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Abstract
The reverse logistics network (RLN) design for sustainable supply chain management is a strategic decision in network con-
figuration, and is higher influenced by uncertainty. This paper applies a bi-level stochastic multi-objective model to design 
an RLN for a disposable product recycling management system. The goal is to balance the overall network cost against the 
associated environmental risks. An LP-metric based sample average approximation is formulated to solve the optimization 
problem. The model is validated numerically through a disposable product firm.
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1 Introduction

Numerous strategies are used to address the sustainability 
problem in Supply Chain Management (SCM), notably 
the detrimental environmental influence (Gholizadeh and 
Fazlollahtabar 2020). Deeper consumer-industry engage-
ment has led to win–win interactions in SCM with improved 
social welfare and higher consumer surplus. Indeed, the 

traditional maxims of low cost and superior quality con-
trol no longer suffice as requisite competitive advantage for 
firms. With growing competition and awareness of environ-
mentalism, the design of a circular economy through reverse 
logistics engenders new challenges that have a substantial 
role in economic development through repurposing products 
and keener competition (Fathollahi-Fard et al. 2021). The 
goals of implementing such a system include lower costs, 
higher service levels, and better awareness of the social and 
environmental dimensions (Gholizadeh et al. 2021). Put 
simply, the imperative for firms today is to design an end-
to-end supply chain which acknowledges and complies with 
the environmental and social yardsticks (Singh et al. 2019). 
As such, recycling is widely accepted and practised, either 
willingly or through regulatory compliance. The recycling 
process seeks to achieve the optimal use of resources by 
converting waste into alternative materials to satisfy the 
economic and environmental aspects in a supply chain (Zhu 
et al. 2021). In this regard, disposable plastic products, while 
offering user convenience, actually pose more risk for people 
and the environment. Along with the culture of reducing 
the use of disposable products, recycling these products can 
help to reduce the risks to public health as well as yield 
cost savings, for instance, polystyrene wastes such as the 
disposable cutlery found in fast food and styrofoam packag-
ing found in consumer electronics respectively. Currently, 
such polystyrene products are reprocessed in unhealthy, 
unauthorized workshops in developing countries, creating 
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hazards downstream, and with a large amount of polystyrene 
discarded throughout the supply chain.

In the recycling of polystyrene products, beyond the eco-
nomic considerations, the technical and process aspects are 
also key elements. By controlling the operating conditions 
and using catalysts to increase the quality of the products, 
the recovery of polystyrene waste can help to mitigate the 
destructive environmental effects and improve the economic 
aspects. Thus, designing an RLN for polystyrene-based 
disposable products can help to foster sustainability in the 
product eco-system. In such a system, the return flows are 
managed by exploiting the product, as much as possible, 
its components at the end of their life, promoting the best 
use of resources with the least environmental impact. That 
said, the RLN design of a disposable products system is a 
complicated multi-stage decision making problem involv-
ing several specifications related to the treatment site and 
size, recycling of the disposable products among the various 
facilities. Furthermore, RLN design is a strategic decision 
making under uncertainty, affecting the recycling of the dis-
posable products, the cost of transportation, the consump-
tion rate of the products, which can complicate the decision-
making process. Hence, we introduce a bi-level stochastic 
multi-objective model for the RLN design of a disposable 
product recycling system under uncertainty.

This paper provides a modeling framework for the design 
of a Sustainable Resilient RLN (SRRLN) for disposable 
polystyrene appliances in Iran. The objective is to aid in 
the long-term decision-making of a multi-level sustainable 
RLN for disposable products within an uncertain environ-
ment using big data.

Specifically, we address the following research questions:

• How does the proposed approach lead the uncertainty 
of input information with big data characteristics in the 
design of the network to a better solution?

• How can all economic and environmental criteria be bal-
anced at the same time with the stochastic model?

This paper offers several contributions. First, whilst there 
are several papers in the supply chain network design litera-
ture that integrate environmental costs, this study presents a 
new framework for integrating sustainability and resilience, 
and RLN disposable products that considers GHG emissions 
costs (environmental cost). Second, while there are several 
papers considering various forms of uncertainty, our model 
takes uncertainty into account in all of the main parameters 
associated with an RLN. Third, we entertain the question of 
the degree of redundancy needed in the facilities when delib-
erating on a robust RLN. Fourth, a solution approach using 
stochastic optimization and a hybrid algorithm, the SAA-LP, 
for the multi-objective RLN model, involving multi-levels, 
multi-periods, multi-products, and multi-carriers, is cast to 
speak to an actual problem on the ground. Figure 1 shows 
the research framework. The proposed structure for the 5 V 
data representation is presented through intra-data heteroge-
neity and the V’s. Pilka Plast Haraz (PPH) which produces 
disposable products in a northern city of Iran is used as the 
case firm.

