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Abstract

We consider the problem of forecasting mul-
tiple time series across multiple cross-sections
based solely on the past observations of the se-
ries. We propose to use panel vector autore-
gressive model to capture the inter-dependencies
on the past values of the multiple series. We
restrict the panel vector autoregressive model
to exclude the cross-sectional relationships and
propose a method to learn models with sparse
Granger-causality structures coherent across the
panel sections. The method extends the concepts
of group variable selection and support union re-
covery into the panel setting by extending the
group lasso penalty (Yuan & Lin, 2006) into ma-
trix output regression setting with 3d-tensor of
model parameters.

1. Introduction
In many demand forecasting applications we wish to fore-
cast multiple time series across several cross-sections. For
example, for managing the supply of a large retail chain we
wish to be able to forecast the demand for the individual re-
tail products (bread, milk, umbrellas, etc.) across the sup-
ply units (supermarkets or some higher geographical units).

In this paper we assume that for the modelling and predict-
ing the future demand the only data available to the fore-
caster is the past demand data (more specifically past sales
data1). In result, the model needs to be build only over
these without any exogenous variables (such as macroeco-
nomic indicators, weather forecasts, etc.) entering.

1The discussion of the problems related to estimating demand
based on the sales data is out of the scope of this paper.
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To cater for the cross-sectional structure of the data, we will
use the panel extension of the vector autoregressive model
(PVAR) which is a well established model in the time series
literature, e.g. (Lütkepohl, 2005), and which can capture
the linear (inter)-dependencies on past observed values and
therefore allows for extrapolating the demand based solely
on the historical data (see section 1.1).

The VAR representation of the models can also provide a
useful insight into the Granger-causal (G-causal) relation-
ships amongst the multiple time series. In brief, time series
X is said to G-cause time series Y if Y can be predicted
better using the past values of X (see section 1.2). The
graph of such relationships is naturally captured within the
parameters matrix of a VAR model. When learning VARs,
zero constraints can be imposed on the parameters matrix to
restrict the model learning to G-causal graphs correspond-
ing to the specific domain theory (e.g. macroeconomic the-
ory). However, the problem of discovering the G-causal
graphs in the absence of such domain driven assumptions
is not addressed by the state-of-the-art methods in a prin-
cipled manner and most often the learned VARs have fully
connected G-graphs.

The graph of such relationships is naturally captured within
the parameters matrix of a VAR model. When learning
VARs, zero constraints can be imposed on the parameters
matrix to restrict the model learning to G-causal graphs cor-
responding to the specific domain theory (e.g. macroeco-
nomic theory). However, the problem of discovering the
G-causal graphs in the absence of such domain driven as-
sumptions is not addressed by the state-of-the-art methods
in a principled manner and most often the learned VARs
have fully connected G-graphs.

In this paper we develop methods for learning panel VARs
with consistent sparse G-causal graphs across the panels.
The sparsity motivation follows the Occam’s razor prin-
cipal for a preference of simple models: VARs typically
suffer from the small-sample-high-dimensionality problem
and sparse learning helps to tackle the overfitting issues;
sparse G-causal graphs have clear interpretational advan-
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tages. The panel consistency is motivated by the specific
structure of the panel problem itself. Essentially, each of
the cross-sections in the panel is an instantiation of a ”sim-
ilar“ multivariate random process. Obviously, assuming the
”same“ generating process across the panel is far too naı̈ve
to be realistic (though still sometimes used). Therefore we
allow the models to differ across the sections, while we as-
sume that the underlying G-causal relationships are likely
to be shared by (at least some of) the models. This as-
sumptions also adds power to the model learning and G-
causal graphs discovery following the multi-task learning
paradigms (e.g. (Evgeniou et al., 2005)).

Various degrees and forms of the panel similarity have been
considered in the PVAR literature ((Canova & Ciccarelli,
2013) has a recent review). However, as to our knowledge
we are the first to propose the joint G-causal learning in
PVARs.

1.1. Panel vector autoregressive model

In this paper, we focus on the vector autoregressive models
(VARs) and their panel extension. While there are certainly
many other valid time series modelling approaches (e.g.
state space models, stochastic dynamic equations, recur-
ring neural networks, etc.), each having its advantages and
disadvantages in particular settings, the aim of this paper is
not a survey or a comparative analysis of all of these neither
a search for the ”ultimate“ time series modelling approach.
Instead, we show here how VARs, which are amongst the
most common tools for modelling and forecasting sets of
multiple time series, can be adapted to address the specific
problem of forecasting cross-sectional multivariate time se-
ries, and we develop methods to address some of the weak-
nesses of VARs arising in such settings.

