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Abstract.  Construction code compliance checking requires applying specific computer-

interpretable rules on datasets. A proposed solution is to represent IFC data as an RDF graph and 

perform rule-checking using a rule engine. However, the generated graph has a complicated 

structure since it follows the IFC data model. Consequently, the definition of compliance rules can 

be challenging, and rules are sensitive to variations of input graphs structure. A methodology is 

proposed to optimize graphs by giving them a predefined or "standardized" structure. A case study 

shows that optimization allows the formulation of more straightforward and easier-to-write 

compliance rules, applicable to all standardized graphs regardless of the initially used BIM authoring 

tool. In addition, graph size is significantly reduced. 

1. Introduction

Automated rule checking is the process by which software evaluates objects and properties of 

a digital model against predefined rules (Eastman et al., 2009). In the context of automated code 

compliance checking, formal computer-interpretable rules are used to validate that the design 

meets the requirements of a construction standard (e.g., verify if a curved road segment has a 

sufficient radius considering vehicle speed).  

Such a process replaces the long and error-prone manual plan review (Eastman et al., 2009) and 

optimizes projects in terms of construction time, quality and cost. The task can be handled by 

a BIM authoring tool or dedicated software (Eastman et al., 2009). 

Existing rule-based programs, such as Solibri Model Checker (Solibri, 2021), allow validating 

models from various sources when data is communicated via an interoperable format. In the 

AEC domain, the neutral model representation is conveyed by the Industry Foundation Classes 

(IFC) (buildingSMART, 2021).  

The downside of most commercial tools is that they hide checking routines from the user 

(Burggräf et al., 2021). In addition, the development of custom rules may be limited (Beach et 

al., 2015; Preidel and Borrmann, 2015). Since code compliance checking requires the system 

to support multiple different and highly specific rulesets, more flexible solutions are needed. 

A promising approach (Pauwels et al., 2011) is based on semantic web technologies. First, IFC 

data is transformed into a knowledge graph. Second, rulesets are applied to it. In such a data 

model, also called "RDF graph" (Resource Description Framework) (W3C, 2014), IFC entities, 

as well as their properties and relationships (i.e., the business data) are expressed as statements 

called "triples".   

IFC-to-RDF (Pauwels, 2017) generates an RDF graph from an IFC-STEP Physical File (SPF). 

As the service maps every entity to an IfcOWL class and every attribute to an IfcOWL property 

(Pauwels and Van Deursen, 2012), the RDF graph follows the main structure of IFC (Pauwels 

and Roxin, 2016).  

However, IFC exports are heterogeneous, depending on the software used (Belsky et al., 2016). 

As a consequence, no unique graph structure for a given model exists. This requires providing 

software-specific compliance rulesets. 
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In addition, output graphs carry information that is not needed for code compliance checking. 

This applies particularly to some IfcResource elements and instances of IfcPropertyDefinition 

and IfcRelationship that do not provide any semantic richness and even complicate access to 

other relevant data (e.g., a single typed value). Inversely, the limitations of IFC exporters may 

cause a loss of information required for checking, since they do not integrate program-specific 

object properties.  

Graph optimization, i.e., cleaning (removing unnecessary data) and simplifying its structure to 

transfer it into a targeted shape (standardized graph), will lead to an easier compliance rule 

formulation, a better handling of differences in IFC exports, and finally, a maintainable code 

checking system.  

Solutions for graph simplification, such as selective information removal (Fahad et al., 2018; 

Pauwels and Roxin, 2016) and the addition of straightforward constructs between data (Beach 

et al., 2015; Bouzidi et al., 2012; de Farias et al., 2015; Pauwels et al., 2017, 2011; Zhang et al., 

2018) have been proposed. 

This paper aims to develop and complete these principles and integrate them into a coherent 

workflow, in the context of code compliance checking of IFC models based on a graph 

representation of data.  

2. Methodology 

The methodology (Figure 1) has been developed in the context of code compliance checking 

applied to road infrastructure projects. It combines a set of linked processes, identified by a 

color code: 

• ---- : construction code analysis, leading to a structured representation of construction 

and regulation vocabularies (ontology). 

• ---- : data graph analysis, where information to be added or removed is identified. 

• ---- : definition of rulesets to optimize/standardize the data graph. 

• ---- : definition of rulesets to check data compliance with construction codes. 

