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Abstract

A correct representation of the lightning current is crucial when the electro-
magnetic field radiated to a point of interest has to be computed. Based
on the engineering models of Transmission Line type, such representation
involves the knowledge of the return-stroke speed, the channel-base current,
the channel height and the attenuation function. Whereas the first three
quantities can be measured in different ways, no measurement technique can
directly provide reliable information on the attenuation function. In the past
decades, researchers have applied various strategies to address this problem.
These strategies are all based on a common feature, i.e., the unknown func-
tion is postulated a priori and then validated through the comparison of the
computed electromagnetic fields at one or more observation points with the
corresponding measured waveforms. In this paper, we propose an alternative
approach for the identification of the attenuation function: starting from ap-
propriate measurements of the return-stroke speed, the channel-base current,
the channel height and the radiated electromagnetic field, we first formulate
an algebraic inverse and ill-posed problem, obtained from the discretization
of integral equations relating the source to the radiated field in the frequency
domain, and then we solve it by means of a Tikhonov regularization tech-
nique. The proposed framework is preceded by a detailed theoretical analysis,
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with special emphasis on the description and filtering of measurement noise
and on the minimum duration of the measurement time-windows ensuring
reliable results.
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1. Introduction

Lightning is one of the most critical phenomena affecting the reliabil-
ity of electrical systems [1, 2]. The need for a correct computation of the
electromagnetic (EM) fields illuminating an electrical infrastructure is cru-
cial and has been deeply analyzed during the past decades. The EM fields
are usually computed starting from the postulated knowledge of the current
spatial-temporal distribution along the lightning channel; in this framework,
five different modeling approaches have been developed:

1. gas dynamic or physical models [3, 4, 5]: they require three hydro-
dynamic equations (representing the conservation of mass, momentum
and energy) to be solved and coupled to two state equations admit-
ting, as an input parameter, a postulated and time-dependent channel
current;

2. electromagnetic or antenna-theory models (e.g., [6, 7]), whereby the
lightning channel is regarded as a lossy thin-wire antenna;

3. distributed circuit models (e.g., [8]), which represent an approximation
of the electromagnetic models and utilize the telegrapher equations to
describe the lightning channel;

4. waveguide models (e.g., [9, 10]): they model the lightning channel as a
waveguide with finite conductivity and represent the return stroke as
a current pulse traveling in it;

5. engineering models, which can in turn be subdivided into three cate-
gories [11], i.e., Current Propagation (or Transmission Line type) mod-
els (e.g., [12, 13, 14, 15]), Current Generation (or Travelling Current
Source type) models [16, 17, 18, 19, 20] and Current Dissipation models
(e.g., [21, 22]).

When dealing with the interactions of lightning with electrical infrastruc-
ture, engineering models are most frequently adopted, owing to their low
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computational cost in the evaluation of the EM fields. Moreover, they sat-
isfactorily represent the EM fields from tens of meters up to hundreds of
kilometers from the lightning stroke [16]. Under the assumption of a vertical
lightning channel, this approach provides an equation relating the channel
current I(z′, t) at any time t and height z′ to the channel-base current: de-
pending on the particular application, the time-domain waveform of such
current at z′ = 0 is either measured or modeled (with a small number of
adjustable parameters) on the basis of data sets collected by measurement
campaigns in different parts of the world.

Among the engineering models, the most common choice is represented
by the Transmission Line (TL) type models, characterized by the general
equation

I(z′, t) = u

(
t− |z

′|
vf

)
P (z′) I

(
0, t− |z

′|
v

)
, (1)

where u is the unit step function, vf is the return-stroke speed, v is the
current-wave propagation speed (usually v = vf ), P (z′) is the attenuation
function and I(0, t) is the channel-base current. If the trivial case P (z′) ≡ 1
is a priori excluded, they are referred to as modified TL (MTL) models. Note
that TL-type models assume that no distortion occurs along the channel. Ac-
cording to several measurements all around the world, the return-stroke speed
turns out to vary from one third to one half of the light speed [23]. Moreover,
thanks to the use of the well-known Rogowski coil (or other devices, such as
shunts), instrumented towers (e.g., [24, 25, 26, 27, 28]) allow measuring the
channel-base current, thus leading to a set of lightning channel-base current
parameters, which are commonly adopted in various standards [1]. Experi-
mental results in this field have inspired the definition of different kinds of
functions to represent the channel-base current [29, 30, 31, 32, 33, 34].

On the other hand, the attenuation of the current along the stroke channel
is a critical point in the lightning research, since information on this property
is difficult to obtain by direct measurements. To address such issue, the
most frequently adopted models are based on the following strategy: first, a
parameterized formula is postulated a priori for P (z′); then, the parameters
are adjusted in order to achieve the best fit with the measured EM fields.
This approach results in the well-known MTLL [13], MTLE [14], MTLTCOS,
MTLTSIN, MTLT and MTLT2 models [15].

A second and more complex approach consists in regarding the “current-
field equations”, i.e., the integral equations relating the channel current to
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the radiated EM fields, as an inverse problem, whose unknown is the attenu-
ation function, whereas the input data are appropriate measurements of the
EM fields, as well as of the return-stroke speed, the channel height and the
channel-base current. Through discretization, an algebraic and linear inverse
problem is thus obtained, which can be solved by using suitable regulariza-
tion techniques. In principle, this problem can be formulated either in the
time domain (see, e.g., [35]) or in the frequency domain, but the latter case
seems to be more adequate for many purposes: see, e.g., [36, 37, 38, 39, 40].