The rest of this paper is set as follows. The research gap 
in the literature review is presented in Sect. 2. The proposed 
solution methodology is presented in Sect. 3. The computa-
tional experiments are contained in Sect. 4. Section 5 pro-
vides the managerial implications. Section 6 concludes with 
future research directions.

Fig. 1  Research framework
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2  Literature review

As the importance of and concern for sustainability grow, 
research have sought to simultaneously improve the social 
and environmental factors in supply chain design on top 
of the economic factors. Therefore, the influence of the 
environmental and social elements and models of reverse 
logistics problems are pertinent. One aspiration is to create 
a model that can treat the economic, social and environ-
mental factors collectively. Recent research inform that 
sustainable supply chain management (SSCM) is critical 
to decreasing the environmental contamination (Ansari 
et al. 2017). Moreover, establishing SSCM has resulted 
in better profit, lower cost, stronger consumer relation-
ship, and improved brand equity (Sauer and Seuring 
2018). Govindan et al. (2019) proposed a hybrid SMAA-
ELECTRE I to obtain the best reverse logistics service 
provider. Independently, Maric and Opazo-Basaez (2019) 
have considered a green servitization strategy for RL, one 
which provides for greater flexibility and sustainability. 
Doing so, industry can then realise a sustainable recovery 
for their end-of-life products. More recently, Zarbakhshnia 
et al. (2020) combined fuzzy analytic hierarchy process 
with gray multi-objective optimization by ratio analysis 
(MOORA-G) to obtain the weight of each criterion, and 
to rank the alternatives including uncertainty to optimally 
choose a third-party RL provider for an auto parts firm. 
Trochu et al. (2020) developed a multi-objective stochastic 
model for RLN planning in the recycling of materials in 
Canada, so as to lift the expected profit and control the 
environmental aspects in an uncertain environment. They 
combined Sampling Average Approximation (SAA) with 
the ε-constraint method to solve their model. Agrawal and 
Singh (2019) had applied the partial least squares path 
technique to a sample of 700 electronics firms to show the 
effects of the recycling strategies on the triple bottom line 
in India’s electronics sector. Further, Dutta et al. (2020) 
used multi-objective optimization on an RLN of the Indian 
e-commerce market involving product returns, consider-
ing all the factors of sustainability so as to decrease the 
cost and control the environmental issues. Moghaddam 
et al. (2019) had studied the effects of demand changes on 
profitability in the context of perishable products with the 
objective to increase the financial rewards, raise customer 
satisfaction, and decrease the environmental effects and 
network costs. Sepeher et al. (2019), recognizing that driv-
ers such as social responsibility, demand uncertainty, envi-
ronmental influences, and technological change, can lead 
to product risk and challenges in reverse logistics, have 
argued for newer ways to manage uncertainty. Keshavarz 
and Toloo (2019) assessed the proficiency of the RL pro-
viders operating under uncertainty. Rahimi and Ghezavati 

(2018) developed a CVaR model for recycling manufactur-
ing waste in a sustainable RLN under uncertainty. Simi-
larly, Entzaminia et al. (2016) designed a robust optimiza-
tion solution to identify the candidate facilities based on 
demand uncertainty and the cost to run, and applied the 
solution to an actual case.

Indeed, designing a resilient RLN has been identified 
as an important constituent of SSC and GSC in assuring 
sustainability (Mohammed et al. 2019; Jabbarzadeh et al. 
2018; Zahiri et al. 2017). There are several recent studies 
on resilient RLN design (Ghavamifar et al. 2018; Dehghani 
et al. 2018; Rezapour et al. 2017). Most of these studies 
focus on mitigating the disruption risk (Ghavamifar et al. 
2018; Rezapour et al. 2017; Hasani and Khosrojerdi 2016; 
Klibi and Martel 2012) while others studied the RLN seek-
ing to maximize the resiliency and minimize the total cost 
(Mohammed et al. 2019; Jabbarzadeh et al. 2018; Zahiri 
et al. 2017; Fattahi et al. 2017; Mari et al. 2016; Fahimnia 
and Jabbarzadeh, 2016). Mehrjerdi and Lotfi (2019) intro-
duced a two-stage, mixed integer linear programing (MILP) 
and robust counterpoint modeling in a closed loop supply 
chain network to cope with demand uncertainty consider-
ing resilience, sustainability, and robustness. They used the 
LP-metric method on a NEOS server to study the automo-
bile assembly industry. Jabbarzadeh et al. (2018) proposed 
a hybrid method involving fuzzy clustering to evaluate sup-
plier performance in a sustainable supply network dealing 
with resilience and random disruptions. Their objective was 
to minimize the overall cost and maximize the sustainability 
for PVC pipe production. Also, Rajesh (2018) applied the 
positioning of partition lines to investigate the sequence of 
evolution of sustainability and flexibility in SSC networks. 
Kaur and Singh (2019) extended a study on cost under car-
bon emissions limits in resilient logistics chains by applying 
a cap-and-trade method. Moosavi et al. (2022) suggested 
disruption management strategies for use in supply chains 
with RLN problems.

