-
sultant, and project manager who focuses on new
technologies and educational innovation. He earned
his PhD in Educational Psychology at the University
of Barcelona, where he also was a lecturer. He’s been
a policy analyst at the Organisation for Economic
Cooperation and Development (OECD) and he col-
laborates with a number of government agencies and
think-tanks. Recently, he has been a researcher at the
École Polytechnique Fédérale de Lausanne (EPFL).

Arielle Moro is a Postdoctoral fellow at the Uni-
versity of Neuchâtel. She holds a PhD in Infor-
mation Systems from the University of Lausanne.
Her research thesis explored the tradeoff between
predicting mobility and preserving location data
privacy. Her research interests focus on analyzing
human behavior in various domains (e.g., mobility,
sustainability, learning) using machine learning tech-
niques.

Kristoffer Bergram is a PhD candidate in Com-
puter Science at the University of Neuchâtel. He
holds Bachelor of Science degrees in Psychology
and Statistics from Lund University and a Master
of Science in Information Systems from the same
university. His current research is focused on guid-
ing human behavior in human–computer interaction
contexts by using digital nudging.

Aditya Purohit is a PhD candidate in Information
Systems at the University of Neuchâtel. He holds a
Bachelor of Engineering in Computer Science and
a Master of Science in Marketing Research from
University Grenoble Alpes. His current research
interests cover digital health, digital addiction, gami-
fication, and building interventions to support digital
wellbeing.

Pascal Felber is a Professor of Computer Science
at the University of Neuchâtel. He received his PhD
degree in Computer Science from the Swiss Fed-
eral Institute of Technology in 1998. He has since
worked at Oracle Corporation and Bell-Labs (Lucent
Technologies) in the USA, as well as at Institut
EURECOM in France, before joining the University
of Neuchâtel in 2004. His current research interests
include digital education with a focus on the fields of
dependable, concurrent, and distributed computing.

Denis Gillet received his PhD degree in Information
Systems from the École Polytechnique Fédérale de
Lausanne (EPFL) in 1995. Currently, he is a Faculty
Member at the EPFL School of Engineering. He
has been the technical coordinator for large-scale
European innovation actions for STEM education in
schools, and associate editor of the IEEE TLT and
IJET. His current research interests include digital
education, human–computer interaction, humanitar-
ian technology, and ICT for development.

Adrian Holzer is a Professor of Management In-
formation Systems at the University of Neuchâtel.
He holds a PhD in Information Systems from the
University of Lausanne. He was a research associate
at École Polytechnique Fédérale de Lausanne, the
co-head of the interdisciplinary platform at the Uni-
versity of Lausanne, and an SNF research fellow at
Polytechnique Montréal. His research interests cover
digitalization in learning and humanitarian contexts.

This article has been accepted for publication in IEEE Transactions on Learning Technologies. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TLT.2022.3180588

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