In spite of the coherent theoretical framework and some promising results,
there are some significant issues that still need to be properly tackled if the
prospective application to real-data inversion is to be taken into account.
First, the standard Fourier Transform (FT) requires, in principle, measure-
ment times of infinite duration, which is obviously impossible in any realistic
application; on the other hand, if their finiteness is explicitly considered, as
recently shown in [41], the integral equations for the vertical and radial com-
ponents of the electric field need to be modified with respect to the standard
formulation (to be found in [42]) and become more complex. Second, one of
the main advantages of working in the frequency domain is the possibility of
filtering out, at least to some extent, the measurement noise by means of a
procedure analogous to low-pass filtering; however, this possibility does not
seem to have been fully exploited so far, since simulated noise has been di-
rectly added to the data in the frequency domain (see, in particular, [37, 38])
instead of obtaining it as the FT of a properly modeled noise in the time
domain. A possible exception to this tendency can perhaps be found in some
short hints given by [39]; however, in [39] noise was only added to the electric
field and not to the channel-base current.

The main goal of this paper is to fill these two gaps by proposing a
framework where both the finite duration of time-domain measurements and
a realistic modeling of measurement noise in the time domain (with its subse-
quent low-pass filtering) are systematically considered in the formulation of
the inverse problem of interest. More precisely, the various sections forming
this paper can be outlined as follows.

In Section 2, we first introduce the geometry of the problem and sum-
marize the results obtained in [41], which rely on the assumption that the
measurement times are sufficiently long (but finite); in particular, we recall
the current-field equations, both in the time domain and in the frequency
domain. Then, by applying such results to the case of an MTL model for
the return-stroke current, we deduce the integral equations representing the
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theoretical formulation of the inverse problem to be addressed. In Section 3,
the previous equations are discretized in the frequency domain, thus recast-
ing the inverse problem as a linear algebraic system. Next, we describe in
detail both the numerical computation of noiseless data and the simulation
of the measurement noise affecting the EM fields and the channel-base cur-
rent; also some source of model noise (i.e., of discrepancy between the actual
implementation and the true values of the parameters or the assumptions
of the model) is briefly considered. Finally, we outline the inversion and
regularization procedures applied to solve the ill-posed inverse problem, i.e.,
Tikhonov regularization coupled with the L-curve method for the choice of
the regularization parameter. Section 4 is devoted to the presentation and
discussion of the obtained results, i.e., the reconstructions of the attenua-
tion function P (z′) in several different conditions, by varying the models for
P (z′), the choices of the measured fields, the accuracy of the knowledge of
the return-stroke speed and the duration of the measurement times. Lastly,
our conclusions are presented in Section 5.

2. Theoretical formulation of the inverse problem in the case of
finite-duration time-windows

2.1. Preliminary review of known results

With reference to Fig. 1, we consider a lightning return stroke whose
channel is vertical and rectilinear, has a finite length H and lies on the z-axis
of a Cartesian orthogonal coordinate system with the origin O placed at the
base of the channel. Let z′ ∈ [0, H] be the height of any point Q1 on the
return-stroke channel and let (r, z) ∈ (0,+∞)×R be the pair formed by the
radial coordinate and the height of the measurement point Q2, where the
electric and/or magnetic fields radiated by the lightning return-stroke are
observed; then, the distance between Q1 and Q2 is

R(z′) =
√
r2 + (z − z′)2 (2)

and, in particular, for Q1 ≡ O (i.e., z′ = 0), R(0) =
√
r2 + z2.

We require that no secondary source of radiation be present other than
the ground: the latter is modeled as an infinite, horizontal and perfect elec-
tric conducting (PEC) plane, which enables applying the method of images;
accordingly, we can consider z′ as varying in the interval [−H,H].

In such case, the equations of the fields radiated by a return stroke are
well-known [43]; for the moment, it suffices to focus on the vertical component
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Figure 1: Geometry of the problem and corresponding coordinates.

of the electric field. Let I(z′, t) be the two-variable function describing the
electric current in the return-stroke channel, and let us denote, for short,
with “∂t” and “R” the partial derivative with respect to t and the distance
(2), respectively: then, such component is given by

Ez(r, z, t) =
1

4πε0

∫ H

−H

[
2(z − z′)2 − r2

cR4
I

(
z′, t− R

c

)
− r2

c2R3
∂tI

(
z′, t− R

c

)
+

2(z − z′)2 − r2

R5

∫ t

0

I

(
z′, τ − R

c

)
dτ

]
dz′. (3)

Its FT has been computed in [42] and it is (for ω 6= 0):

Êz(r, z, ω) =

∫ H

−H

[
(2(z − z′)2 − r2) (c2 + jωcR)

4πε0 jωc2R5

+
ω2r2R2

4πε0 jωc2R5

]
· e−

jωR
c Î(z′, ω) dz′, (4)

where the following standard definition and notation for the FT of a function
f(t) is adopted:

[F(f)](ω) = f̂(ω) =

∫ +∞

−∞
f(t)e−jωtdt, (5)
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with j being the imaginary unit.
In practice, however, any field can only be measured during a time window

of finite duration. Therefore, in general, definition (5) is not applicable and
the integration is to be performed over a finite time-interval. A framework
addressing this problem has been presented in [41] and can be summarized
as follows.

First, we can assume that the current begins to flow in the return-stroke
channel at time t0 = 0 and that the function I(z′, t) describing it has a
compact support in time, i.e., that there exists T0 > 0 such that

I(z′, t) = 0 ∀t /∈ [0, T0], ∀z′ ∈ [−H,H]. (6)

A typical choice is

T0 = H/v + Tc, with [0, Tc] = supp I(0, ·), (7)

where v is the (average) speed of the return stroke (cf. (1) above) and Tc is
the duration of the channel-base current I(0, t).

Second, we assume that the field is measured in the time window [0, T ],
i.e., we introduce the windowed field

ET
z (r, z, t) := WT (t) · Ez(r, z, t), (8)

where WT : R → R is the time-window function defined as WT (t) = 1
if t ∈ [0, T ] and WT (t) = 0 otherwise. Then, from (3) and (5), and by
interchanging the integrals in dz and dt, we find the following expression for
the FT of (8):

ÊT
z (r, z, ω) =

∫ T

0

ET
z (r, z, t)e−jωt dt (9)

=

∫ H

−H

{
2(z − z′)2 − r2

4πε0cR4

∫ T

0

I

(
z′, t− R

c

)
e−jωt dt

− r2

4πε0c2R3

∫ T

0

∂tI

(
z′, t− R

c

)
e−jωt dt

+
2(z−z′)2−r2

4πε0R5

∫ T

0

[∫ t

0

I

(
z′, τ − R

c

)
dτ

]
e−jωt dt

}
dz′.

