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Abstract— The world has experienced epidemics of coronavirus 
infections several times over the last two decades. Recent studies 
showed that using medical imaging techniques can be useful to 
develop an automatic computer-aided diagnosis system to detect 
pandemic diseases fast and early with high accuracy. In this study, 
a large margin piecewise linear classifier is developed to diagnose 
COVID-19 compared to a wide range of viral pneumonia 
including, SARS and MERS, using chest x-ray images. In the 
proposed method, a preprocessing pipeline is employed, then deep 
pre- and post-rectified linear unit (ReLU) features are extracted 
using the well-known VGG-Net19, which is fine-tuned to optimize 
transfer learning. After this, the canonical correlation analysis is 
performed for feature fusion and fused deep features are passed 
into the LMPL classifier. The introduced method reached the 
highest performance in comparison with related state-of-the-art 
methods for two different schemes (Normal, COVID-19, and 
typical Viral pneumonia) and (COVID-19, SARS, and MERS 
pneumonia) with 99.39% and 98.86% classification accuracy, 
respectively. 

Index Terms— Computer-aided diagnosis (CAD), COVID-19, Deep 
feature extraction, Large margin classifier, MERS, SARS, x-ray 

I. INTRODUCTION

he COVID-19 virus is very contagious and spreads
worldwide leading to an ongoing pandemic. The world has 

encountered occurrences of other severe coronavirus infections 
over the last few decades, including [1]: 
• The Severe Acute Respiratory Syndrome (SARS) epidemic

in 2002-2003 originating in Guangdong, China;
• The Middle East Respiratory Syndrome (MERS) epidemic

in 2011 originating in Jeddah, Saudi Arabia;
• The current COVID-19 pandemic that originated in

Wuhan, China in 2019.
Various types of medical images can be used to diagnose this 

disease. Two commonly used types are Computed Tomography 
(CT) and x-rays of the chest [2]. 

In emerging diseases such as COVID-19, the number of 
available samples is initially small and sometimes insufficient 
to train deep learning models well because it tends to overfit the 
training data. we introduce a large margin piecewise linear 
(LMPL) classifier as a proper learning method to gain the best 
profit of the available training data.  We took advantage of the 
efficiency of large margin classifiers to construct a piecewise 
linear model. The new algorithm, called LMPL is a novel 
formulation with interesting benefits, such as more accurate  
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results than the traditional approaches like support vector 
machine (SVM) classifiers and 𝑘-Nearest Neighbors (𝑘NN). 
The proposed LMPL addresses the following challenges that 
are important in machine learning: 
• small sample size: medical datasets are difficult to find;
• challenging to collect due to privacy constraints that limit

data sharing;
• overfitting to training data: this problem limits the

generality of models to unseen data. It is essential,
particularly in transfer learning tasks in which the
distribution of source and target can be so different;

• nonlinearity: most classes or clusters in real-world
problems are not linearly separable;

• multi-class classification: some of the classifiers e.g.,
SVMs, have a binary structure and need extensions to solve
this problem such as One versus One (OvO) and One
versus All (OvA) approaches;

• multi-modality: when a class has several modalities, it
means its samples are located in various positions of the
search space; this makes it difficult for the most common
classifiers to work well.

In this paper the VGG-net model [3] is used for feature 
extraction. Indeed, the deep VGG-Net19 model is retrained by 
transfer learning to learn deep features of x-ray images. The 
deep features are obtained from the seventh fully connected 
layer that is the last layer before the output. We mark the 
activation values of both pre- and post-rectified linear units 
(ReLU) as deep features with feature vectors of dimension 
4096. The study develops a preprocessing pipeline for quality 
improvement of x-ray images. For feature fusion, we used 
canonical correlation analysis (CCA) [4] and the fused features 
are passed to the LMPL classifier.  

We aim to apply our introduced approach for two 
classification tasks in this study. 
I. Identifying COVID-19 from typical viral pneumonia

and normal x-ray images.
II. Identifying COVID-19 from the two severe CoV family

members, meaning SARS and MERS.

A. Contribution
The contributions of this paper are outlined as follows:

• To learn discriminant and robust feature representations, a
novel COVID-19 diagnostic method is introduced that

3 Mohammad Taheri, Department of Computer Science and Engineering and 
IT; School of Electrical and Computer Engineering, Shiraz University, Shiraz, 
Iran. E-mail: motaheri@shirazu.ac.ir. 
4 Henning Müller, Department of Business Information Systems University of 
Applied Sciences Western Switzerland, Sierre (HES SO), Switzerland. E-mail: 
henning.mueller@hevs.ch

A Large Margin Piecewise Linear Classifier with Fusion 
of Deep Features in the Diagnosis of COVID-19  

Neda Azouji1, Ashkan Sami2, Mohammad Taheri3, and Henning Müller4 

T 

Published in "Computers in biology and medicine", 2021, vol. 139, article no. 
104927, pp. 1-14, which should be cited to refer to this work.
DOI: 10.1016/j.compbiomed.2021.104927

https://doi.org/10.1016/j.compbiomed.2021.104927


 2 

integrates a deep feature extraction and fusion 
methodology. 

• To learn the most informative knowledge from limited 
labeled data, we introduced a LMPL classifier using a 
cellular structure to exploit the limited training data better. 

II. RELATED WORK 
Since the spread of COVID-19, there has been an increasing 
effort to advance deep models to COVID-19 detection using 
medical images such as CT scans and x-rays. In a review of the 
literature, we mention some of the recent developments in deep 
networks for COVID-19 diagnosis. Ozturk et al. [5] developed  
DarkCovidNet to diagnose COVID-19 using raw chest x-ray 
images. Their network reached an accuracy of 98.08% in a 
binary and 87.02% in a multi-class scheme. Taik et al. [6] 
introduced the COVIDGR-1.0 dataset and proposed the 
COVID-SDNet method that combines segmentation, data-
augmentation and data transformation and achieved a high 
generalization accuracy of 97.72%. Mahmud et al. [7] proposed 
a deep CNN called CovXNet which uses depthwise dilated 
convolution for efficient feature extraction from x-ray images. 
At first, a large number of normal and Non-COVID pneumonia  
(viral and bacterial) are used to train the proposed CovXNet. 
Then, Transfer learning is used to fine-tune and retrain the net 
by a smaller number of COVID-19 and other pneumonia cases. 
CovXNet is designed and trained by various image resolutions 
and a stacking algorithm is employed for optimization. 
CovXNet obtained an accuracy of 90.2% for multiclass 
classification normal, COVID19, viral, and bacterial 
pneumonia. Rahman et al. [8] compiled a large x-ray dataset 
with its corresponding lung mask to identify COVID-19. The 
author investigated the effect of different image enhancement 
techniques on COVID-19 detection. Various deep CNNs are 
trained on plain and segmented lung images. The method 
reached the best performance of 96.2% accuracy in plain 
images by ChexNet and 95.11% classification accuracy in 
segmented lung images by DenseNet201. Jain et al. [9] 
compared multiple deep CNN Models: Inception V3, Xception, 
and ResNeXt where the Xception model had the best 
performance with the highest accuracy of 97.97% in classifying 
COVID-19 using chest x-ray images. Togaçar et al. [10] 
restructured the COVID-19 dataset by employing the Fuzzy 
Color technique as a preprocessing method and the images that 
were organized together with the original images were stacked. 
SqueezNet and MobileNetV2 are used as deep feature 
extractors along with the SVM classifier and trained on the 
stacked dataset. They obtained 96.28% classification accuracy 
using MobileNetV2. Hemdan et al. [11]  introduced COVIDX-
Net, which consists of seven CNN models. They employed a 
deep learning model to detect COVID-19 using x-ray images. 
Karakanis et al. [12] proposed a lightweight deep learning 
architecture to detect COVID-19 from x-ray images. The 
authors use a conditional generative adversarial network for 
image augmentation by generating syntactic x-ray images. 
They achieved 98.7% accuracy in binary classification between 
COVID-19 and normal and also, 98.3% accuracy in a three-
class model with normal, COVID-19, and bacterial pneumonia. 
Wang and Wong [13] developed an accurate deep network 
namely COVID-Net for COVID-19 diagnosis with a 

