
Genetics and population analysis

XSI—a genotype compression tool for compressive

genomics in large biobanks

Rick Wertenbroek 1,2,*, Simone Rubinacci2, Ioannis Xenarios2, Yann Thoma1,† and

Olivier Delaneau2,*,†

1School of Management and Engineering Vaud (HEIG-VD), HES-SO University of Applied Sciences and Arts Western Switzerland,

Yverdon-les-Bains 1401, Switzerland and 2Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland

*To whom correspondence should be addressed.
†Co-supervised this work.

Associate Editor: Russell Schwartz

Received on April 19, 2022; revised on June 13, 2022; editorial decision on June 13, 2022; accepted on June 22, 2022

Abstract

Motivation: Generation of genotype data has been growing exponentially over the last decade. With the large size
of recent datasets comes a storage and computational burden with ever increasing costs. To reduce this burden, we
propose XSI, a file format with reduced storage footprint that also allows computation on the compressed data and
we show how this can improve future analyses.

Results: We show that xSqueezeIt (XSI) allows for a file size reduction of 4� 20� compared with compressed BCF
and demonstrate its potential for ‘compressive genomics’ on the UK Biobank whole-genome sequencing genotypes
with 8� faster loading times, 5� faster run of homozygozity computation, 30� faster dot products computation and
280� faster allele counts.

Availability and implementation: The XSI file format specifications, API and command line tool are released under
open-source (MIT) license and are available at https://github.com/rwk-unil/xSqueezeIt

Contact: rick.wertenbroek@unil.ch or olivier.delaneau@unil.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Generation of genotype data has been exponentially growing over the
last decade. Projects including hundreds of thousands of participants
with genotype data coming from SNP arrays, whole-genome or exome
sequencing (WGS/WES) at hundreds of millions of genome loci are
becoming more common. The use of data from large cohorts has be-
come instrumental for disease research (Gudmundsson et al., 2021;
Morris and Cardon, 2019; Sudlow et al., 2015; Visscher et al., 2017)
and population genetics (Nait Saada et al., 2020). Large sample sizes
combined with WGS/WES technology allow the analysis of rare var-
iants to detect small effects with higher statistical power, leading to
novel discoveries. Large datasets also allow for better haplotype phas-
ing and genotype imputation of new samples, boosting accuracy of
downstream analysis methods (Marchini, 2019).

The growth of genotyped cohorts comes with a larger storage
footprint as well as increasing loading times. As an example of
state-of-the-art WGS datasets, data from the UK Biobank project
providing genotypes from WGS contain �150 000 samples typed
on �600 000 000 variants (Halldorsson et al., 2021), the TOPMed
project contains �50 000 samples with �400 000 000 variants
(Taliun et al., 2021) and GnomAD contains �76 000 samples with
�700 000 000 variants (Karczewski et al., 2020). The resulting

footprints of these datasets are substantial, �700 TB of storage for
the UK Biobank WGS GATK genotype calls (Halldorsson et al.,
2021). The data generated from such projects are becoming exces-
sively large and hard to handle.

The standardly adopted formats for genotype data are the
text-based Variant Call Format (VCF), its binary equivalent BCF
(Danecek et al., 2011) and PLINK (Chang et al., 2015). Formats
that can all be further compressed with standard compression
methods such as gzip. However, these formats are not optimal for
population scale WGS genotype data. Several formats have been
introduced in recent years to reduce the data size (Danek and
Deorowicz, 2018; Deorowicz and Danek, 2019; Deorowicz et al.,
2013; Durbin, 2014; Layer et al., 2016; LeFaive et al., 2021; Li,
2016; Tatwawadi et al., 2016). Exploitation of sparse representa-
tions, reordering of the data and re-encoding allowed file sizes to
be reduced by an order of magnitude compared with standard
VCFþgzip. However, one of the major issues of novel formats is
that they lack application support, as they only come with a com-
pression and decompression tool that allows conversion from and
to a common format (e.g. VCF). This saves space for long-term
storage but only adds overhead to analyses.

