454 Vol. 14, No. 6 / June 2022 / Journal of Optical Communications and Networking

Research Article

Performance trade-offs in reconfigurable

networks for HPC

MiN YEE TEH,"* ZHENGUO Wu,' MADELEINE GLICK,'

MANYA GHOBADI,®> AND KEREN BERGMAN'
"Columbia University, New York, New York 10027, USA

I -
10 W
- T |
“?‘G-E
Ll -
il
= _—

- ul
]
timmn
= i

- 1L,

d A T
L Rl AT

SEBASTIEN RUMLEY,?

2HES-SO— University of Applied Sciences and Arts Western Switzerland, Fribourg, Switzerland
3Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

*Corresponding author: mt3126@columbia.edu

Received 24 December 2021; revised 10 April 2022; accepted 12 April 2022; published 11 May 2022

Designing efficient interconnects to support high-bandwidth and low-latency communication is critical toward
realizing high performance computing (HPC) and data center (DC) systems in the exascale era. At extreme
computing scales, providing the requisite bandwidth through overprovisioning becomes impractical. These chal-
lenges have motivated studies exploring reconfigurable network architectures that can adapt to traffic patterns
at runtime using optical circuit switching. Despite the plethora of proposed architectures, surprisingly little is
known about the relative performances and trade-offs among different reconfigurable network designs. We aim
to bridge this gap by tackling two key issues in reconfigurable network design. First, we study how cost, power
consumption, network performance, and scalability vary based on optical circuit switch (OCS) placement in
the physical topology. Specifically, we consider two classes of reconfigurable architectures: one that places OCSs
between top-of-rack (ToR) switches—ToR-reconfigurable networks (TRNs)—and one that places OCSs between
pods of racks—pod-reconfigurable networks (PRNs). Second, we tackle the effects of reconfiguration frequency
on network performance. Our results, based on network simulations driven by real HPC and DC workloads,
show that while TRNs are optimized for low fan-out communication patterns, they are less suited for carrying
high fan-out workloads. PRNs exhibit better overall trade-off, capable of performing comparably to a fully non-
blocking fat tree for low fan-out workloads, and significantly outperform TRNs for high fan-out communication

patterns. © 2022 Optica Publishing Group

https://doi.org/10.1364/JOCN.451760

1. INTRODUCTION

Opver the past decade, massive increases in computation power
among the top high performance computing (HPC) and data
center (DC) systems have not been accompanied by equiva-
lent increases in the inter-node communication bandwidths
[1,2]. The resulting steady decline of the bytes-per-FLOP
ratio will adversely affect the performance of next-generation
communication-intensive workloads. Artificial intelligence
(Al) and distributed machine learning (ML) workloads, which
are becoming more dominant, will be especially impacted.
These trends will drive the demand for low latency, high
throughput interconnection networks that can efficiently scale
to support the applications’ performances. The practice of
over-provisioning networks to provide the requisite capacity
will be increasingly impractical as network costs become a
growing fraction of overall system cost [3,4].

To address these challenges, researchers have made large
strides in improving networks with better routing schemes
[5-9], task placement [10], and topology designs [11-13].
The integration of optical circuit switching in the context of

1943-0620/22/060454-15 Journal © 2022 Optica Publishing Group

high performance systems has been one such effort, and is an
intense area of recent research [14—16]. In addition to bringing
significant benefits to bandwidth density and power, optical
circuit switching enables topological reconfiguration, which
is a key enabler for traffic-aware topology designs at runtime.
These dynamic network architectures represent a paradigm
shift from the predominantly static topologies deployed in
today’s high performance systems.

While past literature has proposed a variety of architec-
tures that integrate optical circuit switching to improve
system performance, none has provided, to the best of our
knowledge, a comprehensive comparison across the different
architectures. In this work, we tackle two main challenges
in the reconfigurable network design space. First, we study
how the placement of optical circuit switches (OCSs) in the
physical network affects network performance, cost/power
consumption, and scalability. We consider two reconfigurable
network classes that are representative of a broad number of
prior proposals: one places OCSs between top-of-rack (ToR)
switches, which we call ToR-reconfigurable networks (TRNs),


https://orcid.org/0000-0003-3042-2039
https://orcid.org/0000-0001-5547-9483
mailto:mt3126@columbia.edu
https://doi.org/10.1364/JOCN.451760

and the other places OCSs between pods of switches, called
pod-reconfigurable networks (PRNs). Second, we study the
effects of various reconfiguration periods and latency on net-
work performance, using realistic simulations driven by HPC
and DC applications.

To this end, our primary contributions in this paper are
noted below.

* Effects of OCS placement on performance. The choice
of OCS placement has tremendous implications on system
performance. We found that a TRN, which directly intercon-
nects racks, is about 2x more cost and power efficient than
the considered PRN variant. Most importantly, we found that
OCS placement also affects the types of workload for which
a reconfigurable network is optimized. By comparing a PRN
and a TRN at equal cost, we found the TRN to perform better
when communication patterns have small fan-outs. For such
traffic patterns, a TRN is capable of supporting up to 55%
more input load than a PRN before network saturation. For
large fan-out communication patterns, our results show that
a PRN can support 20% more input load on average than an
equal-cost TRN.