Third, in [41] it is proved that if T is chosen large enough, i.e., such that,
for a fixed observation point Q2(r, z),

T ≥ T0 +
M

c
, with M := max

z′
R(z′) (10)
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(typically, M = R(H)), then (9) can be equivalently expressed, for ω 6= 0, in
the form

ÊT
z (r, z, ω)=

H∫
−H

[2(z−z′)2−r2]c− jωr2R
4πε0c2R4

e−
jωR
c Î(z′, ω) dz′

+

H∫
−H

2(z−z′)2−r2

4πε0jωR5

[
e−

jωR
c Î(z′, ω)− e−jωT Î(z′, 0)

]
dz′, (11)

provided that the channel-base current I(0, t) is measured during the whole
interval [0, Tc], introduced above in (7). An equation analogous to (11) holds
true for the radial component ÊT

r (r, z, ω) [41], but it is not reported here,
since for z = 0 (i.e., in the case of a sensor in Q2 at ground level, as we shall
assume in Subsection 3.1) its right-hand side (RHS) vanishes identically.

Finally, the FT of the azimuthal component of the magnetic field is given
by [42, 41]:

ĤT
φ (r, z, ω) =

∫ H

−H

cr + jωrR

4πcR3
· e−

jωR
c Î(z′, ω) dz′. (12)

2.2. Position of the inverse problem

In order to apply the results of [41] to the analysis of interest in this paper,
we describe the return stroke by means of an MTL model, whereby a current
pulse, starting from the channel base (at time t0 = 0), flows upward with an
(average) speed v while its intensity decreases as |z′| increases, according to
an (even) attenuation function P (z′) satisfying the initial condition P (0) = 1.
Then, for all (z′, t) ∈ [−H,H] × R, the channel current is represented by
relation (1), which can be simplified, by assuming I(0, t) = 0 ∀t ≤ 0, in the
form

I(z′, t) = P (z′) I

(
0, t− |z

′|
v

)
∀(z′, t) ∈ [−H,H]× R. (13)

The FT of (13), as computed in [36], is given by

Î(z′, ω) = P (z′) Î(0, ω) exp

(
−jω |z

′|
v

)
. (14)
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By substituting (14) into (11) and (12), we respectively find, for ω 6= 0,

ÊT
z (r, z, ω)=Î(0, ω)

H∫
−H

{
[2(z−z′)2−r2]c−jωr2R

4πε0c2R4
e
−jω

(
R
c
+

|z′|
v

)

+
2(z−z′)2−r2

4πε0jωR5

[
e
−jω

(
R
c
+

|z′|
v

)
− e−jωT Î(0, 0)

Î(0, ω)

]}
P (z′) dz′, (15)

with Î(0, ω) 6= 0, and

ĤT
φ (r, z, ω) = Î(0, ω)

H∫
−H

cr + jωrR

4πcR3
e
−jω

(
R
c
+

|z′|
v

)
P (z′) dz′. (16)

In principle, the linear inverse problem to solve is now formulated in
(15)–(16) and consists in determining the attenuation function P (z′) from
the knowledge of Î(0, ω), ÊT

z (r, z, ω) and/or ĤT
φ (r, z, ω), as well as of the

parameters r, z, H and v. A computational approach to solve this problem
will be outlined in the following.

Before that, some comments about assumptions (6) and (10), which are
at the basis of our approach, are in order. Their physical meaning is that
the field is measured for the whole time taken by the return-stroke current to
travel up and vanish along the channel, as well as to propagate its radiation
from the channel itself to the sensor at Q2. In general, such requirement
cannot be fulfilled without detecting spurious signals, since as soon as the
front-wave of the current pulse reaches the top of the channel at time H/v,
physical phenomena may occur which are not taken into account by the TL-
type models considered here. Then, the problem arises to identify a class
of return-stroke models for which the measurement time of the fields can
be extended up to an instant T verifying the lower bound given by (10), so
that our framework and, in particular, equations (15) and (16) are properly
justified.

To this end, we observe that in most TL-type models the attenuation
function P (z′) is decreasing and such that P (H) vanishes (approximately or
exactly) [40], except for the trivial and less realistic case of constant P (z′) ≡
1. But, if P (H) ≈ 0, then the current at the top of the stroke channel is very
small or zero, and we can expect that no meaningful electromagnetic process
occurs there: while flowing upward, the current pulse originated from z′ = 0
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releases a (positive) electric charge to neutralize the (negative) charge in the
corona sheath surrounding the stepped leader channel [44], thus diminishing
in intensity and becoming very small or vanishing for z′ = H. In such
case, we would be justified in measuring both the fields and the channel-base
current until a time T such that condition (10) is satisfied. Therefore, in the
following, we shall focus on MTL models such that P (H) ≈ 0.

2.2.1. Brief hints about possible different formulations of the inverse problem

All the current-field equations (3)–(4), (9), (11)–(12), (15)–(16) consid-
ered above, both in the time and in the frequency domains, are exact in
that they do not rely on any far-field approximation. However, if the far-
field approximation is adopted, the current-field equations can be notably
simplified and the problem of reconstructing the attenuation function from
far-field data takes on specific features resulting from this simplification: see,
e.g., [35] and references therein.