classification accuracy of 92.4% in the two-class problem. 
Ioannis et al. [14] used 224 COVID-19 images to develop a 
deep model. They achieved 98.75% in accuracy for the two-
class problem and 93.48% in a three-class problem.   Jin et al. 
[15] introduced a hybrid ensemble method that includes three 
steps to identify COVID-19 using x-ray images. At first, pre-
trained Alexnet is used as a feature extractor, then the ReliefF 
method is adopted to sort extracted deep features, and after 
reducing features dimension, an SVM classifier is trained on 
selected features. they obtained 98.64% overall classification 
accuracy in multi-class classification, Normal, COVID-19, and 
Viral pneumonia. Narin et al. [16] employed the ResNet50 
model for COVID-19 diagnosis and obtained an accuracy of 
98% using chest x-ray images. Sethy and Behera [17] extracted 
deep features from x-ray images employing several CNN 
models and classified them with an SVM classifier. They 
reported the best performance for the model using the ResNet50 
feature extraction and an SVM classifier. Minaee et al. [18] 
developed a deep learning framework to predict COVID-19 in 
chest x-rays. They fine-tuned four CNN models, including 
ResNet18, ResNet50, SqueezeNet, and DenseNet and reached 
promising results in several tasks. Moreover, there are also 
various recent studies on COVID-19 detection that applied 
several deep learning models with CT images [2,19–23] and 
Lung Ultrasound (LUS) [24] 
A few studies focused on the diagnosis of SARS and MERS in 
X-ray chest images: In the work of Hamimi [25] about MERS, 
it was shown that features like the indicators of pneumonia 
could be found in the chest CT scan and X-ray images. Xie et 
al. [26] introduced a model to identify SARS from typical 
pneumonia from X-ray images. They employed three 
conventional classifiers: neural networks, C4.5, and 
Classification And Regression Tree (CART). Tahir et al. [27] 
employed CNN models for COVID-19 detection using a dataset 
containing SARS and MERS images. The authors developed a 
novel image pre-processing technique and deep learning 
algorithms and reported outperforming four CNN methods: 
SqueezeNet, ResNet18, Inceptionv3, and DenseNet201.They 
achieved the best accuracy of 98.22% using InceptionV3. 
Abbas et al. [28] proposed a method based on DeTraC deep 
CNN to classify COVID-19 using chest x-ray images. The 
DeTraC model consists of three phases, Decomposition, 
Transfer, and Compose. DeTraC uses a class decomposition 
mechanism to investigate class boundaries with any 
irregularities in the image dataset. They achieved 93.1% 
accuracy in a three-class problem includes normal, COVID-19, 
and SARS pneumonia. Xuanyang et al. [29] introduced a SARS 
detection system using a lung segmentation technique and 
feature extraction. They applied and compared several 
classification methods, including neural networks, decision 
trees and regression trees, where the regression trees achieved 
the highest detection accuracy. However, for pneumonia 
classification, NN-based models produce reasonably good 
results.  

As presented in this section, researchers worldwide 
introduced several approaches to COVID-19 detection and also 
techniques applied to identify SARS or MERS pneumonia.  
Since features of the lung infections are the same in these 
diseases, it is problematic for the expert to distinguish them, so 
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well-trained models are needed to develop an accurate and 
useful method in the treatment and decision-making. In this 
study, we advanced an effective method in the diagnosis of 
current COVID-19 from a wide range of viral pneumonia 
including, the same CoV family members SARS and MERS. 

III. MATERIAL AND METHODS  
We present the details of our proposed COVID-19 diagnostic 

method. After pre-processing to enhance X-ray images, the 
popular VGG-Net is used as a deep feature extractor from X-
ray images and the CCA feature fusion technique is applied to 
merge the extracted features. We introduce LMPL classifier for 
coronavirus detection. Fig. 1 illustrates a schema of the 
proposed COVID-19 diagnostic model. 

A. X-ray Dataset  
In this research, several open-access chest x-ray datasets are 

combined as a new large dataset on the coronavirus family. The 
combined dataset consists of six classes. The details of the 
dataset can be seen in Table I. The total number of images of 
the dataset is 3387.  

TABLE I 
DETAILS OF X-RAY IMAGE DATASET 

Types No. of X-ray  
Images 

Source Database 

Covid-19 423 SIRM-ITALIAN [31] 
  Novel Coronavirus 2019 Dataset [32] 
  Radiopaedia [33] 
  Chest Imaging (Spain) at thread reader [34] 
  COVID-19 Radiography Database [35] 
SARS 134 SARS, MERS X-ray Images Dataset [36] 
MERS 144 SARS, MERS X-ray Images Dataset [36] 
Normal 1341 Chest X-ray Images (pneumonia) [37] 
Typical Viral 
Pneumonia 

1345 Chest X-ray Images (pneumonia) [37] 

 The dataset was balanced by image augmentation to reach 
6179 images, as mentioned in Sec. III. 3) Image Augmentation. 

B. Image pre-processing pipeline 
Medical images often contain a low dynamic range. This 

affects the overall performance of image processing 
approaches. So, it may become harder to evaluate them visually 

[8]. We perform pre-processing to enhance the image 
information and visual quality through implementing contrast 
enhancement.  Another critical issue in medical imaging is 
imbalanced data, where the number of positive cases is lower 
than the negative cases. 

 

1) Resizing X-ray images 
To feed our images into CNNs, we need to resize the 

images to the input size dimensions of the deep network. For 
VGG-Net, images were resized to 224 × 224 pixels. 

2) Contrast limited adaptive histogram equalization 
 

Histogram equalization (HE) is an ordinary method and 
widely used to improve the contrast of an image and make 
algorithms more robust under varying conditions. HE 
produces a uniform distribution by computing the 
transformation function and it can help adjust the image by 
spreading out the most common intensity values of pixels in 
the range of 0 (black) to 255 (white). contrast limited 
adaptive histogram equalization (CLAHE) [30] is an 
improved HE approach that enhances local contrast and 
edges in small image regions by calculating the equalization 
for each part in the image. Fig. 2 illustrates the image 
enhancement by CLAHE method. It can be seen that the 
histogram is stretched around the entire spectrum and over 
all pixels of the image, this should facilitate the extraction of 

  
(a) (b) 

  
(c) (d) 

Fig. 2. CLAHE image enhancement. (a) COVID-19 X-ray image, (b) 
Histogram of (a), (c) CLAHE enhanced COVID-19 image, and (d) 
Histogram of (b). 
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Fig. 1. Schematic of the overall proposed diagnostic system 
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homogeneous features across all datasets. 
 