* Effects of the reconfiguration period on network
performance. We found that shorter reconfiguration periods
generally lead to better performance. Interestingly, we found
that reliance on the reconfiguration period is also dependent
on the OCS placement. Specifically, for our simulated work-
loads, an increase in reconfiguration period from 1 psto 1s
degrades throughput by ~2.1x in a PRN; a similar increase in
reconfiguration period results in a throughput drop >100x% in
a TRN. This is because the static topology between racks of the
same pod in a PRN, or lack thereof in a TRN, provides a con-
stant interconnect that greatly relaxes its reliance on frequent
reconfigurations.

* Demand-aware reconfigurations with longer periods
or demand-oblivious reconfigurations with shorter peri-
ods? Recognizing the challenges of sequencing demand-based
reconfigurations at small time scales, recent proposals such
as Sirius [14] instead rely on demand-oblivious round-robin
reconfigurations to deliver equal bandwidth between all end-
points. We find a demand-aware reconfiguration with longer
periods to be the better strategy for HPC communications,
which generally show strong spatial locality and comprised
small messages. Our simulations using real workloads show
that a demand-aware TRN (TRN-DA) with a 100 ms
reconfiguration period delivers 0.99-4.98x the through-
put of a demand-oblivious TRN with a 1 ps round-robin
reconfiguration period.

2. BACKGROUND AND RELATED WORK

High throughput and low latency have always been the core
goal of any communication network. How that goal manifests
in network topology, however, has varied over time with new
system considerations and available technologies.

A. Static Networks

Fat trees and other regular topologies. Modern HPC systems
have reached a scale of parallelism for which the topology

connecting compute nodes is critical. As messages in a super-
computing cluster are often latency sensitive, as opposed to
heavyweight Transmission Control Protocol (TCP) socket
connections, HPC network designs have traditionally pri-
oritized lossless and deadlock-free routing. As a result, their
networks are built using regularly structured topologies such as
hypercube, torus, and Dragonfly (DF) [12,17]. In commodity
DC clusters where bandwidth-intensive cloud and big data
applications dominate, fat trees (FTs) have been the de facto
deployment standard, as they can deliver full throughput with
small-radix commodity packet switches [18-21].

Expanders. Kassing ez al. [22] showed that expander (EXP)
networks [23-25], when paired with multi-path routing [5],
deliver performance comparable to fully non-blocking FTs.
EXP networks exhibit many desirable properties: (1) their flat
(non-hierarchical) structure and high bisection bandwidth
supports high throughput at low cost [23,24], and (2) they
support fine-grained expansion, which is a useful property for
DC operators who generally expand their systems over time

[26,27].

B. Dynamic Reconfigurable Networks

Prior studies have shown that DC and HPC traffic patterns are
highly skewed, where the majority of traffic is exchanged
between a small subset of source-destination pairs. For
instance, a study on Microsoft’s data center network (DCN)
reveals that 0.4% of rack pairs generate about 80% of total
traffic [28,29], while Facebook (FB) similarly reported a highly
skewed communication pattern in its frontend clusters [30].
Under such an imbalanced traffic load, static networks that are
designed with uniformity in mind are suboptimal. This has
motivated many researchers to explore reconfigurable network
architectures based on OCSs.

Optical circuit switching technology. Devices that support
OCS functionalities come in many forms, such as software-
controlled optical patch panels [31], electrical circuit switches
[32], 2D and 3D micro-electromechanical systems (MEMS)
[33,34], silicon photonic switches [35-37], wireless trans-
ceivers based on free space optics [15,38] or 60 GHz waves
[29,39], RotorSwitch [40,41], and tunable lasers [14]. Of these
technologies, only optical patch panels and 3D MEMS OCSs
have been commercialized.

Early reconfigurable network proposals, such as Hybrid
Flexibly Assignable Switch Topology (HFAST) [42] and
Helios [43], were primarily based on 3D MEMS technology
that had high switching latency in the tens of milliseconds
range, a problem which most off-the-shelf OCSs still face [33].
Subsequent works have aimed at minimizing switching delay
to support more agile reconfigurations. These architectures
demonstrate switching latency at ps [15,35,38,40,41] or even
ns or sub-ns [14,44] levels, though these systems are based on
non-commercialized prototypes.