Moreover, it should be mentioned that, in general, the channel current
may undergo not only attenuation, but also distortion; when the latter is to
be taken into account, the simple model (13) for the current I(z′, t) should be
replaced by a more sophisticated one, which can be expressed in the following
form [35, 44]:

I(z′, t) =

{
P (z′)F [z′, t− |z′|/vav(z′)] if t > |z′|/vav(z′)
0 otherwise,

(17)

where vav(z
′) = z′/

∫ z′
0
v−1(z) dz is the average speed of the return stroke

from z′ = 0 to a generic z′ > 0 (expressed as a functional of the instanta-
neous speed v(z′)), P (z′) is the usual attenuation function and F (z′, t) is a
function that encodes the information about the waveshape of the current.
In turn, F (z′, t) can be expressed in terms of a time convolution between the
channel-base current I(0, t) and a dispersion function R(z′, t) describing the
modification of the current waveshape as it propagates upwards.

Now, if appropriate models and parameters for R(z′, t) and v(z′) are as-
sumed a priori, as in [44], the inverse problem of determining the unknown
function P (z′) from measurements of the radiated fields and of the channel-
base current becomes analytically more complex than that formulated in
(15)–(16), but it is still linear in P (z′); therefore, it should be solvable by
adopting methods and techniques similar to those explained in the following
Section 3. Actually, the formal analogy between the two problems consists
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in the fact that the known function I (0, t− |z′|/v) in (13) is replaced by an-
other known function, i.e., F [z′, t− |z′|/vav(z′)], in (17). On the other hand,
if both P (z′) and F (z′, t) are unknown, it is more reasonable to assume di-
rectly I(z′, t) (in the time domain) or I(z′, ω) (in the frequency domain) as
the unknown of the problem, which then does not fall within our framework
anymore.

3. Numerical treatment

3.1. Discretization of the integral equations

A computationally efficient strategy to solve our inverse problem requires
a discretization process, whereby, depending on the available fields, the inte-
gral equations (15) and/or (16) are transformed into algebraic linear systems.
Such process can be implemented as described in [40] (to which we refer for
more details), with some obvious modifications due to the fact that (4) has
now been replaced by (11).

In short, the first step is to approximately represent the unknown function
P (z′) as a linear combination of N suitable and known “basis functions”, i.e.,
in the form

P (z′) ≈
N∑
n=1

pn ϕn(z′) ∀z′ ∈ [−H,H], (18)

where pn ∈ R are the coefficients of the combination. Although approximate,
the equality in (18) can be arbitrarily refined by increasing N , since the exact
equality holds as N → +∞; then, from now on, all the equations following
from (18) will be indicated as exact equalities. In any case, we shall see that,
for our purposes, N can be profitably chosen as not larger than 12. Since
P (0) = 1, the coefficients pn verify the “normalization condition”

N∑
n=1

pn ϕn(0) = 1. (19)

Now, let us focus on (15), since analogous considerations and notation
are valid for (16): the RHS of (15) can be regarded as the action of a lin-
ear integral operator Az,1 (acting between proper spaces of square-integrable
functions) on P (z′). The number 1 in the subindex of Az,1 is used to distin-
guish the integral operator associated with (15) from its counterpart in (16),
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Az,2. By linearity and (18), relation (15) can be written in compact form as

Î(0, ω)
N∑
n=1

pn
[
Az,1

(
ϕn)
]
(r, ω) = ÊT

z (r, z, ω). (20)

Moreover, if we set λ(ω) = 1/Î(0, ω) (not to be confused with any wave-
length) and g1(r, z, ω) = ÊT

z (r, z, ω), we can express (20), as well as the
analogous relation following from (16) with g2(r, z, ω) = ĤT

φ (r, z, ω), in the
form

N∑
n=1

pn
[
Az,i
(
ϕn)
]
(r, ω) = λ(ω)gi(r, z, ω), i = 1, 2. (21)

In general, measurements can be taken at various horizontal distances
rs from the return-stroke channel, labeled by the index s = 1, . . . , S, and
considered at different angular frequencies ωs,f , labeled by the sensor index s
and the frequency index f = 1, . . . , F (s); accordingly, analogous labels also
apply to λs,f = λ (ωs,f ). In realistic applications, S is small, since it coincides
with the number of field sensors, whereas F (s) is large for any sensor s, since
the channel-base current and the fields are usually measured in the time
domain and then Fourier-transformed by means of computations, such as
FFT, that usually involve a large number of frequencies. Moreover, sensors
are typically at ground level, so that we can assume z = 0.

Hence, if we define the
(∑S

s=1 F (s) + 1
)
×N matrix

Ri =



[
A0,i

(
ϕ1)
](
r1, ω1,1

)
· · ·

[
A0,i

(
ϕN)

](
r1, ω1,1

)
...

...
...[

A0,i

(
ϕ1)
](
r1, ω1,F (1)

)
· · ·

[
A0,i

(
ϕN)

](
r1, ω1,F (1)

)
...

...
...[

A0,i

(
ϕ1)
](
rS, ωS,1

)
· · ·

[
A0,i

(
ϕN)

](
rS, ωS,1

)
...

...
...[

A0,i

(
ϕ1)
](
rS, ωS,F (S)

)
· · ·

[
A0,i

(
ϕN)

](
rS, ωS,F (S)

)
ϕ1(0) · · · ϕN(0)


, (22)

we can assemble (21) and (19) into an algebraic linear system in matrix form
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for the unknown vector [p1, . . . , pN ]T, i.e.,

Ri

p1...
pN

 =



λ1,1 gi
(
r1, 0, ω1,1

)
...

λ1,F (1) gi
(
r1, 0, ω1,F (1)

)
...

λS,1 gi
(
rS, 0, ωS,1

)
...

λS,F (S) gi
(
rS, 0, ωS,F (S)

)
1


, i = 1, 2. (23)

Moreover, if both sets of measurements i = 1 (electric field) and i = 2 (mag-
netic field) are available, the two corresponding systems in (23) can be unified

into a single one, by replacing the matrix Ri with the
(

2
∑S

s=1 F (s) + 1
)
×N

matrix R = [R′1,R2]
T, where the block R′1 is obtained from R1 by canceling

its last row; clearly, the RHS of (23) should undergo an analogous rearrange-
ment, and the resulting system could be written in compact form as

R

p1...
pN

 =


λ1,1 g1

(
r1, 0, ω1,1

)
...