With large data sets available at various levels of the SC, 
supply chain managers today seek to capitalize on using data 
analytics to improve supply chain performance (Gholizadeh 
et al. 2020a, b). In this regard, Bag et al. (2020) applied 
the dynamic capability theory to assess the capability of 
big data analytics in supporting green product development 
and the sustainable supply chain in South Africa. Mishra 
and Singh (2020a, b) examined dynamic facility allocation 
in sustainable RL to decrease the carbon emissions from 
catastrophes and combined big data with a random dataset. 
Recently, Gholizadeh et al. (2020a, b) developed a multi-
objective fuzzy hybrid model using big data and with envi-
ronmental constraints and sustainable transportation. Kaur 
and Singh (2018) proposed a big-data driven SSC model 
for greenhouse gas emissions. Govindan et al. (2018)’s sur-
vey explored opportunities for advancing big data analytics 
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for SCM applications. They report that big data enhance 
business decisions by infusing intelligence into the analy-
sis. Other studies on using big data analytics include sup-
ply chain agility, sustainability, and resilience (Wang et al. 
2016).

Lotfi et al. (2022a) proposed strategies to manage inven-
tory costs under uncertainty. They considered fuzzy robust 
data-driven optimization for the supply chain of sustainable 
resuscitation and healthcare using a Vendor-Managed Inven-
tory (VMI) policy to improve stock management, under 
uncertainty and disruptions. Their results suggest varying 
levels of confidence in conservative decisions, including 
flexibility, robustness, and cost. Recently, big data sharing, 
blockchain-based transactions, and data redundancy have 
been studied, and a framework that offers transaction secu-
rity and data reliability when trading in blockchain is pro-
posed (Yang et al. 2020; Li et al. 2021).

Aside, Lotfi et  al. (2022b) presented a robust multi-
objective model of data-driven optimization for renewable 
energy location. The goal was to minimize risk and maxi-
mize profit. They used the improved augmented ε-constraint 
approach to produce a Pareto frontier. Govindan and Gholi-
zadeh (2021) developed a robust optimization model for 
sustainable-resilient RLN using big data for end-of-life 
vehicles. A scenario-based Cross-Entropy (CE) algorithm 
was proposed to solve the model on a large scale. Their 
results show that changing the scenario significantly affects 
the optimal environmental and social costs. Soleimani et al. 
(2022) proposed a sustainable RLN under energy efficiency. 
Their model maximizes the total profit and job opportunities 
while minimizing the energy consumption and carbon emis-
sions. They used two heuristics to obtain feasible solutions 
and they proposed an efficient reformulation model to find 
the most optimal solution. Seydanlou et al. (2022) studied a 
sustainable closed-loop supply chain model to consider the 

total cost, environmental pollution, and job opportunities 
for Iran’s olive industry. Two hybrid metaheuristics were 
used to compare with other algorithms while validating the 
ε-constraint method. Gholizadeh et al. (2022) presented a 
robust MINLP optimization model for sustainable-green 
integrated RLN in polystyrene disposable appliances. They 
used three heuristics, namely, the cross-entropy algorithm, 
genetic algorithm, and simulated annealing to solve their 
model. Then, they used the best–worst method to evaluate 
the performance against the robust optimization method.

Supplementary Table 1, as found in Supplementary Mate-
rials Part A, provides a compendium of the papers relevant 
to this research topic. Most of the recent studies have used 
robust optimization to deal with uncertainty. In our work, 
we analyze big data using a combined SAA-LP method. 
In addition, arising from the literature review, this paper 
offers a stochastic optimization model for an SRRLN that 
minimizes the network cost and the environmental risk of 
disposable products, to holistically account for uncertainty 
in the parameters and decision variables.

3  Problem formulation

Our model is intended to balance the overall cost of the 
network and the environmental risk posed by recycling 
the disposable products. A bi-level decision making 
approach is taken to plan the recycling process. First, 
strategic decisions are adopted for designing the struc-
ture of the network by siting the location of the facilities. 
Next, allocation in terms of the tactical route planning are 
set as operational decisions to inform how the network 
for the recycling process should be performed. Figure 2 
shows the network structure of the SRRLN for disposable 
products. The used disposable polystyrene containers are 

Fig. 2  Typical SRRLN
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collected and sent to the collection centers. At the col-
lection centers, the containers are visually inspected and 
separated, depending on the type of polymer and color. 
After separation and washing, these containers are sent 
to the recycling centers to process the recycling. The five 
recycling operations at the recycling centers then produce 
three types of products: granules, primary polystyrene, and 
monomers. Product #1 (granules) is obtained in the fourth 
recycling operation. Product #2 (polystyrene) is obtained 
from the second recycling operation. Product #3 (mono-
mers) is produced in the fifth recycling operation. Some-
times, the containers cannot be recycled. For example, 
when containers are crushed, they come into contact with 
other contaminants and cannot be repurposed. The non-
recyclables are disposed of. Also, some recycling centers 
are incapable of processing the entire set of operations. 
This then requires the operations to be transferred to the 
other recycling centers.