3) Image Augmentation  
To extend the number of training samples and avoid the 

risk of overfitting, we augment our data by applying different 
types of transformations. This makes the dataset suitable for 
deep learning. Deep learning algorithms such as CNNs 
generally outperform on a larger dataset rather than a smaller 
one. Besides this, the imbalanced class distribution has a 
considerable impact on the effectiveness of the classification 
models. Consequently, the size of classes is balanced in the 
training set through data augmentation (see Fig. 3). 
Translation can be a very useful transformation to avoid 
positional bias in the data. In other words, translation is very 
helpful as most lesions can be located almost anywhere in the 
image.  

In this work, rotation and translation operations are used 
to increase the number of images (upsampling) in order to 
balance the class instances with augmentation. Images were 
rotated 5, 10, 15, and 30 degrees and instances were also 
translated in a horizontal or vertical direction by 5%, 10%, 
15% in the SARS and MERS classes that have few instances, 
134 and 144 images, respectively. Finally, 1072 and 1152 
images were obtained in the SARS and MERS classes, 
respectively. In the COVID-19 class with 423 instances, 15-
degree rotation and 10% translation were performed to reach 
1269 images in this class. No augmentation was applied on 
Normal and typical Viral Pneumonia with 1341 and 1345 
images. All augmented x-ray images can be found in the 
Zenodo repository, https://zenodo.org/record/4691987 

C. Deep Feature Extraction 
 Deep features are extracted by pre-trained CNN models. To 

extract deep features, we use the fully connected (FC) layers.   
Since  VGG-Net [3] was successful in extracting deep features 
for various tasks, we employed VGG-Net as the main feature 
extractor to obtain robust automatic features.  

The input image size in VGG networks is 224 × 224 × 3. 
The architectural overview of VGG-Net is illustrated in Fig. 4. 
When applying VGG-Net as a deep feature extraction network, 
we remove the classification layer, which means the last fully 
connected layer. We can extract features as raw values or after 
transforming by a ReLU, where an output 𝑥  is mapped to 
𝑚𝑎𝑥(0, 𝑥). The activation values from the last hidden layer are 
extracted as the first deep feature vector (preReLU features, 
4096) as well as, the post-ReLU feature set (postReLU features, 
4096) as the second feature vector. For datasets that are not 
large enough, we can use transfer learning. In this paper, fine-

tuning is applied with transfer learning. This is done by 
retraining VGG-Net (The weights of the model trained using 
the ImageNet dataset) on the COVID-19 x-ray image and by 
transferring the deep features that are extracted to achieve better 
performance. When class labels are used to fine-tune the 
weights of the network, the extracted features are more 
discriminative in classifying the problem to diagnose COVID-
19 vs. other viral pneumonia. 

D. Deep Feature Fusion 
The obtained deep features are combined to acquire more 

informative fusion features. This can help to minimize the 
impact of inadequate features obtained from a single CNN. 
Indeed, feature fusion efficiently produces features that 
comprise rich information that describe the image well. 
Appropriately combining two or more feature sets is not a 
trivial task. In this study, a well-known parallel feature fusion 
technique is used, CCA. Feature fusion based on CCA creates 
two sets of transformations based on the correlation between 
two feature vectors that results in transformed features with a 
higher correlation than the original feature sets.  Suppose that 
𝑋 ∈ 𝑅!×# and 𝑌 ∈ 𝑅$×# are two feature sets where, 𝑛 
indicates the number of samples, and 𝑚 and 𝑘 denote the 
dimensions of 𝑋 and 𝑌, respectively. Let 𝑆%% ∈ 𝑅!×! and 
𝑆&& ∈ 𝑅$×$ represent the covariance matrices of  𝑋 and 𝑌, 
respectively, and  𝑆%& ∈ 𝑅!×$ is the between-sets covariance 
matrix where, 𝑆&% = 𝑆%&' . The overall covariance matrix 𝑆 =
𝑅(!)$)×(!)$) can be presented by (1): 

 𝑆 = 	5 𝑐𝑜𝑣(𝑋) 𝑐𝑜𝑣(𝑋, 𝑌)
𝑐𝑜𝑣(𝑌, 𝑋) 𝑐𝑜𝑣(𝑌) 9 = 5

𝑆%% 𝑆%&
𝑆&% 𝑆&&

9 
(1) 

The goal of CCA is to define a linear combination of these 
feature sets as shown in (2). 

 𝑋∗ = 𝑊%'𝑋 , 𝑌∗ = 𝑊&'𝑌 (2) 

where, 𝑊% ,𝑊& are associated coefficients of 𝑋	and	𝑌, 
respectively in order to maximize the pair-wise correlation 
across the two feature sets. This objective is predented in (3): 

 𝑐𝑜𝑟𝑟(𝑋∗, 𝑌∗) =
𝑐𝑜𝑣(𝑋∗, 𝑌∗)

𝑣𝑎𝑟(𝑋∗). 𝑣𝑎𝑟(𝑌∗) (3) 

where, 𝑐𝑜𝑣(𝑋∗, 𝑌∗) = 𝑊"#𝑆"$𝑊$  , 𝑣𝑎𝑟(𝑋∗) = 𝑊"#𝑆""𝑊" and 
𝑣𝑎𝑟(𝑌∗) = 𝑊$#𝑆$$𝑊"$. The combination of the transformed 

Fig. 4. VGG-Net architecture 
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Fig. 3. Image augmentation. (a) Image rotation by 30 degrees counter-
clockwise, and (b) Image translation in the horizontal and vertical 
direction by 15%. 
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features is achieved by addition (summation) or concatenation 
as follows in (4) and (5). 

 𝑍 = 𝑋∗ + 𝑌∗ = 0𝑊%
𝑊&

1
#
2𝑋𝑌3 (4) 

 
𝑍 = 2𝑋

∗

𝑌∗3 = 0𝑊% 0
0 𝑊&

1
#
2𝑋𝑌3 

(5) 
 

where, the resulted parallel fused feature matrix 𝑍 contains 
the canonical correlation discriminant features. Fig. 5 describes 
the CCA deep feature fusion procedure, where deep features are 
extracted by VGG-net from the input X-ray image. 

E. Large Margin Piecewise Linear (LMPL) Classifier  
In the last stage, fused features are used for the classification 

task by the proposed LMPL classifier. A cellular structure is 
developed, in this study, such that space is partitioned by more 
than one hyper-plane, instead of just one as in traditional 
models e.g., SVMs, into some regions called cells. At first, a 
grid of cells is generated by predefined hyper-planes, as shown 
in Fig. 6(a).  

In Fig. 6(a), there are three classes: star (red), square (blue), 
and diamond (violet). Then, a cell-table is created to store the 
information of each cell, such as the number of samples and its 
class  label. The class labels are assigned to cells based on 
majority voting in each cell. Afterward, the parameters of the 
hyperplanes are tuned one by one in iterations. In other words, 
one of the hyper-planes is adjusted, considering that the others 
are fixed. Changing this hyperplane changes the region of cells 
which are bounded to it from one side. Hence, the covering cell 
of a few instances may change. According to the actual label of 
each sample and the associated label of the cells, samples may 
prefer to be on a specific side of the hyper-plane. This 
preference is considered as their virtual labels. For example, if 
an instance prefers the right side of the hyperplane, its virtual 
label is 1 and, if it chooses the left side, its virtual label is −1. 
After virtual labeling, there will be a binary classification 
problem for the hyperplane under tuning. There are three 
sample groups in virtual labeling, as follows: 
1. Normal: these samples are classified correctly on one side 

of the hyperplane. Their loss function is defined by the 
famous Hinge loss, in (6): 

 𝑙(𝒙)'()*+,!" 	= 	max;0, 1 − 𝑦	?(𝒘# . 𝒙 + 𝑏)C  

 𝑤ℎ𝑒𝑟𝑒:											𝑦	? = {−1,+1} ( 6) 

Where 𝑦	?  is the virtual label of sample 𝑥 and the hinge loss 
function is convex. 
2. Negative Don’t care: these samples are classified 

incorrectly on both sides of the hyperplane. So, it is not 
important on which side they are located. Nevertheless, it 
is tested to change the position of samples concerning the 
hyperplane. If the sample is located on the positive side, it 
tries to be located on the negative side, and vice versa. In 
other words, they are forced to be near the hyper-plane.  
This loss function is defined by (7). By this function, the 
samples always get a penalty due to the fact that they are  
misclassified.  

