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Abstract
We present a numerical model for the simulation of 3D sediment transport in
a Newtonian flow with free surfaces. The Navier–Stokes equations are coupled
with the transport, deposition, and resuspension of the particle concentrations,
and a volume-of-fluid approach to track the free surface between water and air.
The numerical method relies on operator splitting to decouple advection and
diffusion phenomena, and a two-grid method. An appropriate combination of
characteristics, finite volumes, and finite elements methods is advocated. The
numerical model is validated through comparisons with numerical experiments,
sediment flushing, shear flow erosion, and the formation of dunes.
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1 INTRODUCTION

Sediment transport occurs in many systems such as dam retention basins, rivers, lakes, or shores. The accumulation
of sediments can have major negative sociological, economic, and environmental effects on water resources manage-
ment. Sedimentation can alter reservoir routing, complicate the management of flood inflow and reduce the discharge
capacity. This causes structural damages, affects operations efficiency, and even influences hydraulic energy production.1
Quantifying sediment transport is therefore very important for hydraulic and coastal engineering.

Since sedimentation is a complex physical phenomenon, it has been investigated and simulated using several differ-
ent approaches. A first widespread model is to treat the liquid and the sediment as two distinct phases and is referred to
as the two-phase model. Lagrangian–Lagrangian models (also called discrete particle models) depicts both phases as dis-
perse. The motion of the liquid phase may be described with fully Lagrangian SPH (smoothed particle hydrodynamics)2-5

or MPS (moving particle semi-implicit).6,7 However, Lagrangian–Lagrangian models can be computationally expensive.
Eulerian–Lagrangian models (also referred to as particle-laden flows) treat the water phase as a continuum while tracking
the movement of each sediment particle at the microscopic scale.8-10 Various Eulerian–Lagrangian models exist, including
the arbitrary Lagrangian–Eulerian method,11 the lattice Boltzmann method,12 or the fictitious domain method.13 Finally
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Eulerian–Eulerian approaches consider both phases (liquid and sediment) as continuous phases.14-18 They can be fur-
ther classified into mixed or separated-fluid approaches.18-21 Various methods22-24 have been studied to model the relative
motion between the fluid and the sediment, but most of the formula proposed are either valid only for the gravity-induced
settling or only in limited ranges of concentrations or grain sizes.

We present here a novel numerical method for the simulation of sediment dynamics together with free surfaces.
The novelty lies in the hybrid discretization of the various operators in an operator splitting framework, mixing finite
elements, finite volumes, and finite differences. The model we propose is a three-dimensional mixed-fluid model with
an Eulerian–Eulerian approach, for the modeling of sediments in a Newtonian fluid with free surfaces. The objective
is to establish a general mixture model with a broad range of applications, by introducing deposition and resuspension
effects. Our miscible model is based on a sediment concentration with a single momentum balance for the mixture (sed-
iments and liquid). It is built to have a continuous concentration taking into account dilute and non-dilute situations.
In previous works,25 mass conservation of the sediments was introduced to take into account sediment transport and
deposition. Jet erosion was successfully reproduced but comparison to sediment flushing showed discrepancies, indicat-
ing that the resuspension effects were necessary. The goal of this work is therefore to introduce resuspension effects in
the model.

The numerical method relies on a splitting algorithm and a two-grid method. It has successfully been used to simulate
Newtonian,26 and viscoelastic fluid flows.27 The time-splitting algorithm is used to decouple diffusion, and advection. The
two-grid method consists of two meshes: a coarse non-structured finite element mesh, and a finer structured Cartesian
mesh that aims at improving the accuracy of the approximation of the free-surface. A volume-of-fluid (VOF)28,29 is used
to track free surfaces. A Simple Line Interface Calculation (SLIC) algorithm is added30 to reduce numerical diffusion.
Extending the splitting approach, we decompose the sedimentation equation into transport, deposition, and resuspension
operators. This allows us to use a mix of finite elements, characteristics method, finite differences, and finite volumes
based on a Riemann solver with the Godunov scheme.31

Such mixed methods are also called hybrid in the literature. Several examples for coupled problems in fluid mechanics
are using the same type of splitting approach.32-34 In particular, Busto et al.32 include a similar model for species transport,
in addition to a turbulence model. Hyperbolic operators are discretized with a finite volume method. The corresponding
mesh is defined by duality, unlike the space discretization approach advocated here.

Several numerical experiments validate the mathematical model for a large range of applications. This article is struc-
tured as follows. In Section 2, we describe the mathematical model for coupling the evolution of a Newtonian fluid with
free surfaces with sediment transport. Sections 3 and 4 detail respectively the time and space discretizations. The results
of numerical experiments for various test cases involving flushing, vertical and horizontal scouring effects are presented
in Section 5.

2 MATHEMATICAL MODEL

Let Λ ∈ R3 be a cavity containing the fluid (liquid and sediments) and the ambient air, and let T > 0 be the final time of
the simulation. The multiphysics model we consider reads as follows.

First, a volume-of-fluid (VOF)28,29 method is used to track the fluid. The tracking is achieved through the charac-
teristic function of the liquid 𝜑 ∶ Λ × (0,T) → {0, 1} (the volume fraction of liquid). Then QT , the space-time domain
containing the liquid is defined by QT = {(x, t) ∈ Λ × (0,T) ∶ 𝜑(x, t) = 1}. The velocity field v ∶ QT → R3 and the pres-
sure field p ∶ QT → R satisfy the time-dependent, incompressible Navier–Stokes equations, with variable density and
viscosity coefficients, and modified by an additional Darcy-like reaction term.35,36 Finally, the sediment concentration
fs ∶ QT → [0, fsCR ] where fsCR is the maximal sediment solid fraction, satisfies a nonlinear conservation law.