 

Applying the methodology involves four distinct competencies, represented in Figure 1: 

1. BIM modeling and data flow management: create the model, configure the IFC export 

to correspond to information requirements, initiate the IFC-STEP file conversion to 

RDF graph, run the graph optimization process (based on optimization rules) and launch 

the rule-checking process (based on compliance rules). 

2. Domain knowledge: expertise in construction codes, design and execution of 

construction. Ability to build a structured representation of domain-specific concepts 

and formulate compliance rules in natural language.   

3. Data science: proficiency in knowledge graph processing using semantic web 

technologies and automated reasoning systems.  

4. IFC: strong knowledge of the IFC schema (including the latest IFC 4.3 version) and 

related MVDs.  
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Figure 1: Methodology for optimizing IFC-RDF graphs.  

Combining the above-mentioned competencies allows to optimize the graph generated from the 

initial BIM model. This results in a standardized graph specifically designed for compliance 

rule checking (represented in pink in Figure 1).  

2.1 Blue - Ontology definition 

An ontology is a representation of concepts from a given domain, linked by relationships 

(Martin et al., 2021). Construction code analysis aims to define a single ontology combining 

domain and regulation concepts. An excerpt of such an ontology for road infrastructure projects 

is shown in Figure 2. 

Classes correspond to physical and virtual components of the building or infrastructure to be 

modeled (e.g., road, road segment, carriageway, island, etc.). Data literals correspond to single 

typed values (e.g., a string, an integer, a boolean, etc.). Object properties relate to object-to-

object relationships, while datatype properties assign data values to objects (W3C, 2012). 

In this context, datatype properties relate to parameters with values constrained by construction 

codes.   
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For example, in the sentence "If the road is of type "A", then the design speed is 100 km/h.", 

road type and design speed are implicit parameters related to a road concept. 

All parameters concerned by code compliance checking are added to the ontology as datatype 

properties, and the associated concepts are integrated as classes (Figure 2). 

Classes and properties are labeled with an IRI (Internationalized Resource Identifier), which is 

a unique sequence of characters. An IRI comprises a namespace prefix (e.g., "ont") and the 

resource name, separated by a colon.  

It is assumed that: 

• A class IRI has the form ont:ClassName.  

• An object property IRI has the form ont:objectPropertyName.  

• A datatype property IRI has the form ont:datatypePropertyName. 

As the ontology describes the desired structure of data after the optimization process, it is 

strongly recommended to ensure that information present in IFC data can be mapped to defined 

domain classes and properties. Ideally, defining the ontology is a joint effort of domain and IFC 

experts (Figure 1). 

 

 

Figure 2: Excerpt of an ontology for road design. 
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2.2 Orange - Graph analysis, identification of relevant and missing data 

The RDF graph is generated from the IFC-SPF file (using IFC-to-RDF). Then, its structure and 

content are analyzed.  

The analysis aims to answer the following questions: 

• Which instances (nodes) and relationships (edges), often leading to cumbersome 

constructs, should be removed from the graph to keep only what is needed for code 

compliance checking? In other words, what information is outside the scope of the 

ontology? 

• Conversely, which required information is missing and should be provided by other 

means (e.g., deduced from data)?  

• Which constructs should be added so that the graph has the desired structure? 

• Finally, which approach to be employed?  

Pauwels and Zhang (Pauwels and Zhang, 2015) presented SPARQL query engines and rule 

engines with dedicated rule languages as solutions for code compliance checking. These 

technologies are also suitable for graph optimization. 

SPARQL (W3C, 2013) is a protocol and a language to query RDF data. SPARQL queries can 

have different purposes: retrieving information, adding/removing statements, or constructing a 

new graph. It supports conjunction, disjunction, negation, and aggregation through dedicated 

functions. 

A rule engine (or inference engine) is a tool that produces new information from facts (in this 

case, all triple statements) and rules (conditional instructions). There are many different rule 

engines and rule languages (Rattanasawad et al., 2013), which can be selected according to: 

• The inference method of the rule engine (iterative, forward chaining, backward 

chaining, hybrid, etc.). 

• The expressiveness, extensibility, and functionality of the rule language. 

• The flexibility and openness of the related framework/environment.  

2.3 Red - Optimization ruleset definition 

Standardizing graph data implies six steps, each one applying different rules: 

1. Map IFC instances to ontology classes (Figure 3, a). 

2. Create direct constructs (links, object properties from the ontology) between instances 

(Figure 3, b). 