 𝑙(𝒙)-(./0+)1# = max;𝑙(𝒙)'()*+,(%&) , 𝑙(𝒙)'()*+,(#&)C (7) 

3. Positive Don’t care: these samples are classified correctly 
on both sides of the hyperplane. Such as the second group 
(Negative Don’t care), it is not important which side of the 
hyperplane they are on. But in this case, it is tested to 
maximize their distance to the hyper-plane. The total loss 
is defined by (8):   

 𝑙(𝒙)-(./0+)1% = min;𝑙(𝒙)'()*+,(%&) , 𝑙(𝒙)'()*+,(#&)C (8) 

The Positive Don’t care group is discarded here, since they 
are classified correctly and help us to preserve convexity in the 
final objective function. Therefore, according to the two first 
groups, the proposed LMPL classifier optimizes each 
hyperplane based on the following objective function (9): 
 

min
1
2	
‖𝒘‖2 + N𝐶3 P 𝑙(𝒙)'()*+,(!)( 	

"∈'()*+,

Q

+ N𝐶2 P 𝑙(𝒙)-(./0+)1#
"∈-0#

Q 
(9) 

The scalar values 𝐶, and 𝐶- control the balance between the 
structural and empirical error. In this paper, both 𝐶, and 𝐶- are 
set to 1000. 
The defined objective is optimized by quadratic programming. 
After optimizing each hyperplane, the cell table is updated in  
each iteration. Additional hyperplanes that fall out of the search 
space and are not useful in the classification will be removed. 

 
 

Fig. 5. canonical correlation analysis (CCA) feature fusion 
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Fig. 6. An example of nonlinear multi-class classification with the 
proposed LMPL classifier. (a) The initial grid structure is 
constructed by eight initial hyperplanes, and (b) The final piecewise 
linear decision boundary is obtained by the LMPL classifier. 
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After several iterations, the final piecewise linear decision 
boundary is constructed. In the test step, an unseen sample 𝑥 is 
classified according to its cell label. Cell labels were stored in 
the obtained cell-table in the training phase. 
As mentioned, the LMPL classifier utilizes the cellular structure 
(see Fig 6. (a)). Each cell forms a rule with a decision space 
regarding its position with respect to the hyper-planes. By 
assigning a label to each cell, both multi-class classification and 
multi-modality, are structurally supported (the same as a 
decision tree). However, contrary to decision trees, the 
separator hyper-planes are shared in many decision spaces in 
order to use both local and global attributes of the training 
sample for class separation. These cells are then adjusted by 
tuning the initial hyperplanes from Fig. 6. (a). to Fig. 6. (b), to 
optimize a large margin classifier inspired by SVMs. Both 
using global hyper-planes and the large margin objective 
function lead to consider generalization and preventing the 
overfitting on the training data. Fig. 6. (b) illustrates the 
obtained LMPL piecewise linear decision boundary where three 
classes are classified well by five remaining hyperplanes. As 
presented, the decision boundaries are in a piecewise linear 
form that makes the LMPL non-linearly separatable samples in 
the original space instead of using kernel methods. After 
adjusting hyperplanes, additional hyperplanes that are not 

useful in the classification will be removed. Therefore, 
regarding not only the sample size but also the distribution and 
complexity of the decision boundaries, the complexity of the 
model is tuned by removing redundant hyperplanes. The large-
margin approach forces the redundant hyperplanes to be 
removed. This structure not only makes it feasible to work with 
small sample-size problems, but it also prevents overfitting on 
the training data by use of all the hyperplanes with a large-
margin approach. 

Fig. 7. represents classes by t-distributed Stochastic 
Neighbor Embedding (t-SNE) in 2D and 3D for both 
experiments. An extended version of this figure is shown in Fig. 
8. A multi-class problem is shown with multi-modal small 
samples in each class. Class samples are segmented into their 
parts. Hence, the class-pairs may not be linearly separable or 
with a very small margin whereas others can be piecewise 
linearly separated with acceptable margins.  
Fig. 8. illustrates the obtained decision boundary of the 
introduced LMPL classifier on t-SNE embedding features with 
four initial hyperplanes. After a few iterations, the LMPL 
adjusts hyperplanes and removes additional hyperplanes. 
Moreover, Piecewise linear decision boundaries are obtained 
that can separate classes. The initial number of hyperplanes is 
random (possibly 8 or 16) and also the number of iterations can 
be determined manually (for example 100).  Algorithm 1 
indicates the whole process of the proposed diagnostic method 
and The steps of the introduced LMPL classifier are shown in 
Algorithm 2.  
Algorithm 1. The Proposed Diagnostic Method  

1. Initialization: Experiment 1    COVID-19, Normal,Viral Penumonia 
2.                         Experiment 2    COVID-19, SARS, MERS    
3. Input: X-ray Images 
4. Image Preprocessing: 
5.           Resizing Images to 224 × 224 Pixels 
6.           Image Enhancement by CLAHE Histogram Equalization 
7.           Image Augmentation by Rotation (5° to 30°) and  
           Translation (%5 to %20) 

8. Feature Extraction: 
9.           Fine-tuning Pre-trained VGG-Net by Transfer Learning 

10.            Deep Feature Extraction by VGG-Net 
11. Deep Feature Fusion: 
12.            Pre-Relu and Post-Relu Deep Feature Fusion by CCA          
13. Classification:  
14.      Training: 
15.          Train the LMPL Classifier on the Training 

           set 𝒙 by Algorithm2  
16.      Testing: 
17.          Classify Test Image 𝑥’ by LMPL Model 
18. Output:  
19.         𝑦! : Predicted Class Label of Test Image 

 

Algorithm 2. Large Margin Piecewise Linear (LMPL) Classifier  
1. Initialization: 𝑓                    // number of iterations 
2.  
3.                        𝐻                     // set of hyper-planes 
4.                        Cell-table       // number of samples and cell-label  

                                                 based on majority voting                             
5. Input: Training set 𝒙, 𝐻 Hyperplane set, Test instance 𝑥’ 
6. Training Process: 
7. for itr =1: 𝑓 
8.       for each ℎ" in 𝐻 
9.             fix other hyperplanes 

10.              optimize the objective function: 
11.                min

#

$
%
	‖𝒘‖% + ∑ 𝐶$𝑙(𝒙)&'()*+(")$ 	, + 𝐶%𝑙(𝒙)-'./0*(1% 

  
(a) (b) 

Fig. 8. Representation of the LMPL decision boundary on t-SNE 
embedding features with four initial hyperplanes (a) two remaining 
hyperplanes of Expriment1: Normal, COVID-19, and Typical Viral 
Pneumonia, and (b) three remaining hyperplanes in Expriment2: 
COVID-19, SARS, and MERS. 
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Fig. 7. Representation of classes by t-SNE Embedding. (a) Scatter plot 
in the two-dimensional space of Experiment1: Normal, COVID-19, 
and typical viral pneumonia, (b) 3D scatter plot of (a), (c) Scatter plot 
in the two-dimensional space of Expriment2: COVID-19, SARS, and 
MERS. and (d) 3D scatter plot of (c). 
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12.                   Update cell-table 
13.          end for 
14.          remove extra hyperplanes 
15. end for 
16. Testing Process: 
17. find the cell of 𝑥!  
18. get the final label of the cell as 𝑦! 
19. Output:  
20. 𝑦! which is the predicted class label for the test instance 𝑥! 