λS,F (S) g2
(
rS, 0, ωS,F (S)

)
1

 . (24)

Finally, since the entries of the matrices Ri and the components of the
free term on the RHS of (23) are complex numbers, the natural space of
solutions for such system would be CN , whereas the unknown coefficients
pn are real. The latter requirement is easily enforced, from an algorithmic
viewpoint, by splitting (23) into its real and imaginary parts, thus obtaining
a system of double dimension (more precisely, of 2

∑S
s=1 F (s) + 1 equations,

since the last row of Ri is real) to be solved in RN . Of course, the same
strategy can be applied to the unified system (24).

3.2. Computation of noiseless data

After having deduced the algebraic structure (22)–(24) of the discretized
inverse problem, we now describe the computation of the data, i.e., of the
matrices Ri, R and of the free terms of systems (23)–(24). The procedure
can be split into the following steps:
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1) choice of the basis functions ϕn and their number N : as regards the former,
we pick the Gegenbauer polynomials of order s = 1/2 [38, 40]; as regards
the latter, numerical simulations presented subsequently in Subsection 4.1
suggest that N = 12 is sufficient for any practical purpose;

2) choice of some realistic parameters appearing in the formulation of the
problem: in our simulations, except when explicitly stated otherwise, we set
H = 4.0 km, v = c/2 = 1.5 · 108 m/s, S = 1, r = r1 = 5.0 km, Tc = 1000µs
and, by (7), (10),

T = Tc +H/v +R(H)/c ≈ 1048µs. (25)

Since the sensor is only one, in the following we shall omit the sensor subindex
s by simply writing r, ωf and λf ;

3) choice of the attenuation function: among the various possibilities [40],
we pick: a) P (z′) = e−|z

′|/λ, with λ = 2000 m (MTLE model); b) P (z′) =
1− z′/H (MTLL model); c) P (z′) = 1− (z′/H)2 (“quadratic model”). The
attenuation functions of a) and b) belong to a set of well-established models,
whereas c) is an additional model introduced by us to make some more tests;

4) choice of a realistic model for the current I(0, t) at the base of the return-
stroke channel: to this end, we use the Heidler’s function [29]

IH(t) = IS
(t/τ1)

n

1 + (t/τ1)n
exp

[
− t

τ2
+
τ1
τ2

(
n
τ2
τ1

) 1
n

]
, (26)

with the following values of the parameters, typical of a first return-stroke:
IS = 28.215 kA, τ1 = 1.8µs, τ2 = 95µs, n = 2 [45];

5) computation of a discretized version of Î(0, ω) via FFT: such step also
requires the choice of some parameters (e.g., the number F of frequencies),
but this point will be discussed later, in Subsection 3.3. As a result, we
determine both Î(0, ωf ) and λf = 1/Î(0, ωf ), for f = 1, . . . , F ;

6) computation of a discretized version of ÊT
z (r, 0, ω) and/or ĤT

φ (r, 0, ω):
both to avoid any inverse crime [46] and to reproduce the realistic situa-
tion where the fields are first measured (and affected by noise, cf. Subsec-
tion 3.3) in the time domain and then Fourier transformed, we do not com-
pute ÊT

z (r, z, ωf ) and/or ĤT
φ (r, z, ωf ) via (15)–(16), but rather we substitute

the Heidler’s function modeling I(0, t) into the time-domain equation (3)
(and/or into the analogous one for the magnetic field), then we numerically
compute a discretized version of Ez(r, 0, t) and/or Hφ(r, 0, t), and finally
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we apply the FFT to the latter in order to determine ÊT
z (r, 0, ωs) and/or

ĤT
φ (r, 0, ωs). Again, the parameters used to implement the FFT algorithm

will be discussed in Subsection 3.3. As a result of steps 5) and 6), the com-
putation of the free terms on the RHSs of (23)–(24) is complete;

7) computation of the entries of the matrices Ri, R: once the basis functions
ϕn have been chosen as in step 1), the entries

[
A0,i

(
ϕn)
]
(r, ωf ) of the matri-

ces Ri, R can be determined by numerically computing the integrals in dz′

appearing on the RHSs of (15)–(16).

Figure 2: Block diagram summarizing the content of Subsections 3.2–3.4.

In the previous steps 1)–7), we have outlined the procedure adopted by
us to compute all the noiseless data necessary for an explicit formulation of
systems (23)–(24). However, in order to simulate realistic situations, this
procedure should be completed with some further steps, which include the
effect of noise. The description of such steps is presented in the next two
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subsections. In order to favor readability, the content of Subsections 3.2–3.4
is schematically illustrated in the block diagram of Fig. 2; so far, we have
described the blocks (1) to (8) of the diagram. The remaining ones will be
described in the next two subsections.

3.3. Simulation of measurement noise

Any real measurement of a current or a field is inevitably affected by
noise. Since these measurements are typically made in the time domain,
adding noise directly to the FTs of the channel-base current and of the fields
would not be appropriate; rather, we should first consider a realistic noise-
model in the time domain, so as to reproduce the noisy data

I(0, t) = I(0, t) + n0(t), (27)

Ez(r, 0, t) = Ez(r, 0, t) + n1(t), (28)

Hφ(r, 0, t) = Hφ(r, 0, t) + n2(t), (29)

and then compute their FTs, in order to obtain the noisy frequency-domain
data Î(0, ω), Ê(r, 0, ω) and/or Ĥφ(r, 0, ω). In (27)–(29), the functions nk(t),
with k = 0, 1, 2, describe the noise affecting the quantities to be measured.
If we denote by Mk(r, 0, t), for k = 0, 1, 2, the functions I(0, t), Ez(r, 0, t)
Hφ(r, 0, t) respectively, we can summarize (27)–(29) in the form

Mk(r, 0, t) = Mk(r, 0, t) + nk(t), k = 0, 1, 2. (30)