More precisely, the presence rate fs is a percentage of solid sediment in a given volume. The critical value fsCR < 1
(i.e., the solid fraction of the packed sediments) is essentially related to grains’ size and shape. In this work, the sediment
particles are assumed to be spherical and fully immersed in the liquid (wet sediments), and fsCR = 0.61. A 2D sketch of
the situation is illustrated in Figure 1.

In order to describe the kinematics of the free surface, the characteristics function 𝜑 (the volume fraction of liquid)
satisfies (in a weak sense):

𝜕𝜑

𝜕t
+ v ⋅ ∇𝜑 = 0 in Λ × (0,T). (1)
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F I G U R E 1 2D sketch of the computational domain for sedimentation. The cavity Λ contains the air and the liquid, separated by a free
surface. The liquid domain is described by its characteristic function 𝜑 (the volume fraction of liquid). The velocity v, pressure and sediment
concentration fs are defined in the liquid region only. The sediment concentration fs ranges between 0 and a maximum value fsCR

. [Colour
figure can be viewed at wileyonlinelibrary.com]

This equation translates the fact that the fluid particles move at velocity v. More precisely, v(X(t), t) = v(X(0), 0), where
X(t) is the trajectory of a fluid particle starting from X(0) at time t = 0, thus X′(t) = v(X(t), t) and v is not needed in the
surrounding air. The characteristic function 𝜑 is given at initial time. Whenever liquid is entering the cavity Ω, we set
𝜑 = 1.

We assume that the liquid mixture velocity v and pressure p satisfy the Navier–Stokes equations in QT :

𝜌m(fs)
(
𝜕v
𝜕t
+ (v ⋅ ∇) v

)
− 2∇ ⋅ (𝜇m(fs)D(v)) + 𝛼m(fs)v + ∇p = 𝜌m(fs)g, (2)

∇ ⋅ v = 0. (3)

Here D(v) = 1∕2(∇v + ∇vT) is the symmetric deformation tensor, and g denotes the gravity field. The density 𝜌m is
given by:

𝜌m = 𝜌m(fs) = 𝜌l(1 − fs) + 𝜌sfs, (4)

where 𝜌l (resp. 𝜌s) is the fluid density (resp. the sediment density). The viscosity 𝜇m is the apparent viscosity of the fluid
with the suspended particles. The model for particle flows introduced in Reference 37, is used here and reads:

𝜇m(fs) =

⎧
⎪⎪⎨⎪⎪⎩

𝜇l

(
1 − fs

fsCR

)−2.5fsCR

, if fs < fsCO ,

𝜇l

(
1 −

fsCO
fsCR

)−2.5fsCR

, otherwise,

(5)

where 𝜇l is the Newtonian dynamic viscosity of the fluid and fsCO is a cohesion threshold parameter to be calibrated. The
choice of (5) is validated in the literature for small values of fs.37 The Navier–Stokes equations (2) and (3) contain an
additional Brinkman term, using Carman–Kozeny empirical law, to represent the coupling with Darcy flow in porous
media.38 The reaction coefficient 𝛼m = 𝛼m(fs) in (2) is given by:

𝛼m(fs) = K
𝜇lf 2

s

d2
∗(fsCR − fs + 𝜀)3

, (6)

where K > 0 and 𝜀 > 0 are constants to be calibrated and d∗ is the mean sediment particle diameter. Note that the numer-
ical parameter 𝜀 in (6) avoids a division by zero when fs = fsCR . The Navier–Stokes equations (2) and (3) are completed
with initial and boundary conditions: slip, no-slip, or inflow boundary conditions on 𝜕Λ.

http://wileyonlinelibrary.com
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Surface tension effects on the liquid–gas interface are not taken into account, and the ambient air is treated as vacuum,
and thus has no influence on the fluid. The boundary conditions on the liquid–air interface are then given by the no-force
boundary condition:

−pn + 2𝜇m(fs)D(v)n = 0, (7)

with n the external normal vector to the liquid–air interface. The sediment concentration fs satisfies the nonlinear
equation:

𝜕fs

𝜕t
+ ∇ ⋅

(
Fl(fs)

(
kvstokes

g
||g|| − A(fs, v)∇fs

))
= 0, (8)

with

Fl(fs) ∶= fs

(
1 −

fs

fsCR

)
.

The first flux of (8) , Fl(fs)
(

kvstokes
g

||g||
)

, is a parabolic deposition flux, where k is a positive parameter independant from fs

and vStokes is the maximal sediment velocity given by the Stokes’ law:

vStokes =
d∗2||g||(𝜌s − 𝜌l)

18𝜇l
.

The deposition flux vanishes when fs = 0 (no sediments) and when fs = fsCR , (packed sediments), see, for example,
Reference 39, and the maximum principle (i.e., fs ∈ [0, fsCR ]) holds.40

The second flux of (8), −Fl(fs) (A(fs, v)∇fs), is a resuspension flux, where, following Reference 41, A(fs, v) is given by:

A(fs, v) = Kr

(
𝜏(fs, v) − 𝜏CR

𝜏CR

)

+
,

where Kr is the resuspension constant (m2/s), (v)+ = max(v, 0), 𝜏(fs, v) (N/m2) is given by the tangential part of the stress
tensor:

𝜏(fs, v) = 2𝜇m(fs)||D(v)n(fs) − (D(v)n(fs) ⋅ n(fs))n(fs)||, (9)

where n(fs) =
∇fs

||∇fs||
for ∇fs ≠ 0. If ∇fs = 0, we set 𝜏(fs, v) = 0. Equation (8) is thus a degenerate parabolic equation. The

resuspension occurs only when there is enough shear on the sediment bedload that is, when 𝜏(fs, v) is above a given critical
shear value 𝜏CR. We consider two configurations: first a constant critical shear 𝜏CR ∈ [0.02, 0.5],42 but also the so-called
Shields shear43 defined as:

𝜏CR(fs, v) = 𝜃(fs, v) (𝜌s − 𝜌l) ||g||d∗,

where

𝜃(fs, v) =
⎧
⎪⎨⎪⎩

0.010595 ln(Re∗) + 0.110476
Re∗

+ 0.0027197 for Re∗ ≤ 500,

0.068 for Re∗ > 500.