3. Create direct constructs (datatype properties from the ontology) between instances and 

data typed literals (Figure 3, c). 

4. Compute missing parameter values (e.g., the total length of the road) and integrate them 

(as literals) into the graph with dedicated constructs (Figure 3, d) (optional). 

5. Infer missing instances with their corresponding constructs (Figure 3, e) (optional). 

6. Delete all undesired information (Figure 3, f) (optional). 
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Figure 3: Operations to optimize and standardize IFC-RDF graphs. 

Identification of correspondence between graph instances and ontology classes (Figure 3, a) is 

based on: 

• The IFC class of the instance: if O is an instance of Ifc(...), then O is an instance of C, 

where C is a class from the ontology (e.g., IfcRoad → ch:Road). 

• The type, property set, or classification associated with the instance (e.g., IfcRoadPart 

instance has type "Road section" → ch:RoadSection). 

Note that computing parameter values (Figure 3, d) may require specific functions that are not 

supported by all rule languages. The solution for data processing must therefore be carefully 

chosen. 

3. Case study 

The procedure presented in Figure 1 is applied to check the compliance of a road infrastructure 

model with the construction code extract given in Figure 4. The data graph will be standardized 

beforehand, following the methodology described in Section 2. Figure 2 shows the desired data 

structure.  
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Figure 4: Excerpt of a road design standard. 

Concepts related to the excerpt above are "road", "straight section", and "curved section". 

"Road" corresponds to ont:Road class (Figure 2). "Straight section" and "curved section" each 

describe a geometrical component of the road's horizontal alignment and will be mapped to 

ont:Line and ont:Curve classes, respectively. Required properties for the checking are "road 

type" (ont:roadType), "straight section length" (ont:length), and "radius" (ont:radius) (Figure 

2). 

A road section, composed of straight segments and curves, is modeled in Autodesk Civil 3D. 

The IFC model provides required geometric information such as segments length and radius. 

Road type values are defined in custom property sets.  

The model is exported in IFC 4.1 (since Civil 3D does not yet support release 4.3) and converted 

with IFC-to-RDF. At this stage, the graph has about 690,000 triples (file size: 50.3 MB, Turtle 

syntax).  

Apache Jena is used to perform both tasks: optimization and compliance checking. Jena is an 

"all-in-one" framework for processing RDF graphs, including a SPARQL query engine (Jena 

ARQ) and a general-purpose rule engine with a dedicated rule language (The Apache Software 

Foundation, 2021). Additional functions are implemented in the Jena rule language to enhance 

its expressivity and make it more functional.  

Graph analysis leads to the following conclusions:  

• Only instances of the IfcAlignment class, combined with their associated property sets 

and geometric information, contain data indicated as relevant by the ontology and have 

to be preserved.  

• Objectified relationships and other undesired information such as IfcPropertyDefinition 

concepts, instances without semantics (IfcBuildingElementProxy), and unnecessary 

resources can be removed from the graph. This is not mandatory but recommended 

when the graph is used exclusively for code compliance checking to improve its 

readability and reduce data quantity. 

• Direct constructs must be created, according to the ontology. 

• Properties such as "flatness", which may be required for another checking, are missing 

and should be computed from existing data. 

 

Then, optimization rules (Jena rules and SPARQL CONSTRUCT queries) are formulated: 

# Step 1: Class mapping (Jena rules) 

[optimization_01: (?i rdf:type ifc:IfcAlignment2DHorizontal) -> (?i rdf:type 
ont:HorizontalAlignment) ]  

...  
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# Step 6: Undesired information removal (SPARQL CONSTRUCT query) 

CONSTRUCT {?i ?j ?k} WHERE  

{ 

 SELECT ?i ?j ?k WHERE { 

  ?i rdf:type ?type  

  FILTER (  

   ?type = ont:Road || 

   ?type = ont:HorizontalAlignment || 

   ... 

          ) 

  ?i ?j ?k 

 } 

 GROUP BY ?i ?j ?k 

} 

Once the rules were applied, the graph size dropped to about 4000 triples (file size: 0.3 MB). 