To tackle this issue, in this article, we present xSqueezeIt
(XSI), a file format made to store genotype data in a compact

VC The Author(s) 2022. Published by Oxford University Press. 3778

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 38(15), 2022, 3778–3784

https://doi.org/10.1093/bioinformatics/btac413

Advance Access Publication Date: 24 June 2022

Original Paper

https://orcid.org/0000-0003-4114-6615
https://github.com/rwk-unil/xSqueezeIt
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac413#supplementary-data
https://academic.oup.com/


representation that allows for fast computation and analysis.
Using data from the one thousand genome project (The 1000
Genomes Project Consortium, 2015), the Haplotype Reference
Consortium (McCarthy et al., 2016), the UK Biobank (SNP array
and WGS) (Bycroft et al., 2018; Halldorsson et al., 2021) and
simulated data, we demonstrate the compression performance of
XSI, in both file size and access time compared with existing
methods. To show how to integrate XSI in an application, file for-
mat support was added to SHAPEIT4 (Delaneau et al., 2019).
Finally, benchmarks of computation performed directly on the
encoded data structures are given to show the benefits of the for-
mat in terms of performance for future analyses.

2 Materials and methods

XSI relies on a hierarchical block-based compression strategy. The
compression hierarchy has two levels. First a (genetic) data specific
algorithm is used and second the resulting data are handled as a gen-
eral purpose file compression problem. In order to achieve fast ran-
dom access to any variant loci, a block-based approach combined
with indexing is used.

Figure 1 shows an overview of a VCF/BCF file and its equiva-
lent XSI representation with internal structure. Variant informa-
tion is kept in BCF format and holds a reference to the associated
XSI file instead of the original genotype (and other) data. This ref-
erence is used to query the XSI file and extract the data. The XSI
file itself is a collection of binary blocks, which contain a given
number (8192 by default) of BCF lines (variant loci) encoded in a
way specific to the data type. Blocks hold a dictionary that referen-
ces its contents and are compressed with Zstandard (zstd) (Collet
and Kucherawy, 2018). The file format specifications, internal bin-
ary structures and algorithms are available at https://github.com/
rwk-unil/xSqueezeIt.

2.1 Compression of genotype data
We use two different strategies to compress genotype data, depend-
ing on allele frequency. First, for common variants [minor allele fre-
quency (MAF) > 0:1%, by default], we exploit linkage
disequilibrium (LD) in the population to reorder the data and allow
for better compression. This is done by leveraging the positional
Burrows–Wheeler transform (PBWT) to reorder the data before re-
encoding. This approach has been shown to be effective (Durbin,
2014) and is the main component of many genotype compression
algorithms (Deorowicz and Danek, 2019; LeFaive et al., 2021; Li,
2016). After transforming the data through the PBWT, genotype
data are encoded using a word-aligned hybrid (WAH) approach
(Wu et al., 2001). This is a variation of run length encoding (RLE)
that is more robust to patterns of alternating symbols. WAH also
allows efficient operations on the encoded data (Wu, 2001). Second,
for the rare variants (MAF � 0:1%), we employ a sparse representa-
tion, directly exploiting the fact that the number of samples carrying

the variant is small. These two methods are the main contributors to
the file size reduction. Figure 2 illustrates the procedure on a few
samples from the one thousand genome project (The 1000 Genomes

Project Consortium, 2015).
The PBWT is applied on the common variants where it improves

compression the most, as applying the transformation to all variant
loci would be expensive, especially with large numbers of samples

because each locus would require rearrangement of all samples. In
order to improve per variant random access performance, the PBWT
is recomputed from the initial sample ordering for each block, mak-

ing each block independent. Therefore, access to data in a block
does not require decoding any other block. This improves random

access performance at the cost of a slightly bigger file.
The chosen algorithms and encoded representations required to

be computationally inexpensive in order to scale with large datasets.
Ideally, the compression, access and decompression algorithms
should not exhibit worse than linear complexity with relation to the

number of genotypes. The sparse representation of XSI allows for
computations through numerous existing libraries (e.g. BLAS and
libboost) and the PBWT WAH-encoded representation also allows

for interesting direct computations, for example, haplotype search
and matching (Durbin, 2014; Wu, 2001).