With uncertainty on the parameters of the SRRLN, the 
lack of information can complicate the decision making. As 
such, a stochastic optimization model based on discrete sce-
narios, where the probability of the occurrence of an event 
can be formulated for various situations, and decisions 
are made based on the expected uncertainty in the future. 
Thus, the choice of models to arrive at a decision should 
be robust or resilient (Gholizadeh et al. 2020a, b; Govin-
dan, and Gholizadeh, 2021). The strategic decisions to be 
made during the first stage are infrastructural, i.e., where to 
site the centers. In the second stage, the tactical and opera-
tional decisions are resilient and are thus formulated based 
on the scenarios considered for maximizing the overall per-
formance of the SRRLN. Thus, obtaining the vales of the 

decision variables of the network structure in the first stage 
affects the outcome of the second stage decisions.

Figure 3 shows how the proposed structure for large 5 V 
data (variety, volume, velocity, veracity, and value) relate 
to the model parameters, in particular the relationship to 
parameters such as cost, demand, capacity, and hazards.

Many stochastic models employ scenario assumptions 
and neglect the scenario generation process itself. So, using 
the SAA guarantees that our result is stable no matter which 
scenario tree is used. This probably can be better managed 
with big data. Therefore, in this study, big data is used for 
the sustainable management of SAA to generate a scenario 
(Zhuang et al. 2021). The 5 V big data attributes for each 
model limit are described as follows.

Variety: As the model treats different aspects of uncer-
tainty, evident through attributes that include multi-stage, 
multi-period, multi-product, multi-echelons, multi-carriers, 
the parameters of capacity, risk, cost, and demand, will 
depend on time, population density, and transportation sys-
tem. So, it is necessary to address the various data perspec-
tives at different levels of the SSRLN network.

Volume: As the volume of disposable products made is 
large, the volume of information generated is correspond-
ingly great and increases over time. As a result, a significant 
amount of data must be analyzed.

Velocity: Policies towards disposable product recycling 
are flexible. This then requires the model parameters to con-
sider how the rate of change will affect the final decision in 
real time.

Value: The SRRLN contains large chunks of informa-
tion (data) in various dimensions, and is thus valuable for 
informed decision making with regard to the importance of 

Fig. 3  5 V’s for big data 
SRRLN
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sustainability on the economic, environmental and social 
fronts.

Veracity: Veracity denotes the accuracy of data that is 
hard to control. In the model, accuracy of the data pertinent 
to the environmental risk is studied.

This study applies several assumptions. First, the input 
parameters are uncertain a priori especially in the big data 
set. Second, the collection, recycling, and disposal centers 
are known and capacitated. Third, resilience is defined based 
on the additional capacity afforded by a facility. Supplemen-
tary Materials Part B contains the notation of the parameters 
and variables used in the model. The model is now shown 
below.

Objective functions

The first objective function (Eq. 1) seeks to minimize the 
total cost of the RLN, including the fixed costs of opening 
the facilities, expansion cost for increasing the capacity of 
the recycling centers, transportation costs generated to move 
the product between facilities, operating cost of the facilities 
and the environmental cost.
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The second objective function (Eq. 2) seeks to minimize 
the health hazard, namely, the opening of recycling cent-
ers and  CO2 emissions when moving the product between 
facilities.

Network balance constraints
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Constraints (3–8) and (9–13) set the bounds on the product 
flow. Constraints (3) and (6) guarantee sufficient inflow into 
a disposal center. Constraints (4) and (5) show the balance 
between the in- and out-flows for the collection centers. Con-
straints (7) and (8) set the balance between the in- and out-
flows for the recycling centers. Constraints (9–13) ensure that 
a facility which is open has flows.

Demand constraints

Constraint (14) shows the relationship between the recycled 
product sent to the market and its demand.

Capacity constraints

Constraints (15) and (16) set the capacity. Constraints 
(17–19) guarantee that the product flow between facilities 
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cannot exceed its capacity of a facility. Constraint (20) sets 
the resilience limit for increasing capacity.

