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Abstract—In this paper, we assess the effectiveness of forecast-
ing and optimization algorithms on a laboratory demonstration
platform that mimics a domestic distribution grid with a high
penetration of photovoltaic (PV) systems. Despite the uncer-
tainties, the considered algorithms ensure efficient and secure
real-time (RT) operation of the distribution grid, as well as
the provision of flexibility services from the low-voltage (LV)
distribution grid to the upstream medium-voltage (MV) grid.
Uncertainties arise from the variations in PV systems power
production and end-users’ power consumption, as well as RT
deployment of flexibility services. As a result of the considered
algorithms, the distribution grid becomes active in the provision
of flexibility services. The forecasting and optimization algorithms
are based on Bayesian bootstrap quantile regression (BBQR)
and distributionally robust chance-constrained (DRCC) pro-
gramming, respectively. This paper also evaluates the framework
of the laboratory demonstration platform for the deployment of
the considered algorithms.

Index Terms—Active distribution grids, flexibility provision,
photovoltaic (PV) systems, laboratory demonstration, uncertain-
ties.

I. Introduction

To accomplish the sustainability goals of energy systems in
the context of energy transition, the penetration of renewable
energy sources (RESs) in distribution grids must be increased
(see [1] for an explanation of this necessity in the case of
Switzerland). However, this task on the consumption side
poses technical and operational challenges for distribution
grids. First, even though the distribution grids are designed for
one-way power flow, they must be operated with bidirectional

This research was supported by the Swiss Federal Office of Energy (SFOE)
and by the Italian Ministry of Education, University and Research (MIUR),
through the ERA-NET Smart Energy Systems RegSys joint call 2018 project
“DiGriFlex: Real-time Distribution Grid Control and Flexibility Provision
under Uncertainties.”

power flow and excessive stress [2]. Second, because of the
high level of uncertainty in distributed photovoltaic (PV)
systems, which are the primary source of distributed RESs,
power production control and forecasting grid operation will
be difficult. Third, the stochastic profile of electric vehicle
(EV) charging introduces a new source of uncertainty in the
end-user’s power consumption [3]. The primary solution to all
these technical and operational challenges is to improve the
distribution grids observability and controllability.

The development of efficient forecasting algorithms for
PV power production and end-user’s power consumption will
improve the distribution grid observability. For probabilistic
forecasting of PV power production, [4] has developed a
Bayesian bootstrap quantile regression (BBQR) approach. Fur-
thermore, for end-user’s power consumption, [5] has proposed
a real-time (RT) forecast based on random forests.

The deployment of flexible resources such as battery energy
storage (BES) and PV converters, on the other hand, will
improve the distribution grid controllability. Furthermore, the
development of efficient optimization algorithms will ensure
grid security, and flexibility services will be provided to com-
pensate for the increased uncertainties caused by the stochas-
tic nature of PV system power production and EV power
consumption. In [6], an algorithm for controlling the active
and reactive power flexibilities of BES systems as the major
sources for increasing the distribution grid controllability has
been proposed and tested. A two-stage control framework for
dispatching a distribution grid has been developed and tested,
with [7] utilizing a BES system as a controllable element.
The dispatch plan has been determined at the day-ahead (DA)
stage, including the power profile that the feeder connection
node must follow during the operation, allowing the BES
system to promise an adequate amount of flexibility. A model
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predictive control algorithm has been presented for the RT
stage to compensate for the mismatch between the profile
realization of the distribution grid connection node to the
external grid and the DA stage decided dispatch plan. Finally,
an optimization technique based on distributionally robust
chance-constrained (DRCC) programming has been developed
in [8] for scheduling the operation of distribution grids for
delivering flexibility services to upstream grids.

The main objective of this paper is to deploy and validate
efficient forecasting and optimization algorithms for enhancing
distribution grids observability and controllability. The consid-
ered algorithms, which are based on BBQR forecasting and
DRCC optimization, ensure safe operation of distribution grids
by taking operational constraints such as network currents and
voltages, as well as the limits of connected components, into
account. Furthermore, considering operational uncertainties,
the considered algorithms enable us to provide flexibility
services from a local low-voltage (LV) distribution grid to
upstream medium-voltage (MV) grid. Both forecasting and
optimization algorithms are tested and validated on a recon-
figurable distribution grid laboratory environment using the
framework of a demonstration platform. The framework and
setup of RT data acquisition from the grid, control component
interfaces, and software for execution of DA and RT forecast-
ing and optimization algorithms are all discussed.

The rest of this paper is structured as follows: Section II
explains the considered forecasting and optimization algo-
rithms. Section III describes the framework of the laboratory
demonstration platform. Section IV reports the tests results.
Finally, Section V concludes the paper.