2.2 Storage and compression of other fields
The hierarchical format shown in Figure 1 allows the addition of

other sub-blocks for storage of other data found in VCF files, such
as genotype likelihoods, read count and imputed dosages. Each sub-

block can be specifically encoded and can employ different compres-
sion strategies. This also makes the format extensible without break-
ing compatibility. Older versions of the software simply ignore

unknown sub-blocks. This also allows for development of sub-block
formats by other developers. Sub-blocks are identified by their dic-

tionary ID and developers can ask for a unique non-overlapping ID
range through a github issue. This would guarantee that different
implementations do not overlap even if their specifications are kept

as closed source. This also makes it possible to add encrypted sub-
blocks, providing privacy where needed without necessarily encrypt-

ing all the data. Finally, this also allows for alternative compression
methods on already supported data types.

2.3 Compression of encoded blocks
Once the sub-blocks have been re-encoded with their specific com-

pression scheme, further reduction can still be achieved. At this
stage, a general purpose compression algorithm is applied to each
block. Where VCF/BCF employs bgzip, we apply zstd (Collet and

Kucherawy, 2018), a state-of-the-art LZ (Ziv and Lempel, 1977)
compressor, because of its compression and decompression speed
(lzbench an in-memory benchmark of open-source LZ77/LZSS/

LZMA compressors. https://github.com/inikep/lzbench).

Header

Binary Data 
Blocks

Sample IDs

Block Index

Dictionary

Genotype Data 
Sub-Block

Other Data 
Sub-Block

ZSTD Compressed 
Block

Common Variants 
(PBWT+WAH)

Dictionary

Rare Variants 
(Sparse)

Meta (missing,
phasing, etc.)

Binary Block Genotype Data

XSI File

Header

Variants lines 
with XSI index

Variant BCF File

Header

VCF/BCF 
lines 

Variant info + 
Per sample info

Original VCF/BCF File

Fig. 1. The original VCF/BCF file is split in two files: a BCF file with variant information and a XSI file with per sample information (e.g. genotype data). The BCF can be

queried to retrieve the per-sample information with an index referencing the XSI file. The XSI file itself is composed of binary data blocks which hold the sample data for a

number of BCF lines, each block being compressed by zstd. The blocks themselves hold a small dictionary referencing their content, for example genotype data. The sub-blocks

are independent and compressed with a method specific to the data type. Dashed arrows represent references

XSI—a genotype compression tool 3779

https://github.com/inikep/lzbench


3 Results

We compared XSI with BCF (Danecek et al., 2011), BGT (Li,
2016), GTC (Danek and Deorowicz, 2018), GTShark (Deorowicz
and Danek, 2019), PBWT (Durbin, 2014), SAVVY (LeFaive
et al., 2021) and PLINK2 (Chang et al., 2015) in terms of fea-
tures, file size and conversion times across four gold standard
datasets and a simulated region: The 1000 genome project phase
3 (The 1000 Genomes Project Consortium, 2015), the Haplotype
Reference Consortium (McCarthy et al., 2016), SNP array geno-
types from the UK biobank (Bycroft et al., 2018), WGS genotypes
from the UK biobank (Halldorsson et al., 2021) and a 10-Mb re-
gion with 1 million samples and over 2 million variants simulated
with msprime (Kelleher and Lohse, 2020) (extended information
in Supplementary Section S1).

The benchmarks for UK Biobank WGS data have been run on
the DNANexus research access platform on Xeon Platinum 8000
series with 64 GB of RAM. All other benchmarks have been run on
an Intel Xeon E5-2680v3 CPU with 64 GB of RAM.

3.1 Feature support
Alternative file formats usually only implement a subset of all VCF/
BCF features. Table 1 summarizes features of XSI in comparison to
existing formats.

Several file formats discard variant information, such as allele
count (AC), allele frequency, filters, etc. (see Supplementary Section
S4) and may therefore be unsuitable for certain tasks. Of the existing
file formats, SAVVY, PLINK2 and XSI offer features closest to BCF.
Because XSI keeps the variants in BCF format, it is compatible with
BCFTools at the variant level. It can also be queried synchronously
with VCF/BCF files through the HTSLIB. For example, to query
common variant loci between a VCF sample and a XSI reference
panel.