IV. EXPERIMENTAL RESULTS  

A. Experimental Setup 
5-fold cross-validation (CV) is utilized. 80% of the original 
labeled data are used as the training set and the remaining 
samples (20%) are employed as the test set to evaluate the 
model (unseen instances). Results are averaged to produce the 
final confusion matrix. MATLAB (2020a) was utilized 
fortraining, evaluating, and testing different algorithms. the 
experiments were run on a computer with an Intel© i7-core 
@4.0GHz processor, 24GB RAM, 128 GB SSD, and 64-bit 
Windows 10 operating system. We use mini-batch gradient 
descent optimization with momentum update, 𝛽 = 0.9, and 
learning rate, 𝛼 = 1𝑒./  and 𝛼 = 3𝑒./. Besides, we selected 
16 images as the size of mini-batch and five back-propagation 
epochs. The details of the training and test instances in each fold 
can be found in the Zenodo repository, 
https://zenodo.org/record/4691987  

B. Experimental results and analysis 
In this study, two experiments were carried out for two 

different classification problems:  
• Experiment1: Normal, COVID-19, and typical Viral  

pneumonia 
• Experiment2: COVID-19, SARS, and MERS pneumonia 
1) Performance Analysis 

Several deep CNNs were compared as an End-to-End 
network and as a feature extractor with the proposed LMPL 
(named CNN)) in Table II and Table III. Experiments show 
the proposed LMPL classifier performed better than the 
conventional SoftMax classifier in all CNNs. VGGNet and 
VGGNet) were best among the networks in both experiments. 
As illustrated in Table IV and Table V, the proposed LMPL 
outperformed the conventional classifiers in terms of 
performance metrics in both Experiment 1 and Experiment 2 
compared to ensemble methods including AdaboostM2, Total 
Boost, and Random Forests consisting of 100 trees as weak 
learners. Moreover, the comparison of different feature fusion 
methods and deep features without fusion means preReLU 
and postReLU demonstrated in Table VI and Table VII. 
Concatenation and Summation techniques were used in 
Classical, CCA, and DCA feature fusion methods. The sum 
and concat operations, generate 4096 and 4096*2=8192 final 
fused features, respectively. 

 
 

TABLE II 
COMPARISON OF DEEP CNNs AS An END-2-END NETWORK AND AS A FEATURE 

EXTRACTOR ALONG WITH THE PROPOSED LMPL CLASSIFIER (CNN!) IN EXPERIMENT 1: 
NORMAL, COVID-19, AND TYPICAL VIRAL PNEUMONIA 

*Bold numbers indicate the best performance 

TABLE III 
COMPARISON OF DEEP CNNs AS An END-2-END NETWORK AND AS A FEATURE 

EXTRACTOR ALONG WITH THE PROPOSED LMPL CLASSIFIER (CNN!) IN EXPERIMENT 2: 
COVID-19, SARS, AND MERS PNEUMONIA 

*Bold numbers indicate the best performance 
 

TABLE IV 
COMPARISON OF COMMOM CLASSIFIERS WITH THE PROPOSED LMPL CLASSIFIER IN 

EXPERIMENT 1: NORMAL, COVID-19, AND TYPICAL VIRAL PNEUMONIA 

Method Performance Metrics (%) 

Method 

 Performance Metrics (%) 
Feature 

Extractor
Layer 

Sensitivity 
(Recall) 

Precision 
(PPV) F1-score Accuracy 

Average 
Rank 

ResNet18  87.47 (5) 84.52 (7) 85.86 (5) 88.02 (4) 5.3 
ResNet182  91.97 (8) 90.66 (7) 91.22 (7) 92.72 (7) 7.3 
ResNet50 Avg_pool 88.11 (4) 84.90 (6) 86.35 (4) 87.87 (5) 4.8 
ResNet502  94.25 (6) 91.26 (5) 92.64 (5) 93.58 (5) 5.3 
ResNetV2 Avg_pool 73.10 (11) 76.76 (9) 74.56 (11) 78.74 (10) 10.3 
ResNetV22  91.45 (10) 88.99 (9) 90.12 (8) 91.58 (9) 9.0 
Inception pool5 83.76 (8) 85.38 (5) 84.38 (8) 86.59 (8) 7.3 
Inception2  95.68 (3) 94.35 (3) 94.95 (3) 95.72 (3) 3.0 
InceptionV3 Avg_pool 80.70 (9) 76.38 (10) 77.95 (9) 80.46 (9) 9.3 
InceptionV32  92.60 (7) 90.90 (6) 91.70 (6) 93.15 (6) 6.3 
Xception Avg_pool 75.04 (10) 74.49 (11) 74.75 (10) 78.60 (11) 10.5 
Xception2  95.46 (4) 89.00 (8) 90.10 (9) 91.73 (8) 7.3 
DenseNet201 Avg_pool 91.83 (3) 91.60 (2) 91.57 (2) 92.87 (2) 2.3 
DenseNet2012  96.59 (2) 96.20 (2) 96.39 (2) 96.72 (2) 2.0 
SqueezeNet Pool10 85.64 (6) 84.51 (8) 85.02 (7) 87.30 (7) 7.0 
SqueezeNet2  85.39 (11) 86.12 (11) 85.45 (11) 87.87 (11) 11.0 
ShuffleNet Node_200 84.68 (7) 85.95 (4) 85.27 (6) 87.73 (6) 5.8 
ShuffleNet2  91.80 (9) 88.71 (10) 90.10 (9) 91.16 (10) 9.5 
AlexNet fc7 92.08 (2) 91.07 (3) 91.39 (3) 92.72 (3) 2.8 
AlexNet2  94.87 (5) 91.99 (4) 93.33 (4) 94.15 (4) 4.3 
VGGNet19 fc7 92.32 (1) 92.58 (1) 92.45 (1) 93.30 (1) 1.0 
VGGNet192  96.64 (1) 96.29 (1) 96.46 (1) 96.86 (1) 1.0 
Avg. on CNN 
Avg. on CNN+ 

 85.88 84.38 84.50 86.75  
 93.34 91.32 92.04 93.20  

Method 

 Performance Metrics (%) 
Feature 

Extractor
Layer 

Sensitivity 
(Recall) 