Here, we consider two frequently used noise models:
1) Gaussian noise: given a noise level `k ∈ [0, 1], we define

nk(t) ≡ nGk (t) = Mk(r, 0, t) · `k · g(t), (31)

where, for each t ∈ [0, T ], the scalar g(t) is the realization of a random vari-
able distributed according to the normal distribution N (µ, σ2), with mean
µ = 0 and standard deviation σ = 1

3
, so that such realization falls in the

interval [−1, 1] in essentially all cases (more precisely, in 99, 73% of them);
2) uniform random noise: given a noise level `k ∈ [0, 1], we define

nk(t) ≡ nUk (t) = Mk(r, 0, t) · `k · u(t), (32)

where, for each t ∈ [0, T ], the scalar u(t) is the realization of a random
variable distributed according to the uniform distribution U(−1, 1) in the
interval [−1, 1].
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So far, for the sake of simplicity, we have outlined the scheme of noise
simulation as if we worked in a continuous framework, but some more detail is
required if we want to deal with a discretized setting. Taking inspiration from
the experimental setup described in [47], we assume that each measurement
in the time-domain is characterized not only by its accuracy (which can
be identified with the noise level `k), but also by a certain time resolution
(∆t)k (which can be identified with the discretization step in time). More
precisely, according to the measurements performed in [47], the noise levels
and the discretization steps should be respectively chosen as (∆t)0 = 10 ns,
`0 = 10% for the channel-base current I(0, t), and (∆t)1 = 100 ns, `1 = 5%
for the electric field Ez(r, 0, t). Since no magnetic field is measured in [47],
by mere analogy we also choose (∆t)2 = 100 ns, `2 = 5% for Hφ(r, 0, t). As
a result, the current and the fields are considered for a finite number Jk of
time instants tjk such that tjk+1 − tjk = (∆t)k for all jk = 1, . . . , Jk, and the
corresponding discretized version of (30) can be written as

Mk(r, 0, tjk) = Mk(r, 0, tjk) + nk(tjk), k = 0, 1, 2. (33)

As regards the case k = 0, it suffices to discretize the Heidler’s function,
i.e., to set M0(r, 0, tj0) = IH(tj0) for j0 = 1, . . . , J0. As regards the case
k = 1, we first consider a ten times sparser discretization of the Heidler’s
function, i.e., IH(tj1), and then we substitute it in the time-domain equation
(3), where the integrals are computed via the trapezoidal rule; as a result,
we obtain the discretized electric field M1(r, 0, tj1) for j1 = 1, . . . , J1. The
case k = 2 is treated analogously to the case k = 1.

We should now compute the FFT of Mk(r, 0, tjk) for each k = 0, 1, 2.
To this end, we first recall, in general, the (not all independent) conditions
ensuring that the FFT is a discretization of the FT [48]:

TΩ = π
N

2
, ∆t =

π

Ω
, ∆ω =

π

T
, ∆t ·∆ω =

2π

N
, (34)

where [−T, T ] is the time window and [−Ω,Ω] the corresponding (angular)
frequency window, N is the number of equispaced samples both in the time
and the frequency domain, whereas ∆t = 2T/N and ∆ω = 2Ω/N are the
distances between two consecutive samples in the two domains, respectively.

Now, when considered with reference to (33), in principle all the param-
eters appearing in (34), as well as the number of samples Jk = 2Tk/(∆t)k,
depend on k, since the channel-base current and the fields might well be
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measured with different time resolutions, as in [47], and in different time-
windows. However, in such case, the sets of discrete frequencies at which
the FFTs of the current and the fields are computed would also be different,
and this might impair the formulation of systems (23)–(24), which require a
common set of frequencies to be considered for the current and the fields.

The impact of such problem can be controlled by adopting the following
strategy. As regards the difference among time resolutions (∆t)k, this implies
a corresponding difference among the maximum frequencies Ωk = π/(∆t)k
achievable by the FFT; accordingly, it suffices to consider only the frequencies
not larger than the minimum of the values Ωk. As regards the difference
among time windows, i.e., among Tk, this implies a corresponding difference
among the discretization steps in the frequency domain, i.e., (∆ω)k = π/Tk.
Hence, we set in our simulations, first of all, T1 = T2 = T , i.e., we assume
that the electric and magnetic fields are measured in the same time window.
Moreover, by (7), the channel-base current vanishes for t > Tc, then we can
easily assume that also this current is measured in the same time window as
the fields, thus replacing the natural interval [−Tc, Tc] with [−T, T ].

However, the latter trick deserves some further comment. As claimed
in step 4) of Subsection 3.2, we choose the Heidler’s function IH(t) as a
model for I(0, t). Nevertheless, such function never vanishes, but only tends
asymptotically to zero as t increases. Then, in principle, we should modify
IH(t) in such a way that IH(t) = 0 for all t ∈ [Tc, T ] and IH(t) is derivable
in [0, T ] (cf. the term with ∂tI in the second line of (3)). However, for t > Tc
the values of the functions IH(t) and ∂tIH(t) are extremely small, so that
the error made when IH(t) is maintained unaltered in the whole interval
[0, T ] should be negligible and comparable to other numerical errors due to
approximation and discretization procedures implemented in the code: all
of them should be effectively treated by regularization techniques. Such
conjecture is confirmed by the simulations and reconstructions that will be
presented in Subsection 4.1, where the function IH(t) is used in the interval
[0, T ] without changes. For this reason, the same procedure is adopted in
Subsection 4.2.

3.4. Simulation of model noise

In addition to measurement noise, model noise should also be taken into
account in real applications, since the underlying parameters or assumptions
characterizing the model adopted to formulate the equations of the inverse
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problem are known or fulfilled only with a certain degree of approxima-
tion. Among the many possible discrepancies, a priori conceivable, between
our model and a realistic measurement record, we decided to focus on two
specific circumstances, which correspond to either an inaccurate parameter
knowledge or a restrictive condition, i.e.,

1) the speed v of the return stroke is larger or smaller than the true one:
for example, in [47] it is claimed that v is measured with accuracies ranging
from 15% to 25%;

2) the measurement time T is shorter than the lower bound established
by (10), as occurs, again, in [47].