We first state the general form of a panel VAR model: for a
set of K time series each observed across Z cross-sections
at T synchronous equidistant time points we write the panel
VAR for all t ∈ NT , k ∈ NK and z ∈ NZ as

yt,k,z = αk,z(t) +
pKZ∑
lij

(
wk,z

l,i,j yt−l,i,j

)
+ εt,k,z, (1)

where αk,z(t) comprises all the deterministic components
(constants, polynomial trends in time, seasonal dummies,
etc.), p is the number of lags, and εt,k,z is a white noise pro-
cess such that for each t, theK×Z matrix Et has a matrix-
variate normal distribution with E(Et) = 0, E(E ′t Es) = 0
(independence in time), E(E ′t Et) = ΣK , and E(Et E ′t) =
ΣZ .

Note that the deterministic part αk,z(t) of the model is sec-
tion/series specific and therefore allows for variations be-
tween the models (e.g. variation in time series mean lev-
els across the sections). However, in the following we

will focus on the stochastic part of the model and there-
fore will work with the detrended form of the model where
the αk,z(t) = 0 and therefore can be dropped.

The PVAR in its most general formulation (1) is typically
highly over-parametrised: the total number of parameters
for each time series in each cross section (for each k and z)
is KZp which is usually much higher than the number of
observations T . To limit the over-parametrisation, we will
restrict the model to cross-sectional independence by set-
ting wk,z

l,i,j = 0 when j 6= z (when regressing on series
from other cross-section). Such an assumption is rather
strong but may often be realistic in real-life setting when
we do not expect the cross-sections to interact2. In result,
we reduce the panel VAR into a set of Z standard VAR
models with Kp parameters per series.

yt,k,z =
pK∑
li

(
wk,z

l,i,z yt−l,i,z

)
+ εt,k,z, (2)

Though the number of estimated parameters is now much
lower, it is still typically much larger than the number of
observations (Kp � T ) and therefore some form of reg-
ularization is needed. The regularization we explore in
this paper constraints the model learning towards sparse G-
causal graphs coherent across the panel sections.

1.2. Granger causality

In (Granger, 1969) the definition of causality is based on
predictability of the series. A series X is said to Granger-
cause another series Y if Y can be better predicted (in
terms of having lower variance of the predictive error) us-
ing the past of Y than without it. This notion of causality
can be extended to a set of series so that a set of series
{Y1, . . . , Yl} is said to Granger-cause series Yk if Yk can
be better predicted using the past values of the set.

The Granger-causal relationships can be described by a di-
rected graph G = {V ,E} in which the set of vertices rep-
resents the time series in the system, and a directed edge
el,k from vl to vk means that time series l Granger-causes
time series k.

In VARs, the Granger-causal relationships are captured
within the parameters w of model (1). When wk,z

l,i,j 6= 0
for any l we say that series i from panel j G-causes series
k from panel z. Note that for the restricted model form (2)
by putting wk,z

l,i,j = 0 when j 6= z we effectively exclude
all G-causal relationships across the sections. In this way,
we learnZ disconnected G-causal graphs, one for each sec-
tion.

2Modelling of full unrestricted PVAR as well as of determin-
istic and stochastic trends are topics for future research
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2. Learning coherent Granger-causal graphs
For better clarity we rewrite model (2) in the standard ma-
trix form of a multi-output regression. For each cross-
section z ∈ NZ we write the VAR as

Yz = XzWz + Ez (3)

where Yz is the T × K output matrix, Xz is the
T × Kp input matrix so that each row t of the ma-
trix is a Kp long vector with p lagged values of
the K time series in the same cross section as inputs
xt,. = (yt−1,1, yt−2,1, . . . , yt−p,1, yt−1,2, . . . , yt−p,K)′3

(dropping the fixed z indexes for ease of reading). Wz

is the corresponding Kp × K matrix where each column
is a model for a single time series. The T × K error ma-
trix Ez is a random noise matrix with independent rows
et,. ∼ N(0,Σ).

This structure of the VAR models is particularly advanta-
geous for the G-causal discovery since the G-causal restric-
tions (wk,z

l,i,z 6= 0 for any l) translate directly into block-
sparsity in the Wz . A fictitious example of the Wz matri-
ces is depicted in figure 1. The top part of the picture illus-
trates how the W can be organised into a 3d-tensor. The
shaded squares are the non-zero blocks corresponding to
the G-causal relationships between the series in the panel.
The figure also illustrates how these non-zero blocks ”drill“
through the 3d-tensor so that the individual cross sections
are coherent in terms of their block-sparsity. Also, note that
the block diagonal elements of the Wz matrix capture the
dependency of each series on its own history which falls
out of the usual G-causal definition: as usual in multivari-
ate time series analysis, series is always expected to depend
on its own past and therefore the block-diagonal elements
are non-zero.

From the above outlined link between the G-causal graphs
and the VAR parameters matrix it should be clear that
the problem of discovering sparse G-causal graphs can be
seen as learning with group variable selection where the
groups are formed by all lags of a single input time series.
Similarly, discovering G-causal graphs coherent across the
panel cross-sections corresponds to learning section mod-
els with coherent block-sparsity patterns in their parameter
matrices Wz .