Precision 
(PPV) F1-score Accuracy 

Average 
Rank 

ResNet18  96.40 (4) 96.35 (5) 96.37 (4) 96.17 (4) 4.3 
ResNet182  97.60 (7) 98.06 (6) 97.82 (6) 97.52 (6) 6.3 
ResNet50 Avg_pool 96.20 (7) 96.16 (6) 96.17 (6) 95.91 (6) 6.3 
ResNet502  98.43 (3) 98.49 (4) 98.45 (4) 98.10 (4) 3.8 
ResNetV2 Avg_pool 94.04 (10) 92.61 (10) 93.28 (11) 93.18 (10) 10.3 
ResNetV22  97.48 (8) 97.07 (10) 97.26 (10) 97.01 (9) 9.3 
Inception pool5 96.40 (4) 96.40 (4) 96.35 (5) 96.01 (5) 4.5 
Inception2  98.41 (4) 98.69 (3) 98.54 (3) 98.36 (3) 3.3 
InceptionV3 Avg_pool 95.80 (8) 94.95 (9) 95.35 (8) 95.11 (8) 8.3 
InceptionV32  98.26 (5) 98.10 (5) 98.18 (5) 97.75 (5) 5.0 
Xception Avg_pool 92.00 (11) 92.11 (11) 92.05 (10) 91.73 (11) 10.8 
Xception2  97.24 (9) 97.34 (9) 97.29 (9) 96.98 (10) 9.3 
DenseNet201 Avg_pool 97.48 (2) 97.66 (2) 97.56 (2) 97.30 (3) 2.3 
DenseNet2012  98.85 (2) 98.86 (2) 98.85 (2) 98.58 (2) 2.0 
SqueezeNet Pool10 95.14 (9) 95.13 (8) 95.06 (9) 94.76 (9) 8.8 
SqueezeNet2  95.39 (11) 94.75 (11) 95.03 (11) 95.08 (11) 11.0 
ShuffleNet Node_200 96.34 (6) 95.68 (7) 96.00 (7) 95.82 (7) 6.8 
ShuffleNet2  97.20 (10) 97.56 (8) 97.36 (8) 97.07 (8) 8.5 
AlexNet fc7 97.24 (3) 97.57 (3) 97.40 (3) 97.33 (2) 2.8 
AlexNet2  97.67 (6) 97.84 (7) 97.75 (7) 97.39 (7) 6.8 
VGGNet19 fc7 98.21(1) 98.43 (1) 98.32 (1) 98.10 (1) 1.0 
VGGNet192  98.87 (1) 99.08 (1) 98.97 (1) 98.81 (1) 1.0 
Avg. on CNN 
Avg on CNN+ 

 95.93 95.73 95.81 95.58  
 97.76 97.80 97.77 97.51  
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Sensitivity 
(Recall) 

Precision 
(PPV) F1-score Accuracy Average 

Rank 
NaiveBayes 97.94 (12) 97.63 (12) 97.78 (12) 97.75 (12) 12.0 
𝑘NN (𝑘 = 3) 98.61 (6) 98.72 (6) 98.67 (6) 98.55 (6) 6.0 
𝑘NN (𝑘	= 5) 98.53 (7) 98.75 (5) 98.64 (7) 98.52 (8) 6.8 
𝑘NN (𝑘 = 7) 98.44 (8) 98.60 (8) 98.52 (8) 98.39 (9) 8.3 
OvO SVM 98.42 (10) 98.52 (10) 98.47 (10) 98.30 (10) 10.0 
OvA SVM 98.82 (3) 98.61 (7) 98.71 (5) 98.68 (4) 4.8 
Decision Tree 98.45 (9) 98.56 (9) 98.50 (9) 98.55 (6) 8.3 
AdaBoostM2  98.63 (5) 98.96 (4) 98.80 (4) 98.65 (5) 4.5 
TotalBoost  98.68 (4) 99.06 (3) 98.87 (3) 98.78 (3) 3.3 
Random Forrest 98.84 (2) 99.00 (2) 98.92 (2) 98.84 (1) 1.8 
SoftMax 98.21 (11) 98.43 (11) 98.32 (11) 98.10 (11) 11.0 
Proposed LMPL 98.87 (1) 99.08 (1) 98.97 (1) 98.81 (2) 1.3 
*Bold numbers indicate the best performance 

TABLE V 
COMPARISON OF COMMON CLASSIFIERS WITH THE PROPOSED LMPL CLASSIFIER IN 

EXPERIMENT 2: COVID-19, SARS, AND MERS PNEUMONIA 

Method 
Performance Metrics (%) 
Sensitivity 

(Recall) 
Precision 

(PPV) F1-score Accuracy Average 
Rank 

NaiveBayes 89.20 (12) 94.23 (10) 91.25 (12) 92.58 (12) 11.5 
𝑘NN (𝑘 = 3) 96.08 (2) 95.43 (4) 95.72 (3) 96.29 (3) 3.0 
𝑘NN (𝑘 = 5) 95.31 (5) 94.95 (6) 95.08 (6) 95.72 (5) 5.3 
𝑘NN (𝑘 = 7) 94.35 (8) 94.57 (9) 94.42 (8) 95.15 (8) 8.3 
OvO SVM 94.64 (7) 93.10 (11) 93.84 (9) 95.01 (9) 9.0 
OvA SVM 95.86 (4) 94.73 (7) 95.28 (4) 96.01 (4) 4.8 
Decision Tree 94.95 (6) 95.20 (5) 95.06 (7) 95.72 (5) 5.8 
AdaBoostM2  93.07 (10) 94.66 (8) 93.82 (10) 94.58 (10) 9.5 
TotalBoost  93.63 (9) 96.83 (1) 95.13 (5) 95.72 (5) 5.0 
Random Forrest 96.03 (3) 95.86 (3) 95.93 (2) 96.58 (2) 2.5 
SoftMax 92.32 (11) 92.58 (12) 92.45 (11) 93.30 (11) 11.3 
Proposed LMPL 96.64 (1) 96.29 (2) 96.46 (1) 96.86 (1) 1.3 
*Bold numbers indicate the best performance 

TABLE VI 
COMPARISON OF WITHOUT FUSION AND FUSION METHODS WITH THE PROPOSED LMPL 

CLASSIFIER IN EXPERIMENT 1: NORMAL, COVID-19, AND TYPICAL VIRAL 

Method 

 Performance Metrics (%) 

 Sensitivity 
(Recall) 

Precision 
(PPV) F1-score Accuracy Average 

Rank 
Without 
Fusion 

preRelu 98.64 (8) 98.81 (8) 98.72 (8) 98.52 (8) 8.0 
postRelu 98.87 (6) 99.08 (6) 98.97 (7) 98.81 (7) 6.5 

Concat Classical 99.22 (4) 99.33 (4) 99.28 (4) 99.13 (4) 4.0 
 DCA 98.86 (7) 99.08 (6) 98.99 (6) 98.87 (6) 6.3 
 CCA 99.37 (2) 99.48 (1) 99.42 (2) 99.32 (2) 1.8 
Sum Classical 99.27 (3) 99.38 (3) 99.33 (3) 99.20 (3) 3.0 
 DCA 98.91 (5) 99.18 (5) 99.04 (5) 99.00 (5) 5.0 
 CCA 99.42 (1) 99.47 (2) 99.45 (1) 99.39 (1) 1.3 
*Bold numbers indicate the best performance 

TABLE VII 
COMPARISON OF WITHOUT FUSION AND FUSION METHODS WITH THE PROPOSED LMPL 

CLASSIFIER IN EXPERIMENT 2: COVID-19, SARS, AND MERS PNEUMONIA 

Method 
 Performance Metrics (%) 

 Sensitivity 
(Recall) 