It is expected that, within certain limits, the impact of these discrep-
ancies is attenuated by regularization methods. The results presented in
Subsection 4.2 support this claim.

In our framework, an at least approximate knowledge of the return-stroke
speed v is necessary. Unfortunately, in most of practical cases, v is simply
unknown. However, our approach can still be adopted by referring to the
statistical variations of v [49].

3.5. Inversion and regularization

The last numerical step consists in solving the inverse problem of interest,
i.e., the linear system (23) or (24), by means of an appropriate regularization
procedure that can effectively treat its ill-posedness. In real measurements,
where no “exact” data are available, it is very difficult, if not impossible, to
estimate the level of the noise affecting the matrices Ri, R and the free terms
of systems (23)–(24). To cope with this problem, we only consider the so-
called heuristic methods [50] as eligible regularization techniques, since they
do not require any a priori information about noise. More specifically, we
found that the well-known Tikhonov regularization, coupled with the L-curve
method [51] for the computation of the regularization parameter, provides
satisfactory results in very short times (a few seconds on a common laptop).
The implementation of this algorithm is made easy by the routines of the
MATLAB package described in [52].

The only point worth discussing here concerns the choice of the fre-
quencies ωf to be considered in the formulation of systems (23)–(24). As
a heuristic criterion, we observe that for lower frequencies, the spectra of the
channel-base current and of the fields are both more intense and less affected
by noise than for higher frequencies, as shown in Fig. 3; accordingly, a rea-
sonable strategy might consist in working with the first F lower frequencies,
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(a) (b) (c)

(d) (e) (f)

Figure 3: Plots of (a) the channel-base current I(0, t), (b) the electric field ETz (r, 0, t), (c)
the magnetic field HT

φ (r, 0, t) and their respective spectra (d)-(f), obtained by using the
MTLE model, with the following values of the parameters: measurement time T = 1048µs;
channel height H = 4.0 km, return-stroke speed v = 1.5·108 m/s, horizontal distance of the
sensor from the channel r = 5.0 km. As regards panels (d)-(f), on the x-axis the frequencies
ωjk are considered; the discrete values are represented via linear interpolation; the solid
and dashed lines refer to noiseless data and uniform random noise data, respectively.
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with F being such that the number of equations is not smaller than the
number of unknowns, and, in case of a bad reconstruction, increasing F , i.e.,
adding some more higher and consecutive frequencies until the “best” recon-
struction is obtained. Since this approach, which we pursue by simple visual
inspection, yields good results, at least when an effective performance of the
algorithm is expected (as shown in Fig. 5, discussed in the next section), we
shall not make a deeper analysis of this issue (involving, e.g., the dependence
of the condition numbers of the system matrices Ri, R on the set of frequen-
cies). However, in real applications, when the underlying exact expression of
P (z′) is unknown and no predetermined concept of “good reconstruction” is
available, such analysis might provide some useful insights.

4. Reconstruction of the attenuation function

4.1. Measurement noise

Here, we present the reconstructions obtained for the attenuation function
P (z′) when the data are computed as explained in Subsections 3.2–3.3 and
inverted as described in Subsection 3.5. In order to favor readability, a block-
diagram scheme of the content of Subsections 4.1–4.2 is displayed in Fig. 4.

As regards Fig. 5, panels (a)–(c) show the reconstructions corresponding
to the three possible forms of P (z′) considered in step 3) of Subsection 3.2,
when, besides the channel-base current, only the electric field is considered;
panels (d)–(f) and (g)–(i) are analogous to (a)–(c), except that the electric
field is either replaced by or combined with the magnetic field, respectively.
In all cases, the current and the field data are affected by a uniform random
noise, but very similar results are obtained also in the case of Gaussian noise.

A comparison of the panels of each column of the first three rows in
Fig. 5 suggests that, when both fields are considered as input data, no ac-
tual improvement is obtained and the impact of the electric field is stronger
than that of the magnetic field; such trend is confirmed by the numerical
experiments of Subsection 4.2. This is arguably due to the fact that, from a
numerical viewpoint, the intensity of the FT of the electric field is around 104

times greater than that of the FT of the magnetic field over all the frequen-
cies of their spectra. In order to clarify this point, let us come back to the
unified system (24), which we now denote in symbolic form as RP = G. If an
exact solution of such system were to be computed, any one of its equations
could be multiplied by a constant factor without consequences, but when a
Tikhonov regularized solution is looked for, this is not true anymore: indeed,
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Tikhonov regularization minimizes a functional such that one of its addenda
is the so-called discrepancy ‖RP − G‖, whose values can change if one or
more of the equations of the system is multiplied by some constant factor.
Hence, in order to balance the contributions that each one of the two fields
gives to the discrepancy, it might be useful to multiply all the magnetic-field
equations of system (24) by a factor 104. The results obtained by adopting
such rescaling strategy are shown in panels (l)–(n) of Fig. 5, which seem to
indicate a more balanced influence of the two fields in producing the final
reconstruction. As before, also this trend is confirmed (with more evidence)
by the numerical experiments that will be presented in Subsection 4.2.

Since all these reconstructions are obtained in very short computational
times from data affected by a realistic noise and are satisfactory even when
based on single-field measurements, we shall not try to discuss possible im-
provements of the overall strategy in order to state some optimality criterion
(e.g., minimum numbers of frequencies or sensors).

4.2. Model noise

As anticipated in Subsection 3.4, we now wish to test how an erroneous
estimate of the speed v of the return stroke can affect the reconstruction of
P (z′). To this end, we consider again the numerical simulations of Fig. 5:
while letting all the other parameters and data unaltered, we purposely
change the value of v only in the inversion procedure (i.e., in computing
the entries of the matrices Ri, R) by decreasing such value by 25%, which
should correspond to a worst-case scenario [47].