II. Considered Forecasting and Optimization Algorithms

A two-level rolling framework for forecasting and optimiza-
tion algorithms is used to determine the optimal and secure
operation of a distribution grid under uncertainties. The first
level deals with the DA scheduling of controllable resources,
whereas the second level deals with the RT scheduling of
controllable resources. Fig. 1 depicts the timeline of the
two-level rolling framework for forecasting and optimization
algorithms.
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Fig. 1: Two-level rolling framework for forecasting and
optimization algorithms.

According to Fig. 1, we forecast profiles of PV power
production and end-user’s power consumption in DA for the
entire day of D using data collected until 18:00 on day D-
1. To that end, we must forecast 144 values for each power
profile when the resolution is set to 10 minutes. The primary
objective of the DA optimization problem is to minimize the

relative expected cost of the operation based on forecasted
values for the uncertain parameters. This objective function
includes the balancing cost minus the total revenues from
providing flexibility services to upstream MV grid. As shown
in Fig. 1, the optimization problem set-points are decided prior
to the start of the day D to consider an operational time (OT).

In RT, we forecast power profiles that occur during T
using data collected until interval T-2 as shown in Fig. 1.
The objective of the RT optimization problem is to minimize
the deviation of controllable resources (i.e., BES and PV
systems) from the pre-scheduled set-points obtained from
the DA optimization, with respect to the RT realization of
the uncertainties. The RT algorithm forecasts PV system
power production and end-user’s power consumption of the
10-minutes interval T. The set-points are then sent to the
controllable resources for activation before the start of time
interval T, which also requires some OT.

It is worth mentioning that the technical constraints of the
grid, as well as the constraints associated with the capacities
of the controllable resources, connect two-level rolling opti-
mization problems in DA and RT (e.g., state of charge of the
BES systems). Both considered forecasting and optimization
algorithms for the DA and RT are briefly explained below.

A. Forecasting Algorithm

We require two forecasts in DA: PV power production
and end-user’s power consumption (both active and reactive
power). The algorithm used for both DA forecasts is based
on an ensemble BBQR approach, which is a combination of
individual forecasts from different underlying models. Further-
more, the algorithm has been developed within a probabilistic
framework, i.e., the considered algorithm gives predictive
quantiles of the target variable for the target forecast horizon.

The forecasting algorithm for PV power production is
depicted in Fig. 2. First, a procedure is used to select only
the most informative predictors from all of the candidate
predictors after evaluating their performance during a valida-
tion period. The BBQR method is then used to evaluate the
posterior distribution of PV power production by extracting
a number of multivariate weight samples from the Dirichlet
distribution. Finally, the best sample quantiles are chosen to
provide probabilistic forecasting. The details of the PV power
production forecast are explained in [4]. The same procedure
is also used to forecast the end-user’s power consumption (for
both active and reactive power).

The considered algorithm for RT forecasting of end-user’s
power consumption and PV power production is deterministic.
As a result, a single spot value is extracted and used as an input
to the RT optimization model in the deterministic framework.
We used a BBQR-based forecast that predicts only the average
value of PV power production and end-user’s consumption.

B. Optimization Algorithm

Fig. 3 depicts the overall view of the considered opti-
mization algorithm, which is expressed as two-level rolling
optimization. We have a set of decisions that must be made
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Fig. 2: Forecasting algorithm for PV power systems based
on BBQR approach [4].

in the absence of complete information about uncertainties
~ζ (including magnitudes of PV power production, end-users’
power consumption, voltage at slack node, and deployment
of flexibility services in RT). The details of DA optimization
using DRCC are explained in [8]. Later, complete information
on the occurrence of uncertainties is received. Following that,
decisions at the second level are made.

First-level
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min imbalance
security constraints
chance constraints

vector z*
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          vector  
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ambiguity set

D-1 RTD

1 2 .        .         .
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Fig. 3: Two-level formulation of optimization algorithm [8].

At the first level, the objective is to maximize revenue from
selling flexibility services to upstream grids while minimizing
consumption costs. The distribution grid operator determines
the decision variables in the vector ~z, which include the
planned active and reactive power as well as the flexibilities
exchanged with the external grid, at the first level. In the
second level, the uncertain parameters in the vector ~ζ are
then realized, and the operator compenstates for the uncer-

tainties using the available distributed resources. As a result,
the objective of second level optimization is to minimize
imbalances in the power flow at the connection point of the
distribution grid while taking into account the distribution grid
operating criteria, i.e., the state vector ~x(~ζ) including set-points
of available distributed resources.

A summary of the two-level optimization algorithm under
consideration is presented in (1)-(3). Readers can find more
information in [8].