Here the shear Reynolds number Re∗ = Re∗(fs, v)44,45 is defined by:

Re∗(fs, v) =
u∗(fs, v)d∗

𝜈l
, where u∗(fs, v) =

√
𝜏(fs, v)
𝜌l

,
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is the shear velocity, and where 𝜈l is the kinematic viscosity of the fluid. The use of a constant shear is proved to be
sufficient in most applications.

3 TIME DISCRETIZATION

Let 0 = t0
< t1

< t2
< · · · < tN = T be a subdivision of the time interval [0,T] andΔtn = tn+1 − tn, n = 0, 1, 2, … ,N − 1 be

the time steps. Let𝜑n, vn
, pn

, f n
s be approximations of𝜑, v, p, fs respectively available at time tn. LetΩn = {x ∈ Λ ∶ 𝜑n(x) =

1} be the approximate liquid region at time tn. The approximations 𝜑n+1, vn+1, pn+1, f n+1
s at time tn+1 are computed by

means of the splitting algorithm illustrated in Figure 2.

3.1 Modified Stokes step

Given 𝜑n, Ωn = {x ∈ Λ ∶ 𝜑n(x) = 1}, vn, pn, f n
s in Ωn, we define 𝜌n

m = 𝜌m(f n
s ), 𝜇n

m = 𝜇m(f n
s ) and 𝛼n

m = 𝛼m(f n
s ) the density,

viscosity, and reaction coefficient, respectively. We are looking for v and p in Ωn × [tn
, tn+1] such that:

𝜌
n
m
𝜕v
𝜕t
− 2∇ ⋅

(
𝜇

n
mD(v)

)
+ 𝛼n

mv + ∇p = 𝜌n
mg, (10)

∇ ⋅ v = 0. (11)

Using an implicit Euler scheme, we thus compute vn+1∕2, pn+1 in Ωn satisfying:

𝜌
n
m

vn+1∕2 − vn

Δtn − 2∇ ⋅
(
𝜇

n
mD(vn+1∕2)

)
+ 𝛼n

mvn+1∕2 + ∇pn+1 = 𝜌n
mg, (12)

∇ ⋅ vn+1∕2 = 0. (13)

F I G U R E 2 Operator splitting algorithm (from tn to tn+1—left to right, top to bottom). Given 𝜑n, the liquid domain is
Ωn = {x ∈ Λ ∶ 𝜑n(x) = 1}, vn, pn, f n

s are known in Ωn. A modified Stokes problem is solved to obtain the predicted velocity vn+1∕2 and the
pressure pn+1 in Ωn. Second, the sediment deposition and resuspension problems are solved to obtain a predicted concentration f n+1∕2

s in Ωn.
Finally, advection problems are solved to determine the new approximation of the characteristic function 𝜑n+1 (and thus the new liquid
domain Ωn+1), the corrected velocity vn+1 and solid fraction f n+1

s in Ωn+1. [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


6 MRAD et al.

3.2 Sedimentation step

Given f n
s and vn+1∕2 in Ωn, we are looking for fs in Ωn × [tn

, tn+1] such that:

𝜕fs

𝜕t
+ ∇ ⋅

(
Fl(fs)

(
kvstokes

g
||g|| − A(fs, vn+1∕2)∇fs

))
= 0. (14)

A splitting method involving a finite-volume method for conservation laws (see for instance Reference 31), and a finite
differences method is used to solve (14) and decouple it into the deposition and resuspension operators. It consists in
solving successively in Ωn × [tn

, tn+1]:

𝜕fs

𝜕t
+ ∇ ⋅

(
Fl(fs)kvStokes

g
||g||

)
= 0, (15)

𝜕fs

𝜕t
− ∇ ⋅

(
Fl(fs)A(fs, vn+1∕2)∇fs

)
= 0. (16)

We denote by f n+1∕2
s the solution obtained at tn+1 in Ωn.

3.3 Advection step

Given 𝜑n, f n+1∕2
s , and vn+1∕2 in Ωn, we are looking for 𝜑, v, and fs such that:

𝜕𝜑

𝜕t
+ v ⋅ ∇𝜑 = 0, (17)

𝜕fs

𝜕t
+ v ⋅ ∇fs = 0, (18)

𝜕v
𝜕t
+ (v ⋅ ∇)v = 0, (19)

between time tn and tn+1. These equations are solved with the characteristics method.46,47 We denote 𝜑n+1, f n+1
s , vn+1, the

solutions obtained at tn+1, which are respectively defined by:

𝜑
n+1(x + Δtnvn+1∕2(x)) = 𝜑n(x), (20)

f n+1
s (x + Δtnvn+1∕2(x)) = f n+1∕2

s (x), (21)

vn+1(x + Δtnvn+1∕2(x)) = vn+1∕2(x), (22)

for all x ∈ Ωn. The new liquid domain is then defined as Ωn+1 = {x ∈ Λ;𝜑n+1(x) = 1}.