3.2 Compression
The different file formats have been evaluated for file size and con-
version times from and to BCF on all datasets (dataset details in
Supplementary Section S1 and commands in Supplementary Section
S2). Figure 3 summarizes the results. The methods can be split into
three classes: BCF relies on a binary representation of the data fol-
lowed by standard compression, PLINK2 employs a binary and
sparse representation and finally all remaining methods employ data

rearrangement (PBWT, sorting) before re-encoding and compress-
ing. Rearrangement-based methods achieve the smallest footprint at
the cost of conversion or access time. Overall, XSI achieves between
4� and 20� file size reduction.

The reported decompression times reflect the conversion of a
given format to uncompressed BCF (bypassing the gzip compres-
sion) in order to demonstrate the format decompression speed and
because this is what would be used to pipe into other tools. Piping
compressed BCF is an issue because the first tool has to reconvert to
BCF and compress it (gzip) and then the second tool will have to de-
compress the data right after to use it. This chained compression–de-
compression is an unnecessary and computationally expensive step
in an analysis pipeline. SAVVY did not provide the option to output
uncompressed BCF and therefore exhibited longer decompression
time because it output compressed BCF.

GTC failed to compress the larger datasets with the allocated
resources (24 h, 64 GB of memory), BGT would crash when com-
pressing the UKB WGS data. The resulting output files of GTShark
for UKB WGS and SIM datasets were corrupted (this issue has been
mentioned to the authors). PBWT can achieve small file sizes but
does not provide efficient random access on the data and the per
variant locus dependency makes it costly to access. PLINK2 uses
custom code to encode and decode BCF and is faster compared with
other methods that rely on the HTSLIB but exhibits larger file sizes.
XSI manages to compress and decompress all datasets, with a com-
petitive file size and access time. Allele frequency bin counts are
given for the real datasets in Figure 3B to show the sparsity of the
data, low MAF values mean sparse data.

3.3 Data access
In order to assess the impact of using XSI compressed data inside a
software tool, we looked at the time needed to load data in memory
from a compressed XSI file against BCF (Fig. 4) and found that the
performance depends on the balance between rare and common var-
iants; from 2� slower on UKB SNP array data to 8� faster on UKB
WGS and simulated data (Fig. 4). The MAF threshold of XSI can be
adapted to improve loading times at the cost of file size (see
Supplementary Section S3 and Supplementary Fig. S1). We used the
XSI C API we provide to modify SHAPEIT4 (Delaneau et al., 2019)
so that genotype data can be directly loaded from XSI files. This sig-
nificantly speeds-up loading times for WGS data such as the UKB
and simulated datasets with minimal coding efforts (changes of less

Fig. 2. Sketch of data reordering and re-encoding scheme. Input genotype data shown on the left: each column is a sample, each line a variant loci, an empty square is the refer-

ence allele, a colored square the alternate allele. The data are split into rare and common variants based on a MAF threshold. Rare variants are encoded as sparse lines. For

common variants, each line is reordered given the previous lines, thanks to the PBWT. Reordered lines are WAH encoded

3780 R.Wertenbroek et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac413#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac413#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac413#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac413#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac413#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac413#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac413#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac413#supplementary-data


Table 1. Features per file format (details in Supplementary Section S4)

xsi bgt gtc gtshark pbwt savvy plink2 bcf

Keeps variant info � � � � � � � �

Mixed ploidy support 1–2 � � � � � � �

Keeps phase information � � � � � � � �

Multi-allelic site support � Split Split Split Split � Split �

Sample extraction � � � 1 � � � �

Region extraction � � � � � � � �

Simultaneous access with VCF files through HTSLIB

(sync_reader)

� � � � � � � �

Fig. 3. (A) File sizes with conversion time to and from BCF on data from the 1000 Genome Project Phase 3, the Haplotype Reference Consortium, the UK Biobank SNP Array

genotypes, the UK Biobank WGS genotypes and a 10-Mb simulated region with 1 million samples. (B) MAF distribution for the real (non-simulated) datasets

XSI—a genotype compression tool 3781

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac413#supplementary-data


than 10 C/Cþþ lines of code). For the UK Biobank SNP array, data
loading time is slower because it is mostly common variants (see
Fig. 3B) and has to perform many costly PBWT rearrangements dur-
ing access.