First level: max
~z

[revenue(~z) − cost(~z)], (1)

Subject to: Pr
~ζ

(Imbalance ≤ δ) ≥ 1 − ε, (2)

Second level: min
~x(~ζ)

[Imbalance(~z, ~x(~ζ))], (3)

where δ is the maximum allowable imbalance of the power
flow at the connection point, and 1− ε is the confidence level
of obeying the maximum allowable imbalance.

III. Framework of Laboratory Demonstration Platform

The ReIne (RÉseaux INtElligents, French acronym for
“Smart Grids”) laboratory (Fig. 4) has been built at the
School of Engineering and Management Vaud (HEIG-VD),
Yverdon-les-Bains, Switzerland, to study and plan changes to
distribution grids. ReIne is a hardware and software platform,
mimicking a wide range of the LV grid topologies at full scale,
as well as the MV grid topologies on a per-unit basis. The
laboratory allows for the testing of the smart grid algorithms,
as well as power electronics equipment, smart meter devices,
and so on [9]. The uniqueness of this laboratory, in comparison
to other existing structures in Switzerland or around the world
[10], [11], is its flexibility, which makes use of both lumped
grid elements and actual electrical sources and end-users. It
allows for the reconfiguration of the grid topology as well as
the connection points of the various sources and end-users.

Fig. 4: ReIne laboratory for emulation of distribution grids.

ReIne is made up of a matrix network (switchboard cabi-
nets) in 0-305V that connects production devices, passive and
active end-users, and bidirectional power electronics convert-
ers. The part of the laboratory that emulates the grid is made
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up of nine lines with a resistance to inductance ratio of 0.3 up
to 3.5, arranged in a matrix. Discrete inductors and resistors
are used to emulate all lines.

The considered forecasting and optimization algorithms are
tested and validated in the ReIne laboratory. The overall
system configuration for this test is depicted in Fig. 5. As
shown, the following five key parts were built to close the
loop of the control system and validate the performance of the
considered algorithms: (1) grid emulation; (2) data acquisition;
(3) optimization algorithm execution; (4) forecasting algorithm
execution; and (5) control signal activation.

1) Grid emulation: A grid is emulated, including five
nodes, six lines, one transformer, one 100kW/63kWh BES
system, a PV system with an 8.7kW ABB converter, and
a 20kVA/18kW grid simulator, mimicking the end-user at
node 3. Fig, 5 depicts the grid configuration and connections
between lines and nodes. The magnitude of the HEIG-VD
school load is communicated in RT to the grid simulator at
node 3, then rescaled by a factor of 1/30. The goal is to control
the active and reactive power outputs of the BES system and
the PV converter so that flexibility services can be provided
at the point of common coupling (PCC).

2) Data acquisition: For handling all measurements and
reference/control commands, a supervisory control and data
acquisition (SCADA) system based on LabVIEW® has been
designed. This allows for the modification of the grid topology
by controlling the contactors of the switchboard cabinets,
as well as the visualization and recording of measurements.
Transducers are used to measure voltages and currents, and
three parallel National Instrument CompactRIOs are used
to calculate root mean square (RMS) signals, active/reactive
power, and harmonics over time scales of 200 milliseconds and
10 minutes. These readings are then grouped on an RT scale
and sent to a personal computer (PC) that runs the LabVIEW®

code for the SCADA system.
3) Optimization algorithm execution: We have to execute

optimization algorithms in DA and RT. Both algorithms are
written in Python using GUROBI optimization solvers [12].
The DA one, which is based on DRCC programming, is
executed automatically every day at 18:00 after the forecast-
ing algorithm has been executed. On the other hand, the
LabVIEW® code calls the RT algorithm every ten minutes,
which is based on deterministic linear programming. The
RT optimization algorithm takes as inputs both the RT data
captured by the SCADA system and the schedule determined
by the DA optimization algorithm. Both the DA and RT
algorithms are run on the same PC as the SCADA. As a result,
a Python node is included in the LabVIEW® to integrate the
interface. It is worth mentioning that backup scenarios are
included in both Python and LabVIEW® on the occasion that
the RT optimization algorithm does not yield a viable solution
or an error occurs during the activation process.

4) Forecasting algorithm execution: The BBQR algorithm
is being used for DA and RT forecasting. The forecasting
algorithms for DA and RT are written in R and are called
by Python. To that end, the Python package rpy2 is used for

the interface between Python and R. In both DA and RT, the
SQL database is used to ingest historical data. The strength
of R in developing numerical algorithms is the driving force
behind its use in the developed forecasting system.

5) Control signal activation: The BES and PV con-
verter set-points in RT are determined by a code written in
Python running on the PC. These set-points are managed by
LabVIEW® in RT and transmitted via the Modbus interfaces
of BES and PV converter systems. It is worth mentioning
that the ABB converter requires an interface relay module
in order to receive Modbus commands. To accomplish this,
an additional expansion board and a programmable logic
controller (PLC) are added to the converter to transfer Modbus
control signals to it.