4 SPACE DISCRETIZATION

The splitting algorithm allows to decouple the diffusion, advection, and deposition/resuspension phenomena. In order
to take advantage of this situation, two grids are used for space discretization following References 26,29,48,49. They
are illustrated in Figure 3 (in two space dimensions): a regular grid of small structured cells (left) is used to solve the
deposition/resuspension problems (15), (16), and the advection problems (20)–(22), while an unstructured tetrahedral
finite element mesh (right) is used to solve the diffusion problem (13). The structured grid is chosen to be finer than the
finite element grid, in order to avoid numerical diffusion when implementing (20) (remember that 𝜑 is discontinuous
across the liquid–air interface), while keeping reasonable the computational cost of solving the modified Stokes problem.

On the one hand, let H be a finite element tetrahedral discretization of Λ, with typical size H. On the other hand,
the cavity Λ is embedded into a parallelepipedic box discretized into a structured Cartesian grid h, which is made out of
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F I G U R E 3 Two-grid method (2D sketch): The advection and the deposition/resuspension problems are solved on a structured grid of
small rectangular cells (left), and the diffusion problem is solved on a coarser unstructured finite element mesh (right).

small cells whose dimensions are denoted by (Δx,Δy,Δz), with a typical size h ∶= max{Δx,Δy,Δz}. We label each cell
by the indices (ijk), and denote by Cijk a generic cell of h. Following Reference 29, we typically advocate H ≃ 3h − 5h in
the numerical experiments presented below.

4.1 Modified Stokes step

Continuous piecewise linear finite element approximations of vn+1∕2 and pn+1 are obtained as in Reference 25. More
precisely, let us define V n = H1(Ωn) and Qn = L2(Ωn). The variational formulation corresponding to the Stokes problem
(13) consists in finding the velocity vn+1∕2 ∈ (V n)3 and the pressure pn+1 ∈ Qn, satisfying the essential boundary conditions
on 𝜕Ωn, and such that:

∫Ωn

(
𝜌

n
m

vn+1∕2 − vn

Δtn ⋅w + 2𝜇n
mD(vn+1∕2) ∶ D(w) + 𝛼n

mvn+1∕2 ⋅w
)

dx

−
∫Ωn

pn+1∇ ⋅wdx −
∫Ωn

q∇ ⋅ vn+1∕2dx =
∫Ωn

𝜌
n
mg ⋅wdx, (23)

for all w and q the velocity and pressure test functions, compatible with the essential boundary conditions on 𝜕Ωn. Finite
element approximations of vn+1∕2 and pn+1 are implemented on H , obtained using P

B
1∕P1 finite elements, where P

B
1 is the

classical space of polynomials of first degree on K enriched with a bubble function.50

Let 𝜑n
H be the volume fraction of liquid defined by the continuous piecewise linear finite element approximation of

𝜑
n defined by its values at the vertices of TH . The liquid region Ωn

H is defined by the union of all tetrahedra of the finite
element mesh TH having (at least) one of its vertices P with a value 𝜑n

P > 0.5. The finite element spaces are defined as
follows:

V n
H =

{
vH ∈ C0(Ωn

H) ∶ vH|K ∈ P
B
1 , ∀K ∈ TH ,K ⊂ Ωn

H

}
,

Qn
H =

{
qH ∈ C0(Ωn

H) ∶ qH|K ∈ P1, ∀K ∈ TH ,K ⊂ Ωn
H

}
.

Let us define 𝜌n
m,H , 𝜇n

m,H , and 𝛼
n
m,H as the piecewise constant approximations of 𝜌n

m, 𝜇
n
m, and 𝛼

n
m on each tetrahedron,

respectively. The finite element approximation of (23) consists in finding the velocity vn+1∕2
H ∈ (V n

H)
3 and the pressure

pn+1
H ∈ Qn

H , satisfying the essential boundary conditions on 𝜕Ωn
H , and such that:

∫Ωn
H

(
𝜌

n
m,H

vn+1∕2
H − vn

H

Δtn ⋅w + 2𝜇n
m,HD

(
vn+1∕2

H

)
∶ D(w) + 𝛼n

m,Hvn+1∕2
H ⋅w

)
dx

−
∫Ωn

H

pn
H∇ ⋅wdx −

∫Ωn
H

q∇ ⋅ vn+1∕2
H dx =

∫Ωn
H

𝜌
n
m,Hg ⋅wdx,

for all w ∈ (V n
H)

3 and q ∈ Qn
H the velocity and pressure test functions, compatible with the essential boundary condi-

tions on 𝜕Ωn
H . The corresponding linear system is solved with a preconditioned GMRES method. The finite element

approximation vn+1∕2
H is then interpolated onto the grid h.51
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4.2 Sedimentation step

From now on, and for all numerical experiments presented in Section 5, the gravity g is assumed to be aligned with the O⃗z
axis. We assume that (fs)nijk and (v)n+1∕2

ijk are known in each cell ijk of h. Following Reference 25, (15) is solved to obtain
f n+1∕4
s with a finite volumes scheme:

(fs)
n+ 1

4
ijk = (fs)nijk −

Δtn

Δz

(
(FVZ)nijk+ 1

2

− (FVZ)nijk− 1
2

)
, (24)

where (FVZ)n are fluxes defined by the Godunov method.31 Then, the piecewise constant approximation 𝜏
n+1∕4
ijk of the

tangential stress defined by (9) is computed in cell ijk at time tn:

𝜏
n+1∕4
ijk = 2𝜇m((fs)n+1∕4

ijk )||Dn+1∕2
ijk nn+1∕4

ijk −
(

Dn+1∕2
ijk nn+1∕4

ijk ⋅ nn+1∕4
ijk

)
nn+1∕4

ijk ||, (25)

where Dn+1∕2
ijk = D

(
vn+1∕2

ijk

)
and nn+1∕4

ijk are computed using centered finite differences. Then we compute A
n+ 1

4
ijk =

Kr

(
𝜏

n+ 1
4

ijk −𝜏CR

𝜏CR

)