4  Solution approach

A stochastic optimization model is suited for modeling 
problems which contain uncertain information, and it can 
be modeled non-linearly (Yu and Solvang 2018, 2020). As 
many scenarios can be played out in reality, the SAA method 
is used to solve the stochastic model using Monte Carlo 
simulation (Ayvaz et al. 2015; Schütz et al. 2009). Also, the 
SRRLN is multi-objective in nature, to concurrently balance 
the total cost and the health risks posed by the operations at 
the facility and during transportation, the LP-metric method 
is used to solve the problem to optimality. The LP-metric 
method minimizes the deviation of the objective function 
from its ideal solution, which is a global optimum point for 
all goals. In the LP-metric method, the distance metric meas-
ures the proximity of a solution to the ideal solution.

4.1  SAA‑LP method

Many stochastic models employ scenario assumptions and 
neglect the scenario generation process itself, so using the 
SAA guarantees that our result is stable no matter which 
scenario tree is used. The SAA method assesses the qual-
ity and reliability of the result based on the size of the 
sample that was examined. Two indicators are applied—
the lower and upper bound estimators. The lower bound 
estimators examine the consistency of the samples, that 
is, when we generate a number of test instances with the 
same sample size from the same possibility distribution, 
the objective values are constant over all the test instances 
(with sufficiently small standard deviations). The upper 
bound estimators evaluate the quality of the solution of 
the SAA to the primary problem. The size of the prob-
lem is demonstrated by the reference sample. As the deci-
sion in the first-stage has been found a priori, the problem 
would be an LP that can be easily solved. The difference 
among the lower bound and the upper bound sets the level 
of confidence of the SAA solution to the problem. If the 
quality requirement is not achieved, then the sample size 
or number of iterations is increased and the estimators 
are re-computed. To solve a multi-objective optimization 
problem, we first identify the relevant single objective 
problems using SAA, and then define the appropriate sam-
ple size and perform the repetitions. The outputs are the 
optimal values of each single objective optimization prob-
lem, which will become the target values of each objective 
function in the LP-metric. The LP-metric is solved and the 
SAA represents a suitable sample size to approximate the 
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value of the original stochastic problem. If all the quality 
criteria are met, the model needs to be run with the offered 
sample size only once.

The notation and terms for the SAA-LP algorithm used 
in this study are in Supplementary Materials part C. The 
steps for the SAA-LP method are as follows:

Step 1: Form the multi-objective stochastic model as 
follows.
Objective function (total cost): Eq. (1) and Constraints 
(3–20)
Objective function (health hazard): Eq. (2) and Con-
straints (3–20).
Step 2: Adjust and generate the scenarios, number of 
iterations, and sample size based on the probability dis-
tribution of the parameters, set as Sample R and sce-
nario Q respectively.
Step 3: Solve each goal iteratively and evaluate the 
results using Suplementary Eqs. (23–28).
Step 4: Appraise the efficiency of the estimators with 
respect to Q and R for both objective functions. If the 
requirements are met, go to step 5; otherwise, increase 
the sample size and repeat Steps 2–4.
Step 5: Obtain the best first-stage decision selection for 
the single-objective model defined in Step 1 by testing 
each of the candidates in the reference sample.
Step 6: Set the goals for each objective function of the 
stochastic optimization problem.
Step 7: Find the weight vector of the objective functions 
and convert the main bi-objective stochastic problem 
into an LP-metric using Eq. (29).

Step 8: Optimize the LP-metric for various scenarios Q 
using specific weights over R repetitions. Use the prob-
lem objectives for each optimal solution according to 
Supplementary Eqs. (23–28) to assess the performance 
of the objectives.
Step 9: Appraise the efficiency. If it is met, goto step 
10. Otherwise, repeat Steps 2–9 using a larger sample.
Step 10: Select the optimal first-stage decision variables 
for locating the facilities. Obtain the deviation of each 
objective by solving the reference sample by combining 
the weighted LP-metric.

On the two-stage part, it is common for an SRRLN prob-
lem, where first-stage binary variables determine the loca-
tions (how to set up the network configuration) and sec-
ond-stage variables determine how to use the network. The 
two-stage decisions have different sensitivities to the plan-
ning horizon. The second stage decisions such as allocation, 
inventory policy, and routing can be easily re-optimized with 
the change in the external environment.