IV. Test Results

The considered forecasting and optimization algorithms,
as well as the described laboratory demonstration platform,
were tested for one month (September 2021). Because of the
demonstration purpose, the operational time-step is set to 2.5
minutes rather than 10 minutes. Furthermore, both forecasting
and optimization algorithms in RT can be run for the given
example grid in less than 2.5 minutes, ensuring that the set-
points are ready for activation.

Fig. 6 depicts the outcome of forecast algorithms for an
end-user’s consumption (both active and reactive power) on
September 24th, 2021 (as an example day). The shaded area
around the DA forecast in Fig. 6 represents the error prediction
based on the confidence level of 90%. Because the DA
algorithm employs probabilistic forecasting, we can estimate
the forecast error with any arbitrary confidence level.

We anticipate that the RT forecast will be closer to the
actual end-user’s power consumption than the DA forecast.
This expectation is correct for active power because the mean
absolute error (MAE) of DA forecasting is 0.35kW and that of
RT forecasting is 0.22kW during the test month. On the other
hand, the MAE of DA and RT forecasting of reactive power
are 0.23kVar and 0.22kVar, respectively. As a result, there is
not much of improvement in the RT forecast of reactive power.

A good selection of input predictors based on the type
of end-user is a determining factor of forecast algorithms
performance. The school load here is heavily influenced by
working hours and holidays. As a result, adding a feature that
represents such data significantly improves the results.

The forecast results for PV power production on September
24th and 25th, 2021 are depicted in Fig. 7. The shaded area
in Fig. 7 represents the maximum error of DA forecasting at
a 90% confidence level. This area can be determined since
we employed a probabilistic forecasting algorithm. As can
be seen, 24th and 25th of September were sunny and partly
cloudy days, respectively. As a result, the performance of the
DA forecast for September 24th was more acceptable. The
effectiveness of the RT forecast is clear on both days because
the available power follows the RT forecast. It is worth noting
that the deployed power is also shown in Fig. 7, as PV system
power can be curtailed based on the optimization solution.
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Fig. 5: Overall system configuration for a laboratory demonstration platform.

Fig. 6: Outcome of forecast algorithms for end-user’s power consumption on September 24th, 2021.

The MAE of PV power production forecasting in DA
is 0.28kW (on average, 12%). The MAE is reduced to
0.14kW (an average of 6%) using the RT forecast. It is worth
mentioning that these forecasts do not incorporate external
weather data for the PV system location. The forecasts will
be significantly more accurate if such data inputs are added to
the predictors of the forecasting algorithm.

The DA schedule and realized power at the PCC of the
LV grid in RT are shown in Fig. 8. The shaded area of
Fig. 8 also depicts the active and reactive power flexibilities
surrounding the scheduled power (in both upward and down-
ward directions). The behavior of the upstream grid operator
in terms of flexibility service deployment is also simulated.
The requested power is represented by a dotted blue line
based on the simulated behavior (which is always between
the determined flexibility boundaries). The realized active and

reactive power in RT complies with the requested power with
average accuracy of 15%.

The difference in realized power in RT versus requested
power is caused by three factors: First, the forecast error in
RT can not be zero. Second, the BES and PV systems set-
points are changed every 2.5 minutes, so short-term variations
in PV power production and end-user’s power consumption are
reflected in the output power. Third, the BES system converter
accuracy is not perfect across all set-point ranges. Here, we
used a 100kW battery in this test for the set-points less than
10kW. This is the worst power range for that converter.

V. Conclusion and FutureWork

In this paper, the laboratory demonstration platform for
the DiGriFlex project (real-time distribution grid control and
flexibility provision under uncertainties) is presented. The
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Fig. 7: Outcome of forecast algorithms for PV power production on September 24th and 25th, 2021.

Fig. 8: Optimization output at the grid connection point on September 27th, 2021.

platform is created in the ReIne laboratory, which emulates
various distribution grid configurations. For the experiment,
a control loop of data acquisition, data storage, forecasting
uncertainties, optimization, and control activation is imple-
mented. The control loop operates automatically on the DA
and RT scales, taking into account the uncertainties in the grid
operation. The following major lessons have been learned from
the test results and the laboratory demonstration platform that
can be applied to the related industrial products:

• The accuracy of the BES systems converter in activating
set-points in various operating ranges must be considered.

• The scalability of optimization and forecasting algorithms
in terms of variables must be taken into account.

• Access to historical data and communicate predictors for
forecasting are the bottlenecks of considered algorithms.

• Forecasting and optimization algorithms can be decom-
posed and parallelized to run on multiple processing units
at the same time.

In future work, different processing frameworks to be used
in RT control of distribution grids can be compared to address
the above lessons, particularly the scalability issue.
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