+

. Problem (16) is then solved to obtain f n+1∕2
s on the structured grid h using an explicit finite differences

scheme:

(fs)
n+ 1

2
ijk − (fs)

n+ 1
4

ijk

Δtn = (FDX )
n+ 1

4
ijk + (FDY )

n+ 1
4

ijk + (FDZ)
n+ 1

4
ijk . (26)

The diffusion terms are given by, for example, (FDX )
n+ 1

4
ijk =

A
n+ 1

4
i+ 1

2 jk
F

n+ 1
4

i+ 1
2 jk
−A

n+ 1
4

i− 1
2 jk

F
n+ 1

4
i− 1

2 jk

Δx2 . Similar definitions hold for (FDY )
n+ 1

4
ijk and

(FDZ)
n+ 1

4
ijk . Here, for example,

F
n+ 1

4

i+ 1
2

jk
= Fl

⎛
⎜⎜⎜⎝

(fs)
n+ 1

4
i+1jk + (fs)

n+ 1
4

ijk

2

⎞
⎟⎟⎟⎠

(
(fs)

n+ 1
4

i+1jk − (fs)
n+ 1

4
ijk

)
,

Similar definitions hold for F
n+ 1

4

ij+ 1
2

k
, F

n+ 1
4

ijk+ 1
2

, F
n+ 1

4

i+ 1
2

jk
, F

n+ 1
4

ij− 1
2

k
, and F

n+ 1
4

ijk− 1
2

. The stability of this explicit scheme is subject to the

following condition (where h = min(Δx,Δy,Δz)):52

|||||||||

Δtnmax
i,j,k

(
A

n+ 1
4

ijk

)

h2

|||||||||
≤

1
6
. (27)

4.3 Advection step

Equations (20)–(22) are solved on the structured grid h with an, unconditionally stable, forward characteristics method,
using piecewise constant approximations of each field on h. The advection of a cell Cijk consists in transporting the
quantities 𝜑n

ijk, f n+1∕2
sijk

, and vn+1∕2
ijk along the linearized characteristics Δtnvn+1∕2

ijk , with a conservative redistribution of the
transported quantities onto the grid.29 Figure 4 (left) shows, in two dimensions of space, how the forward characteristics
method with redistribution of the quantities onto the grid advects a single cell.

The algorithm includes a variation of the heuristic SLIC algorithm,30 in order to reduce the numerical diffusion when
transporting the variable 𝜑n

ijk, which is a step function. Figure 4 (right) shows how the forward characteristics method



MRAD et al. 9

F I G U R E 4 An example of two dimensional advection and projection when the volume fraction of liquid in the cell is 𝜑n
ij =

1
4

. Left:
without SLIC, the volume fraction of liquid is advected and projected on four cells, with contributions (from the top left cell to the bottom
right cell) 3

16
1
4

, 1
16

1
4
,

9
16

1
4

, 3
16

1
4

. Right: with SLIC, the volume fraction of liquid is first pushed at one corner, then it is advected and projected on
one cell only, with contribution 1

4
in one cell instead of four.

(A) (B) (C) (D)

F I G U R E 5 Effect of the two dimensional SLIC algorithm on the cell center for four possible interfaces. The quantity 𝜑n
ij, in blue, is

pushed back to the sides of Cij depending on the values of 𝜑n in the neighboring cells, in black. The cases (A) through (D) correspond to four
examples of configurations of the neighboring cells. [Colour figure can be viewed at wileyonlinelibrary.com]

is adapted by rearranging the quantities within a cell before advection. Figure 5 shows, on a simple 2D sketch, how to
rearrange those quantities depending on the neighboring values of the field.

Additional post-processing techniques are implemented in order to avoid two effects: (i) the loss of liquid/sediment
mass that has been advected outside the computational domain and (ii) the numerical compression of the variables 𝜑n

ijk,
f n+1∕2
sijk

after transport. First, we redistribute the quantities in the cells that have been advected outside the domain. For
each cell outside the domain, we identify the partially empty cells in its neighborhood using a distance function, and
re-distribute the excess recursively starting from closest to the initial cell. Cells are typically advected outside the domain
when the CFL number is large or when the domain has curved boundaries. Second, we “decompress” the cells inside
the domain for which 𝜑n

ijk > 1 and/or (fs)n+1∕2
ijk > fsCR. This is achieved also by redistributing the excess quantities to other

cells. The decompression of the excess of 𝜑n
ijk is achieved as in Reference 29 in a global manner. For the decompression of

(fs)n+1∕2
ijk , we identify again the partially empty cells in the neighborhood of the overfilled cell using a distance function, and

we redistribute the excess sediment randomly to cells where (fs)n+1∕2
ijk < fsCR. The random choice prevents the algorithm

to introduce a privileged direction for the redistribution and acts as a random local diffusion effect.
The approximations 𝜑n+1

ijk , (fs)n+1
ijk , and vn+1

ijk are then interpolated back onto the coarse finite element mesh H ,51 and
the new liquid region Ωn+1

H is defined as the union of all liquid finite elements of H (elements with at least one vertex
P such that 𝜑n+1

P > 0.5). Physical quantities 𝜌n+1
m , 𝜇

n+1
m , and 𝛼n+1

m are computed following (4), (5), and (6), on the struc-
tured grid h, based on the piecewise constant approximations of f n+1

s , and then interpolated on the finite element mesh
as well.

http://wileyonlinelibrary.com
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Under the CFL condition, and provided that H ≃ 3h − 5h, the overall convergence rate of the numerical method is
one. Thus, when dividing H, h, and Δt by two, the error should be divided by two.