It is also possible to directly pipe the output of the XSI decom-
pressor into a pipeline that expects BCF. An example is given with a
BCFTools run of homozygosity (ROH) pipeline (Narasimhan et al.,
2016), once by reading directly from a BCF file and once by redirect-
ing the output of XSI into BCFTools. The analysis was performed
on a single chromosome with sample subsets of 1, 10, and 100 sam-
ples to assess sample extraction performance as well. Outputs for
both methods are identical. The commands for both pipelines are
given in Supplementary Section S5. Results are shown in Figure 5
and exhibit similar results to the loading time benchmark except a
slightly worse performance for the 1KGP3 and HRC datasets, be-
cause the decompressor not only decompresses the data but also
converts it back to BCF before writing it into the pipeline. The UKB
SNP array dataset suffers from the PBWT rearrangements needed
when extracting samples. However, running with the UKB WGS
and simulated data, the results are sped-up by a factor of over 5�
compared with BCF.

3.4 Computation on encoded data
The idea of computing directly on encoded data instead of decoding
the data for analysis has been proposed in Loh et al. (2012) under
the term ‘compressive genomics’ and introduces the concept of
‘algorithms that compute directly on compressed genomic data to
allow analyses to keep pace with data generation’. This concept was
developed and applied to further bioinformatics fields as ‘compres-
sive acceleration’ (Berger et al., 2016). In order to allow for ‘com-
pressive acceleration’, XSI provides access to the internal data
structures. This makes it possible to apply algorithms on encoded
data and do computations without full decompression. In order to
demonstrate the advantages of ‘compressive’ methods, two example

applications are provided. First, computation of ACs for every vari-

ant. Second, dot products between encoded genotype data and
phenotype data.

3.4.1 Computation of AC (allele frequency)

The computation of AC is done for example each time a BCF is sub-
setted. We compared updating the fields ‘AC’ (alternative AC) and

‘AN’ (total allele number) with BCFTools (fill-tags plugin) and using
the XSI internal representation. Because these statistics do not rely
on the ordering of the samples, they can be extracted without the

costly PBWT transform and only require us to decompress the zstd
layer. The internal sparse and WAH representations allow us to get

the counts in a very efficient manner. XSI allowed for a speed-up
from 25� to over 1000� (Table 2). Commands are given in
Supplementary Section S6.

Computation and access to these summary statistics is key for
many applications. For example, when getting the alternative ACs

for all samples of a given population, working with the encoded rep-
resentations allows us to get the counts orders of magnitude faster
than with the BCF plugin.

3.4.2 Dot products

Dot products are at the base of many statistical tests performed in
the context of GWAS, the most known being linear regression. We

therefore wanted to evaluate the performance of the XSI internal
structures for this operation. A benchmark was created to run dot

products between genotypes and phenotypes (floating point double
values). We compare the traditional array of genotypes (as in BCF)
to our PBWT WAH encoded and sparse data structures. A program

was written to compute the dot products from genotypes from either
a BCF or a XSI file against given phenotype values, which allowed

us to compare runtimes as well as the validity of the results.

22.07 minutes
4.04 hours

27.91 minutes
3.82 hours

1.25 hours
41.82 minutes

1.42 hours
1.99 hours

17.54 minutes
24.41 minutes

SIM

UKB WGS

UKB SNP

HRC

1KGP3

00:00 01:00 02:00 03:00 04:00
Loading time [Hours:Minutes]

Format
bcf

xsi

Fig. 4. Loading times compared with BCF on real and simulated datasets. Total loading time for chr1-22 on 1KGP3, HRC and UKB SNP. Loading time for chr20 only

on UKB WGS

100 samples
10 samples

SIM 1 sample
100 samples
10 samples

UKB WGS 1 sample
100 samples
10 samples

UKB SNP 1 sample
100 samples
10 samples

HRC 1 sample
100 samples
10 samples

1KGP3 1 sample

00:00 01:00 02:00
ROH Benchmark time [Hours:Minutes]