Precision 
(PPV) F1-score Accuracy Average 

Rank 
Without 
Fusion 

preRelu 95.74 (8) 96.03 (8) 95.88 (8) 96.29 (8) 8.0 
postRelu 96.64 (5) 96.29 (7) 96.46 (7) 96.86 (7) 6.5 

Concat Classical 97.94 (4) 96.97 (4) 97.44 (4) 97.72 (4) 4.0 
 DCA 96.44 (7) 96.88 (5) 96.66 (5) 97.00 (5) 5.5 
 CCA 98.66 (2) 97.87 (2) 98.26 (2) 98.43 (2) 2.0 
Sum Classical 98.10 (3) 97.39 (3) 97.74 (3) 98.00 (3) 3.0 
 DCA 96.48 (6) 96.58 (6) 96.52 (6) 97.00 (5) 5.8 
 CCA 98.89 (1) 98.56 (1) 98.73 (1) 98.86 (1) 1.0 

TABLE VIII 
COMPARISON OF DIFFERENT PREPROCESSING METHODS IN EXPERIMENT1: NORMAL, 

COVID-19, AND TYPICAL VIRAL 

Method Performance Metrics (%) 

Sensitivity 
(Recall) 

Precision 
(PPV) F1-score Accuracy Average 

Rank 
No Preprocessing 96.09 (5) 95.89 (5) 95.99 (5) 96.40 (5) 5.0 
Image Adjustment  97.50 (2) 97.57 (2) 97.52 (2) 97.52 (2) 2.0 
Histogram Matching 96.93 (4) 96.64 (4) 96.78 (4) 97.01 (4) 4.0 
Histogram Equalization 97.42 (3) 97.39 (3) 97.39 (3) 97.43 (3) 3.0 
CLAHE 99.42 (1) 99.47 (1) 99.45 (1) 99.39 (1) 1.0 

*Bold numbers indicate the best performance 
 

TABLE IX 
COMPARISON OF DIFFERENT PREPROCESSING METHODS  IN EXPERIMENT 2: COVID-19, 

SARS, AND MERS PNEUMONIA 

Method 
Performance Metrics (%) 
Sensitivity 

(Recall) 
Precision 

(PPV) F1-score Accuracy Average 
Rank 

No Preprocessing 89.77 (5) 91.60 (4) 90.62 (5) 92.15 (5) 4.75 
Image Adjustment  97.57 (3) 96.63 (2) 97.09 (3) 97.57 (2) 2.5 
Histogram Matching 94.78 (4) 91.19 (5) 92.80 (4) 93.72 (4) 4.25 
Histogram Equalization 97.94 (2) 96.47 (3) 97.18 (2) 97.43 (3) 2.5 
CLAHE 98.89 (1) 98.56 (1) 98.73 (1) 98.86 (1) 1.0 

*Bold numbers indicate the best performance 
 

TABLE X 
COMPARISON OF DIFFERENT AUGMENTATION TECHNIQUES IN EXPERIMENT1: 

NORMAL, COVID-19, AND TYPICAL VIRAL PNEUMONIA 

Method 

Performance Metrics (%) 
Sensitivi

ty 
(Recall) 

Precision 
(PPV) F1-score Accuracy 

Average 
Rank 

No Augmentation 96.12 (5) 96.88 (5) 96.48 (5) 96.37 (5) 5.0 
Brightness & Contrast 98.48 (3) 98.22 (4) 98.35 (3) 98.10 (4) 3.5 
Cropping & Fliping 98.50 (2) 98.40 (2) 98.45 (2) 98.20 (2) 2.0 
Gaussian & Salt and 
pepper noise 98.34 (4) 98.24 (3) 98.29 (4) 98.20 (2) 3.25 

Rotation and Translation 99.42 (1) 99.47 (1) 99.45 (1) 99.39 (1) 1.0 
*Bold numbers indicate the best performance 
 

TABLE XI 
COMPARISON OF DIFFERENT AUGMENTATION TECHNIQUES IN EXPERIMENT 2: COVID-

19, SARS, AND MERS PNEUMONIA 

Method 

Performance Metrics (%) 
Sensitivi

ty 
(Recall) 

Precision 
(PPV) F1-score Accuracy 

Average 
Rank 

No Augmentation 95.12 (5)  96.44 (5) 95.74 (5) 95.56 (5) 5.0 
Brightness & Contrast 97.84 (3) 97.98 (3) 97.89 (2) 97.62 (3) 2.75 
Cropping & Fliping 97.52 (4) 98.05 (2) 97.76 (3) 97.56 (4) 3.25 
Gaussian & Salt and 
pepper noise 97.89 (2) 97.66 (4) 97.76 (3) 97.68 (2) 2.75 

Rotation and Translation 98.89 (1) 98.56 (1) 98.73 (1) 98.86 (1) 1.0 
*Bold numbers indicate the best performance 
 

The classical method is to group two sets of feature vectors 
which simply concatenates the two feature sets into one single 
vector. Discriminant Correlation Analysis (DCA) [38] 
maximizes the correlation among features through several 
feature sets and simultaneously maximizes the variance 
between classes. 

We observed that regarding the performance metrics the 
CCA fusion method with summation achieved outstanding 
results in comparison with the other approaches with 99.42% 
and 98.89% averaged accuracies.  

The final performance of the proposed method is 
compared with the other preprocessing techniques as shown in 
Table VIII and Table IX for both experiments. The 
effectiveness of different augmentation techniques on the final 
performance of the proposed method is compared as shown in 
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Table X and Table XI for both experiments. The comparing 
augmentation techniques are used with parameters as follow, 
• Brightness: Brightness is the amount of hue. As brightness 

varies from 0 to 1, colors go from black to white. 
Brightness jitter shifts the darkness and lightness of an 
input image. The brightness of the input image is adjusted 
by an offset selected randomly from the range [0.1, 0.3]. 
The image appears brighter, as expected when the 
brightness increases. 

• Contrast: The contrast jitter randomly adjusts the 
difference between the darkest and brightest regions in an 
input image. The contrast of the input image is adjusted by 
a scale factor selected randomly from the range [1.2, 1.4]. 
The contrast increases, such that shadows become darker 
and highlights become brighter. 

• Cropping: The image is cropped to the target size 
800 × 800 from the center of the image. 

• Flipping: A reflection transformation is created that flips 
the input image in the left-right direction (𝑋 dimension) 
and up to down direction (𝑌 dimension).  

• Gaussian Noise: A zero-mean, Gaussian white noise with 
variance of 0.01 is added to the image. 

• Salt & pepper Noise: Salt and pepper noise is added with 
a noise density of 0.1.  This affects approximately 10% of 
pixels. 

2) Statistical Analysis  
To further analyze the experimental performance of the 
comparable methods statistically, the Friedman test was used. 
The Friedman test is a simple, nonparametric test and safe for 
comparing at least three related samples. It has no assumptions 
about the primary distribution of data. The Friedman test ranks 
the algorithms for each metric independently such that the 
algorithm with the highest performance reaches the rank 1, the 
second-best is ranked as 2, etc. 𝑅0 represents the average rank 
of the jth method rely on different metrics, listed in Table II to 
XI. 
In other words, 𝑅0 calculated as follow, 
 

 
𝑅0 =	

1
𝑛	N𝑟1

0
#

12,

 
(10) 

and 𝑟1
0 denotes the rank of  jth method on the ith metric. In the 

case of ties, meaning two algorithms perform similarly, the 
same ranks are assigned. 