5 NUMERICAL EXPERIMENTS

Numerical experiments allow us to validate the accuracy and efficiency of our mathematical model and numerical
method. All simulations have been performed on a system equipped with Intel®Xeon(R) CPU E5-1650 v3 @ 3.50 GHz ×
12 and 64 GB RAM.

5.1 Sediment flushing

We consider first a flushing experiment.53 This experiment has been discussed in previous works,25 where the absence of
resuspension effects in the physical model had proved to be cumbersome. A bed load of non-cohesive sediments, initially
at rest at the bottom of a channel, as illustrated in Figure 6. It is performed in a laboratory flume of width 0.2 (m). The
bed load of non-cohesive sediment is composed by sand (d∗ = 7.6 ⋅ 10−4 (m), 𝜌s = 2650 (kg m−3), 𝜌l = 1750 (kg m−3)).
Under vertical gravity forces, the liquid flows out of the domain via the valve on the right, and the sediment is flushed by
the flow. An outflow condition is enforced by imposing a discharge of q0 = 0.0079 (m3/s) on the bottom right part of the
domain (which corresponds to an outflow velocity of approx. 0.132 m/s). A free surface lies at the top of the domain. Slip
boundary conditions are imposed everywhere else. Initially the liquid and sediments are at rest.

The experiment is run with T = 3 (s), and three discretizations are considered (a coarse mesh with 6684 elements,
2446 nodes, 51,480 cells, H ≃ 0.045 (m), h ≃ 0.01 (m) and Δt = 0.006, an intermediate mesh with 26,079 elements, 9124
nodes, 205,920 cells, H ≃ 0.025 (m), h ≃ 0.005 (m) and Δt = 0.003, and a fine mesh with 45,600 elements, 15,772 nodes,
369,600 cells, H ≃ 0.02 (m), h ≃ 0.003 (m) andΔt = 0.0022). Figure 7 shows the convergence of sediments profiles at time
T = 3 (s) for the various discretizations.

From now on, we consider the intermediate mesh to perform a sensitivity analysis with respect to the parameters.
Let us set 𝜀 = 10−11, fsCO = 0.4699, 𝜏CR = 0.05 (N/m2) and consider several strictly positive values for the parameter Kr.
Figure 8 displays the snapshots of the shear stress on the structured grid for various times t, and shows that the shear
stress is appropriately located at the interface.

Figure 9 shows the sediment bedload at t = 40 (s), for 𝜏CR = 0.05 (N/m2) and various values of Kr. We observe that, with
Kr = 10−3, we do not have enough resuspension effects, while the results with Kr = 10−2 and Kr = 10−1 are very similar

F I G U R E 6 Sediments flushing. Sketch of the geometrical domain and numerical setup (similar as in Reference 53).

3.4 3.6 3.8 4 4.2
X [m]

0

0.1

Z
 [m

]

F I G U R E 7 Sediment flushing. Mesh convergence at t = 3 (s) with resuspension (Kr = 10−2, 𝜏CR = 0.05 (N/m2), 𝜀 = 10−11,
fsCO

= 0.4699) [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 8 Sediment flushing. Snapshots of the shear stress at t = 2.5, 10 (s) and t = 20 (s) (left to right). [Colour figure can be viewed
at wileyonlinelibrary.com]

F I G U R E 9 Sediment flushing. Sediment profile at t = 40s for 𝜀 = 10−11 and various resuspension parameters Kr . Plotted dots represent
the experimental results. [Colour figure can be viewed at wileyonlinelibrary.com]

and close to the experimental results. Figure 10 illustrates snapshots of the sediment bedload and of the experimental
results (dotted points) over time for Kr = 10−2, 𝜏CR = 0.05 (N/m2) and at several times. It shows that the introduction of
resuspension effects is necessary to appropriately match experimental results.

Finally, we conduct a convergence error analysis for the bedload profile towards the experimental results at T = 42 (s),
Kr = 10−2 and 𝜏CR = 0.05 (N/m2). Figure 11 illustrates the convergence order of the error between experimental and
computed sediment bedload profile, in the discrete L2-norm for the given meshes. The convergence order is, as expected,
approx. equal to one. Table 1 summarizes the average CPU time (in (s)) per time step of the operator splitting algorithm.
Because of the stability condition (27), the resuspension step is solved with smaller time substeps at each time step of the
diffusion operator. For this numerical experiment, 5 substeps are performed per time step. One can observe that the Stokes
problem remains the expensive step, but, depending of the number of substeps, the resuspension step is computationally
not negligible.

5.2 Wall-jet scouring experiment

Let us consider the scouring experiment described in Reference 54 and illustrated in Figure 12. It is performed in a
glass-walled horizontal flume of width 0.74 (m) and depth 0.2 (m). A rigid plate is installed in the flume to create a

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 10 Sediment flushing. Snapshots of the sediment profile at t = 20, 30 (s) and t = 40 (s) (left to right) for Kr = 10−2,
𝜏CR = 0.05 (N/m2). Plotted dots represent experimental data. [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 11 Sediment flushing. L2 convergence error on the sediment profile at t = 10 (s).

T A B L E 1 Sediment flushing

Sedimentation step Advection step

Stokes step Deposition Resuspension Advection Decomp/SLIC

Coarse 0.38 0.06 0.42 0.17 0.11

Intermediate 5.2 0.94 6.32 2.66 1.57

Fine 25.8 4.65 31.2 13.2 7.85

Note: Average CPU time per time step in (s) for each operator, for the coarse, intermediate and fine meshes (𝜀 = 10−11, Kr = 10−2, 𝜏CR = 0.05 (N/m2), 5
substeps per time step). Total computational time of 42 (s).