5  Numerical example

The case study focuses on Pilka Plast Haraz (PPH), a poly-
mer player located in the North of Iran. PPH makes dispos-
able products and polystyrene sheets for the dairy and food 
companies. PPH wants to recycle polystyrene ethically but 
due to market uncertainty, the company has to decide on 
the best course of action to balance the cost economics and 
obligations to the environment. Procuring petrochemical raw 
materials and selling products cheap in a competitive market 

Fig. 4  Data management system 
of case study
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is critical to PPH’s survival. However, PPH is under pressure 
to recycle the used products. This is aggravated by the data 
uncertainty arising from sources such as collection, disposal, 
recycling, and market demand. Using the 5 V’s approach, 
the velocity of demand, expenses, risk, and capacity vari-
ety vary a fair bit, and the volume of disposable products 
is high. As a result, the volume of information produced 
is exponential. Hence, as the SRRLN has copious amounts 
of data, the parameters need to be calibrated to match the 

veracity of the requisite data. In the model, the interactive 
data logs are transformed into data useful for decision mak-
ing (Fig. 4). The data warehouse for the SSRLN is formed 
by extracting, converting and loading the data onto the data 
archives and processed in the main data management system 
(Lan et al. 2017).

The model is coded in GAMS 2017. The computations 
are performed on a PC with Intel(R) Core (TM) i5-5200U 
CPU @2.20 GHz in Windows 10. Following Mishra and 

Table 2  First-stage decisions 
for objective functions with 
10 repetitions ( Q = 50, 
w
1
= w

2
= 0.5)

P. no Repetition OBJ1 OBJ2 First-stage 
decision

CPU Time (s)

Value % Deviation Value % Deviation C R D

2 R = 12,660,871 0.596152 3,802,794 0.013617 1,2 1,2,5 2 12.3
R = 2 2,729,702 0.353856 3,349,031 0.141119 2,3 1,2,5 2 12.8
R = 32,480,659 0.485126 3,853,862 0.137123 2,3 1,2,5 2 13.2
R = 42,465,590 0.457232 3,694,291 0.049041 2,3 1,2,5 2 13.6
R = 52,301,889 0.237950 3,458,694 0.210460 1,3 1,2,5 2 13.9
R = 62,552,492 0.268160 3,680,262 0.217558 1,3 1,2,5 2 14.1
R = 72,771,827 0.526987 3,599,343 0.059268 1,2 1,2,5 2 14.4
R = 82,304,636 0.428297 3,711,163 0.042200 1,3 1,2,5 2 14.9
R = 92,714,827 0.512465 3,436,698 0.081685 2,3 1,2,5 2 15.3

R = 10 2,804,337 0.273262 3,376,018 0.206947 1,2 1,2,5 2 15.6

Table 3  SAA-LP results with 
10 repetitions and Q = 50 , 
w
1
= w

2
= 0.5

P. no Objective Lower bound Upper bound Percent gap

Eq(23) Eq(24) Eq(25) Eq(26) Eq(27) % Eq(28)

2 OBJ1 2,500,052 53,747 2,531,851 43,190 31,799 0.068 68,950
OBJ2 3,750,147 84,078 3,709,318 347,022 – 40,828 – 0.040 357,062
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Fig. 5  Comparison of deterministic and stochastic models by objective function
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Singh (2020a, b), we choose a uniform distribution to cre-
ate the data randomly for the case study (Supplementary 
Table 2). To conduct the SAA-LP method, we conduct a test 
with various sample sizes with 10, 30, and 50 scenarios, of 
10 replications each. The reference sample size is taken as 
500 scenarios.

5.1  Computational analysis

To validate the model, 3 tests with various problem sizes 
are used (Table 1). Supplementary Table 2 provides the esti-
mates of the model parameters as found in Supplementary 
Materials part D.

To assess the output quality of the first stage, SAA was 
examined for each of the proposed targets and computed 
using the equations in Sects. 3 and 4. Table 1 shows the 
statistical estimates for the lower and upper bounds. As can 
be seen from Table 2, for only the lower bound, the variance 
decreases with increasing sample size. Also, considering 
the estimated optimality gap, it is important to note that by 
increasing sample size from 10 to 30, the gap was relatively 
stable, but from 30 to 50, the gap narrowed, which has been 
relatively stable with increasing problem size.

Clearly, sample size influences solution quality. There-
fore, repeatedly solving the model provides a robust decision 

for the reference sample, so Q = 50 was selected to test the 
LP problem (Table 2).

We take the optimization of the single objective as 
LP goals based on minimum cost and risk. The results of 
minimizing the weight deviation of the objectives for the 
SAA-LP problem with Q = 50 and 10 repetitions are given 
in Table 2. Table 2 shows the values of the objective func-
tions which are the deviation of the optimal solution of each 
iteration from the decision obtained in the first stage. The 
trade-offs between the weighted cost and the risk deviations 
provide the optimal solution.

From Table 3, the outputs are used to assess the qual-
ity of the goals in the SAA-LP problem. Based on these 
results, and comparing with the single objective optimiza-
tion, the estimated optimality gap is now higher. However, 
this guarantees a reasonable solution. In the best solution, 
the deviations of OBJ1 and OBJ2 are 2.762% and 2.078%, 
respectively.