Format
bcf

xsi

Fig. 5. Runtimes of the ROH pipeline XSI decompressed and piped into BCFTools compared with BCF

3782 R.Wertenbroek et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac413#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac413#supplementary-data


Figure 6A shows the runtimes on all datasets. This runtime
encompasses file loading and decompression (gzip for BCF and zstd
for XSI). XSI shows faster runtimes on all datasets. Figure 6B shows
a synthetic benchmark (1 million samples) to assess the performance
of the structures as a function of MAF compared with a plain array
(baseline). The sparse representation only computes values for non-
zero (hom ref) data and therefore scales with sparsity (low MAF val-
ues). Sparse computation is key to many methods, for example
(Mbatchou et al., 2021). PBWT-reordered WAH suffers from non-
linear data access patterns and performs worse than baseline for
high MAF (> 5%). However, lower MAF values still allow to skip
portions of zero values and achieve good performances. The MAF
distribution inside the dataset (Fig. 3B) will dictate performance.
Nevertheless, for all datasets, using XSI and performing computa-
tions on the encoded data resulted in a speed-up (30� for UKB
WGS) compared with computing the dot product on a plain array
(baseline) from BCF, even for the UKB SNP data. The dot product
benchmark can outperform the loading time benchmark because
data are not decompressed into plain arrays but used directly.

Many software suites make use of the sparse representation
when effective. However, they require conversion from the input
format to the internal representation, while here it is possible to dir-
ectly load the file without any conversions and directly work with
the encoded data. This does not only speed up computations but file
loading as well, which sometimes is the major bottleneck. The
WAH representation, even with the cost of PBWT rearrangement,
allows our method to achieve further gains for variants with MAF
< 5%. The increased computation cost for variants with MAF �
5% is not a major concern because the number of these extremely
common variants is limited and will not increase much in the future,
newly discovered variants being (very) rare as can be seen in the
UKB WGS MAF distribution (Fig. 3B).

4 Discussion

In this article, we have presented XSI, a new file format that comes
with a command line tool XSI, C API, open-source code and format
specifications. XSI was shown to reduce file size footprint, 4–20�
times compared with BCF, to improve loading times, up to 8� times
faster than BCF and to speed-up computations for analyses on real
and simulated datasets. XSI is particularly effective on WGS data
such as from the UK biobank and we show the usefulness of compu-
tation on the encoded data with 280� faster computation of ACs
and 30� faster dot product computation on the UK biobank WGS
data. Simulated data show that with future WGS datasets, the differ-
ence between BCF and XSI will increase further.

Data generated from population scale projects with WGS created
the need for novel file formats in order to scale and reduce costs, not
only for data storage and transfer but also for analyses. XSI achieves
the goals of providing a smaller footprint, speeding up data access
and computations and allows future extensions.

XSI was mainly designed to reduce the footprint of large human
genotype collections so it focused on genotype data alone and does
not yet support other fields such as genotype likelihoods or dosages.
However, because the format is extensible, data blocks for these
fields can be added without breaking compatibility with the current
version.

Future works include developing specialized compression meth-
ods for other fields. Other future works include adapting existing
methods to take advantage of XSI internal data structures to im-
prove performance through ‘compressive genomics’, for example,
for GWAS or haplotype imputation. Finally, with the smaller file
footprint and efficient internal data structures, XSI would also fit
computations on accelerators with limited memory such as graphic
cards (GPUs) or field programmable gate arrays (FPGAs).

We provide a solution to compress VCF/BCF files, a command
line tool, an API for synchronous mixed format reading compatible
with HTSLIB and access to inner data structures for fast computa-
tion. A structured format approach also allows to expand XSI in the
future. Our results show the format to be well suited for storage, ac-
cess and analysis of existing and future WGS genotype datasets such
as from the UK biobank.

Acknowledgements

The authors would like to thank Diogo Ribeiro for the fruitful discussions

and insights into the project. The benchmarks on the UK Biobank data have

been conducted using the UK Biobank Resource under Application Number

66995.