F I G U R E 12 Wall-jet scouring. Sketch of the geometrical domain and numerical setup (similar as in Reference 54). [Colour figure can
be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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reservoir on the left, with a gate of height 0.05 (m). The water height in the reservoir is equal to 0.15 (m). A layer of
non-cohesive sand particles of diameter d∗ = 0.85 ⋅ 10−3 (m) is laid on the right side of the setup, with 𝜌s = 2650 (kg m−3),
and 𝜌l = 1750 (kg m−3). At t = 0, the gate is opened. Free outflow conditions are applied on the right part of the domain,
while slip and no-slip boundary conditions are applied on the lateral and top surfaces, and on the surfaces in contact with
sediment, respectively. After about T = 3.5 (s), the evolution of the scour hole and ridge become stationary.

We compare the experimental results and the numerical results by comparing the sand profiles and the water levels
as well as the evolution of the scour hole diameter. We first evaluate the convergence of the numerical method when
considering 𝜀 = 10−11, fsCO = 0.4699, Kr = 10−3, and 𝜏CR = 0.05 (N/m2), and three discretizations (coarse: 6750 elements,
2442 nodes, 19,500 cells, H ≃ 0.037, h ≃ 0.0043 and Δt = 0.05, intermediate: 25,956 elements, 9028 nodes, 81,900 cells,
H ≃ 0.02, h ≃ 0.0025 andΔt = 0.025, and fine: 102,888 elements, 35,040 nodes, 319,800 cells, H ≃ 0.011, h ≃ 0.0014, and
Δt = 0.0125). Figure 13 illustrates the sediment and the water profiles for all three meshes. Note that resuspension effects
are instrumental for the scouring to occur.

We consider the set of parameters: Kr = 10−3, fsCO = 0.6099, 𝜀 = 10−11, with 𝜏CR = 0.05 (N/m2). Figure 14 (left column)
illustrates the results for the constant critical shear model at t = 1.5 (s) and t = 3.5 (s). We observe that, the numerical

0.7 0.8 0.9 1 1.1
-0.05

0

0.05

0.1

F I G U R E 13 Wall-jet scouring. Convergence of the numerical solution when discretization parameters go to zero: Sediment and water
profiles at t = 1 (s) for various mesh sizes. [Colour figure can be viewed at wileyonlinelibrary.com]

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1
-0.05

0

0.05

0.1

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1
-0.05

0
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0.1

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1
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0
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F I G U R E 14 Wall-jet scouring. Sediment and water profiles in comparison with the experimental results. Top: at t = 1.5 (s); bottom: at
t = 3.5 (s). Left: Numerical results with the constant critical shear model. Right: Numerical results with the Shields critical shear model.
[Colour figure can be viewed at wileyonlinelibrary.com]
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results are comparable with the experimental results54 in the stationary state (at 3.5 s). However, in the transient phase (at
1.5 s), the numerical solution does not match well the experiments. These results are very similar to those obtained with
the Coulomb-Shear model mentioned in Reference 54. Figure14 (right column) shows the sediment and liquid profiles for
the numerical results obtained with the Shields critical shear model, inspired by Khanpour and Zarrati,54 which allows
to improve the results during the transient phase.

Figure 15 shows snapshots at various times to illustrate that the scouring process simulations with the Shields model
better match the experiments. Figure 16 illustrates the discrepancy between the numerical solutions for several meshes,
and the experimental measurements, when using the Shields critical shear model (sediment and water profiles). Figure 17
(left) illustrates the time evolution of the maximal diameter of the scour hole, which is similar for both the experimental

(A)

(B)

(C)

(D)

F I G U R E 15 Wall-jet scouring. Snapshots of sediment profiles at (A) t = 0.3 (s) (B) t = 1.5 (s) (C) t = 2.7 (s), and (D) t = 3.5 (s) with
the Shields critical shear for Kr = 10−3, fsCO

= 0.6099, and 𝜀 = 10−11. The yellow (resp. the light blue) dots represent the experimental
sediment level (resp. liquid level). [Colour figure can be viewed at wileyonlinelibrary.com]

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1
-0.05

0

0.05

0.1

F I G U R E 16 Plot of sediment and water levels on the intermediate and the fine meshes [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 17 Wall-jet scouring. Left: scour-hole width over time: Numerical results with the Shields critical shear in comparison with
the experimental results. Right: L2 error between the experiment and the numerical sediment heights for various meshes at t = 3.5 (s).
[Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E 2 Wall-jet scouring

Sedimentation step Advection step

Stokes step Deposition Resuspension Advection Decomp/SLIC

Coarse 0.34 0.021 2.76 0.14 0.13

Intermediate 5.24 0.32 43.8 2.18 1.98

Fine 83.1 5.1 700.2 34.5 32.5

Note: Average CPU time per time step in (s) for each operator, for the coarse mesh (Δt = 0.05 s), intermediate mesh (Δt = 0.025 s), and fine mesh (Δt = 0.0125 s)
all defined earlier. The results are given for the chosen parameters 𝜀 = 10−11, Kr = 10−3, and 𝜏CR = 0.05 (N/m2) and over a computation time of 3.5 (s).

F I G U R E 18 An illustration of various bedforms configurations [Colour figure can be viewed at wileyonlinelibrary.com]

and the numerical solutions; the slight overestimation of the liquid level at all times is also observed in Reference 54.
Figure 17 (right), and shows the L2 error on the sediment height, which exhibits a first-order convergence order.