It can be seen from Table II to XI that the proposed method 
improved the performance significantly and achieved the best 
average rank in all cases. These tables show a meaningful 
difference through the efficiency of algorithms. Based on the 
Friedman test, the performance of the proposed MLPL 
classifier could be significantly better. To determine the best 
fusion method, the averaged ranks of different fusion 
techniques are calculated, as shown in Table VI and Table VII. 
As presented  in Table VI and Table VII, CCA fusion 
techniques with summation improved the performance 
considerably and achieved the best rank in both experiments. 

Moreover, a comparison between preprocessing methods is 
conducted in Table VIII and Table IX where CLAHE obtained 
the first rank, also the proposed augmentation techniques 
(Rotation and Translation) show the best effectiveness and 
achieved the best rank in comparison to other augmentation 
techniques (see Table X and Table XI). 
3) Visual Analysis 
For a detailed visual analysis, we provided the occlusion 
sensitivity [39] that provides a detailed visual analysis 
visualization of the extracted deep features through the fine-
tuned VGG-Net as shown in Fig. 8. Occlusion sensitivity is a  
technique to generate visual descriptions of the CNN model 
predictions. It helps to provide insight into the internal 
workings of a classifier based on deep CNNs.   
 

Misclassifications or unpredicted results can be based on 
reasonable clarifications. Using heat maps, we investigated the 
prediction regions. False-negative examples were examined to 
find out the reasons underlying the hidden classification 
problem. The spatial parts that contributed most to false-
negative predictions in COVID-19 classification were 
identified by occlusion sensitivity heat mapping, as shown in 
Fig. 8. The standard jet color-map is used where red and yellow 
denote high contribution regions to the false-negative 
predictions, and blue indicates low contribution regions.      
Manual inspection showed that in these false-negative 
examples, the network incorrectly attended on some edges and 
corners of images that are not relevant to COVID-19.  
Furthermore, the latest deep models using X- ray images (on 
not necessarily common datasets) are summarized in Table 
XII.  

TABLE XII 
LITERATURE REVIEW OF THE STATE-OF-THE-ART DEEP MODELS USING X-RAY 

IMAGES ON ASSOCIATED DATASETS (PNA STANDS FOR PNEUMONIA) 

Study No. of cases Method Accuracy 
(%) 

Ozturk et al. [5] 125 COVID-19 DarkCovidNet 98.08 
 500 No-finding   
 125 COVID-19  87.02 
 500 Pneumonia   
 500 No-finding   
Tabik et al. [6] 426 COVID-19 COVID-SD Net 97.72 
 426 Normal   
Rahman et al. [8] 3619 COVID-19 ChexNet 96.29 
 8851 Normal   
 6012 Pneumonia   
Togaçar et al. [10] 295 COVID-19 MobileNetV, SVM 96.28 
 65 Normal   
 98 Pneumonia   
Ioannis et al. [14] 224 COVID-19 VGG-19 93.48 
 700 Pneumonia   
 504 Healthy   
Karakanis et al. [12] 275 COVID-19 ResNet, CGAN 98.7 
 275 Normal   
 275 COVID-19  98.3 
 275 Normal   
 275 Bacterial PNA   
Wang and Wong [13] 53 COVID-19 COVID-Net 92.4 
 8066 Healthy   
Sethy and Behra [17] 25 COVID-19 ResNet 50, SVM 95.38 
 25 No-finding   
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Jain et al. [9] COVID-19 Xception 97.97 
 Normal   
 Pneumonia   
Jin et al. [15] 543 COVID-19 AlexNet 98.64 
 600 Normal   
 600 Viral PNA   
Hemdan et al. [11] 25 COVID-19 COVIDX-Net 90.00 
 25 No-finding   
Narin et al. [16] 50 COVID-19 Res-Net 50 98.00 
 50 No-finding   
Mahmud et al. [7] 305 COVID-19 CovXNet 97.4 
 305 Normal   
 305 COVID-19  90.3 
 305 Normal   
 305 Viral PNA   
 305 Bacterial PNA   
Minaee et al. [18] 184 COVID-19 SqueezeNet 92.30 
 5000 Non-COVID   
 6054 Pneumonia   
Abbaas et al. [28] 80 Covid-19 DeTraC 93.10 
 105 Normal   
 11 SARS   
Tahir et al. [27] 423 COVID-19 InceptionV3 97.73 
 134 SARS   
 144 MERS   
Proposed Method  
(Transferred deep 
features of VGG-Net, 
Deep feature fusion, 
The LMPL classifier) 

423 COVID-19 VGG-Net19 99.42 
1341 Normal   
1345 Viral PNA   
423 COVID-19  98.89 
134 SARS   
144 MERS   

V. DISCUSSION 
LMPL improved the performance of all CNNs significantly  
and achieved the best results with few iterations (5 in our 
experiments) to avoid overfitting with small sample sizes and 
leads to better generalization. The LMPL outperformed 
conventional classifiers and provided very competitive results 
compared to Ensemble methods with 100 trees as weak 
learners. However, the complexity of ensembles is high and 
need space to train multiple models. The LMPL is simple and 
needs less space to produce a good model.  

We can conclude that the fusion of deep features is helpful 
and improves the results even with classical concatenation and 
summation which are easy to apply and fast.  The obtained deep 
feature vectors are fused to acquire more informative features 
that minimize the impact of insufficient features obtained from 
one CNN model. Feature fusion efficiently produces features 
that comprise rich information that describe the image well. 
Appropriately combining two or more features, is not a trivial 
task. Due to similar visual features in various viral pneumonia 
especially severe coronavirus of the family SARS and MERS, 
the DCA feature fusion strategy could not find useful 
information to maximize between-class distances. 

Although, x-rays are widely available and the most common 
approach as they are low-cost. CT scans are a more powerful 
method, so it might be needed in some cases to do a chest CT 
to get a better picture and a more detailed view. Indeed, x-rays 
can help as a first-line diagnostic tool in most cases if they are 
detectable by this technology. In this study, we studied how 
much X-ray images can help to identify COVID-19, and we 
plan to extend our model for CT scans as well. 

VI. CONCLUSION AND FUTURE WORK 
Early COVID-19 detection can benefit in preparing an 

appropriate treatment plan and facilitate medical decision-
making. In this study, a LMPL classifier was presented in the 
diagnosis of coronavirus from a wide range of other viral 
pneumonia using raw chest X-ray images. The introduced 
method was shown to solve two classification problems: 
Normal, COVID-19, and typical Viral pneumonia; COVID-19, 
SARS, and MERS pneumonia. The results show an outstanding 
average accuracy of the proposed method, as compared to state-
of-the-art deep models, for both schemes with 99.4% and 
98.9%, respectively.  

In the future, the objective function of the introduced 
learning model can be extended to obtain clustering and semi-
supervised models. To improve the LMPL classifier, Positive 
Don’t care samples can be considered in tuning hyperplanes to 
get larger margins and better generalization of the model. 
However, such loss functions are not convex. Therefore, the 
solutions to deal with non-convex objective functions like 
gradient descent should be investigated. Other binary classifiers 
could be developed by the proposed cellular model. Applying 
kernels in the proposed classifier may help to consider 
complicated nonlinear decision boundaries. Extracting more 
effective features to make a more accurate and robust model to 
treat other emerging diseases with insufficient data can be 
considered in the future. The proposed pipeline can be adapted 
for chest CT scans to diagnose COVID-19 pneumonia as well 
as, other image processing applications of industrial and 
healthcare systems such as industrial cameras, process control, 
industrial robotics, object recognition, etc.   
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