The results are displayed in Fig. 6: in spite of a clear deterioration of
the reconstructions in all cases, the order of magnitude and some general
features of the plots of P (z′) are preserved. In particular, the great similarity
between the two sets of panels (a)–(c) and (g)–(i) shows that the magnetic
field proves almost irrelevant when combined with the electric field without
rescaling, whereas panels (l)–(n) suggest that the rescaling strategy is a more
appropriate way for coupling the two fields and can probably yield the best
possible results.

However, we should be careful to not extend these observed properties
beyond the specific simulations performed here. In general, there are many
parameters that might be varied, and a thorough statistical analysis is beyond
the scope of this paper. Here, we limit ourselves to pointing out that even
an error of 25% on the value of the speed v does not necessarily entail a
complete loss of information on the attenuation function.
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A wrong estimate of v provides an example of an error affecting one
of the parameters characterizing an otherwise correct model. But we can
conceive more sophisticated situations, where some underlying hypotheses
of the model are not verified: this is the case, e.g., of short-time measure-
ments, which do not fulfill assumptions (6) and (10). Actually, it could be
proved that, in such case, the equations of the model need to be modified.
Here, we just show, for a specific instance, the gradual deterioration of the
reconstruction of P (z′) as the time window [0, T ] of the field measurement
shortens.

To this end, we focus on the reconstruction of Fig. 5(a), obtained for Tc =
1000µs, which corresponds, by (25), to a measurement time T = 1048µs.
While leaving all the other parameters and data unaltered, we gradually
decrease Tc (and then, by (25), also T = Tc + 48µs): in Fig. 7 we show
the results obtained for Tc = 500µs (panel (a)), Tc = 300µs (panel (b)),
Tc = 100µs (panel (c)), Tc = 50µs (panel (d)), Tc = 10µs (panel (e)),
Tc = 5.0µs (panel (f)).

Whereas the reconstruction of P (z′) is still good in panel (a), it worsens
more and more throughout panels (b)–(f), in spite of regularization. The
crucial point here is that the model represented by (15)–(16) becomes inad-
equate.

5. Conclusions

In this paper, we developed a frequency-domain framework to solve the in-
verse problem of reconstructing the attenuation function of the return-stroke
current along the lightning channel, from the measurements of the radiated
fields, the channel-base current, the channel height and the return-stroke
speed. The reconstructions thus obtained (in particular, those presented in
Subsection 4.1) show that such framework can be effectively applied in noisy
and realistic conditions, thus supporting, in particular, the validity of the
two main new elements of this paper, i.e., 1) the inversion of a discretized
form of the current-field equations deduced in [41]; 2) the low-pass filtering
procedure of measurement noise, as made possible by the FT of a preliminary
and realistic model of this noise in the time domain, both for the fields and
the channel-base current.

Nevertheless, the whole treatment is based on the assumption of long-
duration time-windows, i.e., on conditions (6) and (10), which may not always
be fulfilled; in particular, the measurement time T of the field may be much
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shorter than the lower bound prescribed by (10). This typically happens
in two cases: 1) the measurements are conceived and taken for purposes
different from that of reconstructing the attenuation function P (z′), such as
in [47]; however, using these data to recover P (z′) might be of interest; 2) the
fulfillment of (10) could not be obtained without detecting spurious signals,
thus impairing the inversion procedure.

Hence, future research should be aimed at formulating a theoretical treat-
ment of the case where short-duration time-windows are considered and, in
particular, at deducing the corresponding new current-field equations; the
resulting procedure should then be tested against simulated and real data to
obtain reliable reconstructions of the attenuation function.

Another interesting future development is to tackle an analogous inverse
problem without measuring the channel-base current [40] (and/or the chan-
nel height [37]): this would allow considering also return strokes in natural
lightning flashes (not striking instrumented towers or artificially triggered by
metallic wires unrolled by rockets).

Figure 4: Block diagram summarizing the content of Subsections 4.1–4.2. Strictly speak-
ing, the first and second blocks pertain to Subsections 3.1 and 3.5 respectively, but recalling
their notation is useful to read the third block.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(l) (m) (n)

Figure 5: Plots of the reconstruction of the attenuation function P (z′) for three different
models, i.e., MTLE (panels (a), (d), (g) and (l)), MTLL (panels (b), (e), (h) and (m)) and
quadratic (panels (c), (f), (i) and (n)). The data are affected by uniform random noise, for
a measurement time T = 1048µs. Besides the channel-base current, the measured fields
are electric (panels (a)–(c)), or magnetic (panels (d)–(f)), or both (panels (g)–(i)); finally,
panels (l)–(n) correspond to the case in which both fields are considered, but the magnetic-
field equations are multiplied by a factor 104 in order to balance the contributions of the
two fields in the regularization procedure. Each reconstruction is obtained by using a
number F of lower frequencies, with (a) F = 16; (b) F = 17; (c) F = 16; (d) F = 19; (e)
F = 32; (f) F = 27; (g) F = 15; (h) F = 17; (i) F = 21; (l) F = 13; (m) F = 32; (n)
F = 26. The solid and dashed lines refer to the reconstructed and the true plots of P (z′),
respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(l) (m) (n)

Figure 6: Everything as in Fig. 5, except that the value of the stroke speed v used in the
inversion procedure is 25% less than the “true” value, i.e., the value chosen to produce
the current and field data.
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(a) (b) (c)

(d) (e) (f)

Figure 7: Gradual deterioration of the reconstruction shown in Fig. 5(a) as the measure-
ment time-windows [0, T ] are shortened. We display the results obtained for Tc = 500µs
(panel (a)), Tc = 300µs (panel (b)), Tc = 100µs (panel (c)), Tc = 50µs (panel (d)),
Tc = 10µs (panel (e)), Tc = 5.0µs (panel (f)); by (25), the corresponding measurement
times are T = Tc + 48µs.
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