Table 2 illustrates the average CPU time (in (s)) per time step for each operator. In this case, 27 sub-steps are used in
average to solve the resuspension operator.

5.3 River-stream simulation

Finally we would like to reproduce self-generated bedforms (dunes) in sediment bed rivers. Dunes in river mechanics
have complex physical ascetics, since the ripples and dunes form only under a relatively limited range of flow condition,
in terms of, for example, the domain’s typical size, the size of the particles, or the velocity (hence the shear stress and the
Reynolds number). There exist various situations for the bedforms.55 Figure 18 illustrates various configurations typically
characterized by their height and wavelength.56,57

http://wileyonlinelibrary.com
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F I G U R E 19 River-stream simulation. A layout of the experimental setup: The light brown particles are moving particles; the dark
brown particles are fixed. [Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E 3 River-stream simulation

Case 1 Case 2 Case 3 Case 4

Description Ripple Large dune Washing out Washed out

Reynolds number Reb = 2UbHb∕𝜈 6000 8000 10,000 12,000

Mean velocity Ub (m/s) 0.39 0.52 0.65 0.78

Note: Bedform topologies based on the mean velocity and Reynolds number.

F I G U R E 20 River-stream simulation. Left: Case 1 (Ub = 0.39 m/s), top to bottom: Snapshots of sediment profiles for t = 5, 10, 15 (s)
and t = 20 (s) (Kr = 10−6). Right: Case 2 (Ub = 0.52 m/s), top to bottom: snapshots of sediment profiles for t = 5, 10, 12.5 (s) and t = 15 (s)
(Kr = 10−6). [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 19 shows the numerical setup. A fixed sediment layer of height Hb = 0.005 (m) is placed at the bottom of
the domain, covered by a layer of free sediments. The characteristics of the sediment particles are d∗ = 0.5 ⋅ 10−3 (m),
𝜌s = 2500 (kg m−3). The liquid density is 𝜌l = 1000 (kg m−3) and the liquid viscosity is 𝜇l = 1.5 ⋅ 10−3 (N s m−2). An
inflow condition is enforced on the left side of the domain and free outflow conditions are imposed on the right side.
Slip boundary conditions are enforced on all lateral walls above the fixed sediment height. Four physical setups occur in
experimental studies,55-57 and are summarized in Table 3. The focus here is on simulating the ripples and large dunes
regimes.

We consider an inflow velocity uin = (ux(z), 0, 0)TIz>Hb , with a logarithmic profile:

ux(z) =
Q (1 + 2.5 ln (1 + z))

Ly (2.5 (1 + (Lz −Hb)) ln (1 + (Lz −Hb)) − 1.5(Lz −Hb)) ,

http://wileyonlinelibrary.com
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F I G U R E 21 River-stream simulation. The surface of the bed when t∗ ∈ [600,800] for Ub = 0.39 (m/s) (left) and Ub = 0.52 (m/s) (right).
The x-axis is the relative longitudinal location X = (x − udt)∕d∗ (x is the horizontal direction, ud is the migration velocity of the bedform,
Kr = 10−6 and 𝜏CR = 0.05 (N/m2)).
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F I G U R E 22 River-stream simulation. Bed surface when t∗ ∈ [600,800]. The x-axis is the relative longitudinal location
X = (x − udt)∕d∗ (x is the horizontal direction, ud is the migration velocity of the bedform, Kr = 10−6 and 𝜏CR = 0.05 (N/m2)). The vertical
solid line in the figure indicates the location of the peak of the bedform. [Colour figure can be viewed at wileyonlinelibrary.com]

where Q is the volumic flow rate, calibrated in order to recover the mean velocity Ub. The discretization considered
includes 15,276 elements, 4149 nodes (average size H = 0.001), 75,000 cells (h = 0.0002) and Δt = 0.0025 and Δt = 0.002
respectively. We consider Kr = 10−6, a constant shear model with 𝜏CR = 0.05 (N/m2), 𝜀 = 10−11, and T = 24 (s). In order
to compare with results in Reference 55, we consider the non-dimensional time denoted as t∗ = t∕(Hb∕Ub).

Figure 20 shows snapshots of the sediment profile for the cases of ripples and large dunes, respectively. Note that rip-
ples appear as a result of the shear-induced resuspension. Figure 21 illustrates a further investigation of the stationarity in
time of dunes formation for t∗ ∈ [600,800], for these two different regimes. The horizontal axis represents the normalized

http://wileyonlinelibrary.com
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relative longitudinal location X ∶= (x − udt)∕d∗, where x is the fixed downstream direction, and ud is the bedform migra-
tion velocity (taken here as ud = 0.05 m/s); snapshots at different time steps are thus overlapping. We can observe that
the self-generated bedforms are stationary in time in both regimes.

A comparison of the simulated dune with experimental observations from Reference 55 is done for the case of large
dunes (Case 2, Ub = 0.52 m/s). Figure 22 displays the averaged experimental bed profile along with the averaged numerical
fit (Kr = 10−6 and 𝜏CR = 0.05 N/m2), and shows the close adequation between experimental and numerical wavelengths.

6 CONCLUSION AND PERSPECTIVES

A three-dimensional numerical model for the transport of sediments within a Newtonian flow with free surfaces has
been designed. The numerical method relies on an operator splitting strategy, and an appropriate mix of finite elements,
finite volumes, and finite differences methods. Numerical experiments have emphasized the paramount importance of
incorporating resuspension effects in scouring and flushing experiments, in particular when there is a shear effect in the
flow. Calibration with experimental results has exhibited the flexibility and versatility of the numerical solver. Future
perspectives will thus include the extension to poly-disperse sediments and simulations in real-life 3D topographies.
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