Data representation has been modified to comply with the ontology. Compliance rules are 

shorter and more intelligible since they are only composed of meaningful and straightforward 

triple statements based on ontology's vocabulary: 

# Checking compliance with Figure 4 (Jena rule) 

[compliance_with_Figure_4: (?line rdf:type ont:Line), (?curve rdf:typeont:Curve), ( 
?alg rdf:type ont:HorizontalAlignment), (?road rdf:type ont:Road),(?line ont:partOf 
?alg), (?line ont:next ?curve), (?road ont:horizontalAlignment ?alg), (?line ont:le 
ngth ?length), (?curve ont:radius ?radius),(?road ont:roadType ?type), filter(?type 
= RGD|RP), check((?length<=100&radius>100)|?length=]100;500]&radius>200)|?length>50 
0&radius>300), ?result) -> print(?result) ] 

--> PASS 

Without optimization, the same rule (compliance_with_Figure_4) would have had a far more 

complex and lengthy content and could not have been applied without a prior inference rule: 

[prior_inference: (?algh ifc:segments_IfcAlignment2DHorizontal ?list1), (?list1 lis 
t:hasNext ?list2) -> (?algh ifc:segments_IfcAlignment2DHorizontal ?list2) ] 

# Checking compliance with Figure 4 (Jena rule) 

[compliance_with_Figure_4: (?line rdf:type ifc:IfcLineSegment2D), (?hseg1 ifc:curve 
Geometry_IfcAlignment2DHorizontalSegment ?line), (?list1 list:hasContents ?hseg1), 
(?list1 list:hasNext ?list2), (?list2 list:hasContents ?hs2), (?hseg2 ifc:curveGeom 
etry_IfcAlignment2DHorizontalSegment ?curve), (?curve rdf:type ifc:IfcCircularArcSe 
gment2D), (?algh ifc:segments_IfcAlignment2DHorizontal ?list1), (?algh ifc:segments 
_IfcAlignment2DHorizontal ?list2), (?algc ifc:horizontal_IfcAlignmentCurve ?algh), 
(?alg ifc:axis_IfcLinearPositioningElement ?algc), (?alg rdf:type ifc:IfcAlignment) 
, (?rdbp ifc:relatedObjects_IfcRelDefinesByProperties ?alg), (?rdbp ifc:relatingPro 
pertyDefinition_IfcRelDefinesByProperties ?pset), (?pset ifc:name_IfcRoot ?label1), 
(?label1 express:hasString ?psetname), filter(psetname="Pset_Road"), (?pset ifc:has 
Properties_IfcPropertySet ?prop), (?prop ifc:name_IfcProperty ?label2), (?label2 ex 
press:hasString ?propname), filter(propname="roadType"), (?prop ifc:nominalValue_If 
cPropertySingleValue ?label3), (?label3 express:hasString ?roadType), filter(roadTy 
pe=RGD||RP), (?line ifc:segmentLength_IfcCurveSegment2D ?pos1), (?pos1 express:hasD 
ouble ?length), (?curve ifc:radius_IfcCircularArcSegment2D ?pos2), (?pos2 express:h 
asDouble ?radius), check((?length<=100&radius>100)|?length=]100;500]&radius>200)|?l 
ength>500&radius>300), ?result) -> print(?result) ] 

--> PASS 
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4. Conclusion and future work 

Code compliance checking based on graphs is a promising approach since graph data structures 

can easily be transformed to represent information in the desired way. It is proposed to optimize 

(standardize) IFC-RDF graphs before using them in a checking system. Standardization leads 

to a manageable formulation of rules.  

Results of a case study showed that the graph size is considerably reduced in addition to 

simplifying and clarifying the content of formal compliance rules. In case the resulting 

standardized graph has to be stored (for example, in a triplestore) for further compliance 

checking, this allows significant storage space savings.  

Moreover, the advantage of giving the data graph a predefined structure is that compliance rules 

become independent of the initially employed software and can be reused for all previously 

standardized graphs. Consequently, maintenance efforts are equally distributed among domain 

and software experts. 

Without standardization, compliance rules must be modified when building codes or input data 

structure change. With standardization, compliance rules are adjusted only when regulations 

change. As indicated, formulating optimization rules requires multiple competencies, implicitly 

a collaboration between several experts. 

The next stage is to enhance and further automate the process of graph simplification and 

standardization by using graph theory and advanced techniques such as machine learning. In 

the same way, generating compliance rules directly from paper documents, using methods such 

as NLP (Natural Language Processing), is a subject of interest. 
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