UKB SNP

HRC

1KGP3

00:00 03:00 06:00 09:00
Dot product benchmark compute time [Minutes:Seconds]

Format
bcf

xsi

SIM

UKB WGS

00:00 01:00 02:00 03:00 04:00 05:00
Dot product benchmark compute time [Hours:Minutes]

Format
bcf

xsi

A

BaselineBaselineBaselineBaselineBaselineBaselineBaselineBaselineBaseline BaselineBaselineBaselineBaselineBaselineBaselineBaselineBaselineBaseline

Sparse WAH + PBWT

M
AF

 =
 0

.5

M
AF

 =
 0

.1

M
AF

 =
 0

.0
5

M
AF

 =
 0

.0
2

M
AF

 =
 0

.0
1

M
AF

 =
 0

.0
05

M
AF

 =
 0

.0
02

M
AF

 =
 0

.0
01

M
AF

 =
 0

.0
00

5

M
AF

 =
 0

.5

M
AF

 =
 0

.1

M
AF

 =
 0

.0
5

M
AF

 =
 0

.0
2

M
AF

 =
 0

.0
1

M
AF

 =
 0

.0
05

M
AF

 =
 0

.0
02

M
AF

 =
 0

.0
01

M
AF

 =
 0

.0
00

5

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

D
ot

 p
ro

du
ct

s 
pe

r s
ec

on
d 

on
 o

ne
 m

illi
on

 e
nt

rie
s 

(lo
g)

B

Fig. 6. (A) Runtimes of the dot product computation between the genotype array and a phenotype array at each variant locus, for all the datasets (single chromosome). (B) The

number of dot products per second relative to encoding and MAF compared with baseline (plain array). Cases slower than baseline are shown in red.

Table 2. Runtimes of the alternative AC and total AC (AN) recompu-

tation with BCFTools (plugin fill-tags) versus XSI

AC/AN Count bcf fill-tags xsi Speed-up

1KGP3 chr1 29m27s 1m09s > 25�
HRC chr1 130m26s 2m59s > 43�
UKB SNP chr1 89m01s 2m19s > 38�
UKB WGS chr20 2464m58s 8m36s > 280�
SIM 2768m37s 2m12s > 1250�

Note: Both programs annotate the BCF file with the same results.

XSI—a genotype compression tool 3783



Funding

This work has been supported by the School of Management and Engineering

Vaud (HEIG-VD). S.R. and O.D. are supported by SNF grant number: SNSF-

PP00P3_176977.

Conflict of Interest: none declared.

References

Berger,B. et al. (2016) Computational biology in the 21st century: Scaling with

compressive algorithms. Commun. ACM, 59, 72–80.

Bycroft,C. et al. (2018) The UK biobank resource with deep phenotyping and

genomic data. Nature, 562, 203–209.

Chang,C.C. et al. (2015) Second-generation PLINK: rising to the challenge of

larger and richer datasets. Gigascience, 4, s13742–015.

Collet,Y. and Kucherawy,M. (2018) Zstandard compression and the applica-

tion/zstd media type. RFC 8478.

Danecek,P. et al.; 1000 Genomes Project Analysis Group. (2011) The variant

call format and VCFtools. Bioinformatics, 27, 2156–2158.

Danek,A. and Deorowicz,S. (2018) GTC: How to maintain huge genotype col-

lections in a compressed form. Bioinformatics, 34, 1834–1840.

Delaneau,O. et al. (2019) Accurate, scalable and integrative haplotype estima-

tion. Nat. Commun., 10, 1–10.

Deorowicz,S. and Danek,A. (2019) GTShark: Genotype compression in large

projects. Bioinformatics, 35, 4791–4793.

Deorowicz,S. et al. (2013) Genome compression: A novel approach for large

collections. Bioinformatics, 29, 2572–2578.

Durbin,R. (2014) Efficient haplotype matching and storage using the

positional burrows–wheeler transform (PBWT). Bioinformatics, 30,

1266–1272.

Gudmundsson,S. et al.; Genome Aggregation Database Consortium.