From Fig. 5, for the deterministic solution case, due to 
the limited capacity in the recycling centers and to handle 
the market demand fluctuations, more centers need to be 
opened, leading to increased cost and risk. Hence, the sto-
chastic model provides a sharper estimate of the cost and 
risk values.

The expected value of modelling uncertainty is a benefit 
indicator arising from using a stochastic model (Yu et al. 

Table 4  Sensitivity analysis of 
SAA-LP results

Weight  w1 Objective 
function

Lower bound Upper bound Gap estimator

Eq (23) Eq (24) Eq (25) Eq (26) Eq (27) % Eq (28)

0 OBJ1 5,550,789 302,268 5,622,190 76,518 71,401 0.119 311,803
OBJ2 1,200,500 8000 1,197,919 106,646 – 2580 – 0.002 106,945

0.1 OBJ1 4,240,283 286,787 4,571,412 68,929 331,129 0.662 294,954
OBJ2 1,870,350 15,559 1,854,108 165,073 – 16,241 – 0.016 165,805

0.2 OBJ1 3,905,630 24,507 3,890,694 66,975 – 14,935 – 0.031 71,318
OBJ2 2,150,369 22,591 2,159,100 201,870 8731 0.008 203,130

0.3 OBJ1 3,453,647 21,880 3,440,107 59,146 – 13,539 – 0.028 63,063
OBJ2 2,764,010 29,067 2,775,328 259,497 11,318 0.011 261,120

0.4 OBJ1 2,850,147 18,667 2,839,586 48,640 – 10,560 – 0.022 52,099
OBJ2 3,300,140 34,837 3,313,239 309,899 13,099 0.013 311,852

0.5 OBJ1 2,500,052 53,747 2,531,851 43,190 31,799 0.068 68,950
OBJ2 3,750,147 84,078 3,709,318 347,022 – 40,828 – 0.040 357,062

0.6 OBJ1 2,200,310 5134 2,199,374 39,676 – 935 – 0.001 40,007
OBJ2 4,104,200 23,465 4,109,472 386,342 5272 0.005 387,053

0.7 OBJ1 1,850,340 4116 1,849,346 33,192 – 993 – 0.002 33,446
OBJ2 4,625,801 24,226 4,628,092 435,496 2291 0.002 436,169

0.8 OBJ1 1,456,966 4034 1,454,439 27,365 – 2526 – 0.005 27,661
OBJ2 5,203,001 42,734 4,620,581 434,789 2287 0.002 435,461

0.9 OBJ1 1,136,200 3882 1,131,154 21,264 – 5045 – 0.011 21,616
OBJ2 5,650,347 60,788 5,679,084 512,693 28,737 0.024 516,284

1 OBJ1 972,123 1940 972,092 18,192 – 30 0 18,295
OBJ2 6,250,147 50,404 6,247,161 564,783 – 2985 – 0.002 567,028
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2020). The EVMU is found using EVMU = Expected cost 
with mean-value model − Expected cost with stochastic 
model. We replace the mean value of the stochastic param-
eters with the EVMU, and re-solve the problem to get the 

first-stage decision. Then, using that solution, we re-solve 
the stochastic problem.

5.2  Sensitivity analysis

We analyze the sensitivity associated with the weight, 
the results of which are given in Table 4. As the weight 
increases from 0 to 1, the deviation of the cost objective 
function increases, but the deviation of the risk objective 
function decreases. When w1 = 0and0.1, the level of risk is 
minimized, but the deviation in the cost objective function 
is high. When w1 = 0.8, 0.9, 1 , the level of cost is close to 
optimality, but there is much risk deviation in the objective 
range. This suggests that the choice of weights affects the 
robustness of the results and the behavior of the system, so 
informed decisions making is critical to the level of profit-
ability for PPH.

With the bi-level model, a first-stage robust decision 
can be found. Table 5 compares the first-stage decisions 
of the deterministic and stochastic models. The network 