We propose to learn the parameters of the restricted PVAR
in eq. (2) by minimising a regularised loss problem

argmin
W

L(W3d) + λR(W3d), (4)

where W3d is the 3d-tensor of the PVAR parameters (as in
the top of figure 1), L(W3d) is the squared error loss for

3By convention, all vectors in this paper are column vectors.
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Figure 1. Schematic structure of the parameters of a panel au-
toregressive model with cross-sectional independece (wk,z

l,i,j = 0
when j 6= z) and sparse G-causal graphs coherent across the panel
sections.

the Z sectional models

L(W3d) :=
Z∑
z

||Yz −XzWz||2F , (5)

λ ≥ 0 is the regularization parameter and

R(W3d) :=
K∑
k

K∑
b 6=k

||W̃b,k||F +
K∑
k

||W̃k,k||2F (6)

Here, the W̃b,k is the p×Z matrix constructed by concate-
nating the vectors w̃b,k,z = (wk,z

1,b,z, w
k,z
2,b,z, . . . , w

k,z
p,b,z)′

across the cross-sections z (one ”drill“ through the param-
eters tensor in figure 1), and ||.||F is the matrix Frobenious
norm.

The first term in (6) is a special case of the `1/`2 block-
norm of (Yuan & Lin, 2006) known as group lasso adapted
to the 3d-tensor models with p-large groups of variables.
As such, it has also similar sparsity effects: it encour-
ages common group-sparsity across the cross-section mod-
els. The `1/`2 block-norm is only applied to the non-
diagonal blocks of each of the Wz in eq. 6, and standard `2
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norm is used for the block-diagonals instead. This shrinks
the block-diagonal parameters without encouraging spar-
sity which corresponds to the usual time series modelling
assumption that each series depends on its own history.

We wish to emphasize here that by using the regularization
term in eq. 6 we learn Z different models parametrised by
the model matrices {Wz : z ∈ NZ}, one for each cross-
section. The models are, however, similar in the sense of
having the same underlying G-causal structure reflected in
the block sparsity of the parameters matrices.

Problem (4) with loss (5) regularized by (6) is a convex
(though non-differentiable) problem that can be solved by
standard optimisation approaches (e.g. proximal gradient
methods).

2.1. Learning cross-sectional clusters

One of the major limitations of the model outlined in sec-
tion 2 is the assumption of full coherency of the G-causal
graphs across the sections. Indeed, a more realistic assump-
tion would be that some cross-sections are more similar
than others. Learning clusters of section models is thus a
natural and certainly useful extension which could provide
useful insight into the specific market characteristics of the
supply chain units.

To allow for leaning the cross-sectional model clusters we
propose to re-parametrise model (2) and its matrix multi-
output regression form (3) so that each of the block sub-
vectors of w̃b,k,z = γb,k,zṽb,k,z , where ṽb,k,z is a p-long
vector (the same size as w̃b,k,z) and γb,k,z is a scalar. Here,
we will use the γ’s to control the block-sparsity of the mod-
els. Essentially, γb,k,z = 0 implies w̃b,k,z = 0.

In the model in section 2 γb,k,z = γb,k, ∀z ∈ NZ and
∀b, k ∈ NK . In the cluster version we wish to allow for
γb,k,z = γb,k,c, ∀z ∈ Sc and ∀b, k ∈ NK , where Sc is the
set of cross-section indices belonging to the same cluster
so that ∪c Sc = NZ .

We will matricize the 3d-tenosor Γ3d along the z dimension
to construct aK2×Z matrix Γ̃. The full consistency model
in section 2 has γ̃i,z = γ̃i, ∀z ∈ NZ , ∀i ∈ NK2 while, in
the cluster version, we have γ̃i,z = γ̃i,c, ∀z ∈ Sc, ∀i ∈
NK2 .

For leaning the panel VARs with sparse G-causality graphs
coherent across the cross-section clusters we propose to as-
sume that the model block-sparsity patterns within Γ̃ lie
in a low dimensional subspace so that the cross-sectional
models can be seen as linear combinations of cluster proto-
types with specific sparse G-causal structures.

We will reformulate the learning problem (4) as a minimi-
sation with respect to the newly defined Ṽ and Γ̃ of the

regularised functional∑Z
z ||Yz −Xz(Γ̃z ◦ Ṽz)||2F +

+
∑Z

z

(
λ1 ||Ṽz||2F + λ2||γ̃z||1

)
(7)

s.t. rank(Γ̃) ≤ r,

where γ̃z is the z column of matrix Γ̃, Γ̃z is the γ̃z vector
reshaped and replicated to a Kp×K matrix to correspond
in shape to Ṽz matrix, and ◦ indicates the element-wise
product.
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