(2021) Variant interpretation using population databases: Lessons from

gnomAD. Hum Mutat. https://onlinelibrary.wiley.com/doi/full/10.1002/

humu.24309.

Halldorsson,B.V. et al. (2021) The sequences of 150,119 genomes in the UK

biobank. bioRxiv.

Karczewski,K.J. et al.; Genome Aggregation Database Consortium. (2020)

The mutational constraint spectrum quantified from variation in 141,456

humans. Nature, 581, 434–443.

Kelleher,J. and Lohse,K. (2020) Coalescent simulation with msprime. In:

Dutheil, J.Y. (ed.) Statistical Population Genomics. Humana, New York,

NY. pp. 191–230.

Layer,R.M. et al.; Exome Aggregation Consortium. (2016) Efficient genotype

compression and analysis of large genetic-variation data sets. Nat. Methods,

13, 63–65.

LeFaive,J. et al. (2021) Sparse allele vectors and the savvy software suite.

Bioinformatics, 37, 4248–4250.

Li,H. (2016) BGT: Efficient and flexible genotype query across many samples.

Bioinformatics, 32, 590–592.

Loh,P.-R. et al. (2012) Compressive genomics. Nat. Biotechnol., 30, 627–630.

Marchini,J. (2019) Haplotype estimation and genotype imputation. In:

Balding, D. et al. (eds.) Handbook of Statistical Genomics: Two Volume Set,

pp. 87–114.

Mbatchou,J. et al. (2021) Computationally efficient whole-genome regression

for quantitative and binary traits. Nat. Genet., 53, 1097–1103.

McCarthy,S. et al.; Haplotype Reference Consortium. (2016) A reference

panel of 64,976 haplotypes for genotype imputation. Nat. Genet., 48,

1279–1283.

Morris,A.P. and Cardon,L.R. (2019) Genome-wide association studies. In:

Handbook of Statistical Genomics: Two Volume Set, pp. 597–550.

Nait Saada,J. et al. (2020) Identity-by-descent detection across 487,409

British samples reveals fine scale population structure and ultra-rare variant

associations. Nat. Commun., 11, 1–15.

Narasimhan,V. et al. (2016) BCFtools/RoH: A hidden Markov model ap-

proach for detecting autozygosity from next-generation sequencing data.

Bioinformatics, 32, 1749–1751.

Sudlow,C. et al. (2015) UK biobank: An open access resource for identifying

the causes of a wide range of complex diseases of Middle and old age. PLoS

Med., 12, e1001779.

Taliun,D. et al.; NHLBI Trans-Omics for Precision Medicine (TOPMed)

Consortium. (2021) Sequencing of 53,831 diverse genomes from the

NHLBI TOPMed program. Nature, 590, 290–299.

Tatwawadi,K. et al. (2016) GTRAC: Fast retrieval from compressed collec-

tions of genomic variants. Bioinformatics, 32, i479–i486.

The 1000 Genomes Project Consortium (2015) A global reference for human

genetic variation. Nature, 526, 68.

Visscher,P.M. et al. (2017) 10 years of GWAS discovery: Biology, function,

and translation. Am. J. Hum. Genet., 101, 5–22.

Wu,K. (2001) Notes on design and implementation of compressed bit vectors.

Lawrence Berkeley National Laboratory, LBNL Report #: LBNL/PUB-3161.

Retrieved from https://escholarship.org/uc/item/9zz3r6k7.

Wu,K. et al. (2001) Compressed bitmap indices for efficient query processing.

Lawrence Berkeley National Laboratory. Retrieved from https://escholar

ship.org/uc/item/8k22w7q2.

Ziv,J. and Lempel,A. (1977) A universal algorithm for sequential data com-

pression. IEEE Trans. Inform. Theory, 23, 337–343.

3784 R.Wertenbroek et al.

https://onlinelibrary.wiley.com/doi/full/10.1002/humu.24309
https://onlinelibrary.wiley.com/doi/full/10.1002/humu.24309
https://escholarship.org/uc/item/9zz3r6k7
https://escholarship.org/uc/item/8k22w7q2
https://escholarship.org/uc/item/8k22w7q2

	tblfn1