Table 5  First-stage decisions 
for deterministic and stochastic 
models

Weight  w1 First-stage decision EVMU %

Deterministic Stochastic

C R D C R D OBJ1 OBJ2

1.0 1,3 1,2,5 2 3 1,2,5 2 0 0
0.9 2,3 1,2,5 2 2,3 1,2,5 2 0 0
0.8 1,3 1,2,5 2 1,3 1,2,5 2 0 0
0.7 1,3 1,2,5 2 1,3 1,2,5 2 8.28 9.15
0.6 1,2 1,2,5 1 2,3 1,2,5 1 7.36 8.29
0.5 1,2 1,2,5 1 2,3 1,2,5 1 9.48 7.14
0.4 1,2 1,2,5 1 1,3 1,2,5 1 10.30 10.75
0.3 2,3 1,2,5 1 1,3 1,2,5 1 9.25  – 1.50
0.2 2,3 1,2,5 1 1,3 1,2,5 1 9.25  – 1.50
0.1 2,3 3,4,5 2 1,2 1,2,5 2 0 0
0.0 2,3 3,4,5 2 1,2 3,4,5 2 0 0
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Fig. 6  Sensitivity analysis of demand on objective functions
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configuration is highly dependent on the system design. 
Also, for some weights ( w1 = 0, 0.1, 0.7, 0.8, 0.9, 1.), the 
deterministic model yields better first-stage decisions. How-
ever, when the equilibrium solution for the deviations of the 
cost and the risk objective functions is obtained, the sto-
chastic model performs better than the deterministic model. 
Third, for a multi-objective optimization problem under 
uncertainty, the performance of the individual goals may 
yield better outcomes, as shown with w1 = 0.2and0.3.

From Fig. 6, clearly, the change in the parameters affects 
the objective functions. With more demand due to more 
recycling and more facilities opened, the health hazard is 
now greater; as the demand grows by 40%, the risk increases 
by 33%, while the cost increases by 7%.

From Fig. 7, if the capacity of the network is increased, 
the costs and risk will follow too. Using a stochastic model 
to increase the capacity of the recycling center by 7.04%, 
the performance of the disposable products recycling sys-
tem will net a 12.07% decrease in total cost and a 7.17% 
decrease in total risk, respectively. Moreover, network 
capacity can be flexed to handle the demand fluctuations, 
at the expense of cost and risk. This can be achieved 
through outsourcing or reducing the service level. Build-
ing an SRRLN under uncertainty therefore supports better 
recycling rates, albeit generating higher costs.

5.3  Statistical comparison

Next, we compare the proposed hybrid method with the tra-
ditional LP-metric method as shown in Figs. 8 and 9. We 
compare the performance of two solution methods on the 
solution time and complexity of a multi-objective optimi-
zation problem. Due to the nature of the test problem, the 
goals set by both methods is similar. However, the tradi-
tional LP-metric method can only find optimal solutions near 
an ideal solution, while the SAA-LP method can produce 
optimal solutions by random distributions and the proxim-
ity of a solution to a better ideal solution. In addition, from 
Fig. 10 the SAA-LP method can effectively eliminate the 
dominant solutions, but the traditional LP-metric method 
cannot. Therefore, the SAA-LP method performs better. 
Also, the SAA-LP method performs better on computational 
efficiency, as the computational time required is less in most 
cases. However, as the interaction of the decision variables 
and constraints can cause conflicts in the scenarios, caution 
should be exercised when solving the model.

5.4  Managerial implications

The results of this study offer several implications. First, 
while economic costs have decreased by 31.03%, managing 

Fig. 9  Gap % against value of 
weight

Fig. 10  Standard deviation for 
different sample sizes
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product recovery with specific technologies for social 
responsibility for developing economies like Iran is often 
overlooked. Thus, using this stochastic model affords a new 
option for industry particularly on the social obligations. 
The model informs that most values of the decision vari-
ables have improved by 18%. Next, on the aspect of big data, 
managers can achieve operational efficiency by leveraging 
on the positive correlation between big data analytics capa-
bility and the repurposing of used products. Developing the 
ability to manage big data in an SRRLN can help firms to 
develop the desired reverse logistics outcomes. Third, the 
proposed stochastic model can be used to predict the need 
for an upsurge in their recycling center capacity at least cost 
to the environment.

6  Conclusion

The use of disposable products is increasing globally. 
Therefore, designing a reverse logistics network is essen-
tial for reducing waste and protecting the environment. It 
is a complicated decision-making problem that requires 
an exchange between the total cost of the system and 
health hazards. In this study, a scenario-based approach 
has been used to deal with the uncertainty of some param-
eters. The SAA-LP method is used as a solution approach. 
For instance, the economic cost to PPH is 3,800,000 
Tomans; our model reports 2,900,000 Tomans, which is 
an improvement. Furthermore, our stochastic model has 
measured the risk dimension. Unlike the models that focus 
mainly on simultaneous strategic decision-making (loca-
tion) and tactical and operational decisions (allocation, 
routing, and inventory), our model has applied a robust 
and flexible decision-making approach to manage dispos-
able product recycling. The first-stage decision under an 
uncertain environment was on strategic location decisions, 
which highlighted the optimal network configuration as a 
more realistic function of cost and risk. The results also 
suggest providing a flexible network configuration for 
profitable recycling.

Future research opportunities include the use of a combi-
nation of established methods such genetic algorithm with 
Bender’s decomposition, as well as the use of pattern-based 
formulations. Similarly, the lexicographic weighted Cheby-
chev method could be used as a weighting method in com-
bination with SAA.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12652- 022- 04357-z.
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