Regardless of the technology of the underlying OCS, the
means by which it performs switching can be largely treated as
a black box from the perspective of the network controller. We
refer to the physical wiring between electrical packet switches
(EPSs) and OCSs as the physical topology. Reconfiguring OCSs

stablishes a new set of circuit connections between the input



and output ports at the physical layer, effectively realizing a
specific logical ropology overlay on the physical topology.
SDN-enabled layer-2/3 reconfiguration. Actuating a
topology reconfiguration requires applying a sequence of
atomic updates on the link and network layers, all of which
can be coordinated using software-defined networking (SDN).
The reason reconfigurations must be applied sequentially in
incremental steps—as opposed to updating everything in one
fell swoop—is to ensure routing consistency as the network
carries live traffic [45]. It is important to maintain routing
consistency in a network with dynamic topology to prevent
unnecessary packet drops or routing “blackholes” due to route
changes as a result of circuit switching. To maintain routing
consistency, packets must be routed to their destination based
on either the pre- or post-configured topology. This means that
a complete reconfiguration to the next logical topology must
be split into the following atomic steps: (1) draining the ports
about to be reconfigured to avoid packet blackholes, (2) switch-
ing the OCS, (3) locking and synchronizing the transceivers
to establish communication mode, and (4) undraining the
ports. Given how SDN has become commonplace in today’s
commodity clusters for traffic engineering and monitoring
[21,46], building a SDN-controlled reconfigurable network
with off-the-shelf MEMS OCSs can be very practical.
Reconfiguration latency. Many past proposals have mea-
sured an end-to-end topology reconfiguration. A notable
example is in [47], where the author broke down the end-to-
end reconfiguration delay based on an experimental test bed
built with commodity OpenFlow EPSs is 204.3 ms. Here, the
transceiver locking and synchronization process itself took
~204 ms; this suggests that lowering end-to-end reconfig-
uration delay may require a joint-optimization of both the
switching hardware and the higher level protocols. Several
proposals in the past decade have demonstrated lower reconfig-
uration delays at tens of ps [15,40] or tens of ns [14], though
all these systems of OCSs are still research prototypes and not
commercially available. More recent research has demonstrated
sub-ns reconfiguration delays and clock synchronization to
realize optical packet switched (OPS) architectures [44,48],
though evaluating these architectures is future work.
Reconfiguration strategy. There are two main topology-
reconfiguration strategies that have been explored in past
works: (1) demand-aware and (2) demand-oblivious
(i.e., round-robin) reconfigurations. The majority of the
proposed reconfigurable networks in prior works have been
demand-aware, which optimize logical topology periodically
in response to traffic demands of the underlying workload.
These network designs, however, face substantial deployment
challenges due to the need for network-wide demand esti-
mation and a centralized network controller that optimizes
logical topology based on the estimated demands. All of these
result in a highly complex control plane. In recent years, several
networks architectures based on a demand-oblivious reconfig-
uration, such as RotorNet [40] and Sirius [14], have also been
proposed. These systems are compelling due to their simplicity,
as the OCS rozates across a fixed set of circuit patterns in a
round-robin schedule, such that all source-destination pairs
receive a uniform bandwidth. This strategy, in theory, removes
a significant source of complexity associated with collecting

a network-wide traffic matrix to optimize topology, allowing
for topology reconfiguration on a much smaller time scale.
That said, to make rotation-based reconfigurable network
performance competitive would require custom-designed host
congestion control, which adds some deployment complexity
that is sometimes overlooked in an otherwise simple scheduler-
less reconfigurable network. [In rotation-based reconfigurable
networks, a valiant load balancing (VLB)-like indirect rout-
ing strategy is used to improve load balancing under skewed
workloads. To ensure that packets are routed correctly for the
current OCS configuration, each host maintains a separate
first-in-first-out (FIFO) queue for every other destination
node. As such, the number of queues each host must maintain
scales up very quickly as the number of servers increases.] We
compare the performance of both demand-aware and demand-
oblivious reconfigurable networks at different reconfiguration
periods in Section 6.

In summary, although the literature on reconfigurable
networks has grown considerably over the past two decades
[14-16,32,35,38,41-44,49-55], there is very little under-
standing of the trade-offs of different reconfigurable network
architectures. This is due to (1) prior proposals having all been
point designs and (2) the lack of commercial adoption, with
no recorded system having deployed a reconfigurable network.
In this work, we study the fundamental design problems in
reconfigurable networks at a system level.

3. RECONFIGURABLE NETWORKS

We formally define two abstract models based on OCS
placement: PRN and TRN. Figure 1 shows their physical
topologies. Figure 2 formalizes the PRN and TRN models
by (1) describing their physical and logical topology and (2)
discussing the relevant optimization algorithms most suited to
each model.

A. ToR-Reconfigurable Network

In an effort to build more energy-efficient networking solu-
tions, recent proposals in reconfigurable networks tend to
“flatten” the hierarchical Clos designs (two-level spine-leaf
or three-level spine-aggregation-leaf architectures) that have
become the de facto standard HPC and DC topology. These
efforts have led to developments in TRNs that consider topol-
ogy reconfiguration on a rack-to-rack basis directly from ToR
switches.

1. Sparse Topology Optimization

For most reasonably sized systems, there are generally signifi-
cantly more ToR switches in the entire network than there
are uplinks available for network connection per ToR. This is
because commercially available leaf switches have fairly small
port counts, typically between 16 and 32. As a result of the
small number of uplinks per ToR, #’, with respect to the num-
ber of reconfigurable ToR switch nodes, |V], (i.e., |V]| > £,
the graph is sparse. A graph is sparse if the number of nodes, 7,
is greater than the node degree, £; otherwise, the graph is dense.



Research Article

BT server

e Top-of-Rack (ToR) switch

I Optical Circuit Switch Fabric l

Vol. 14, No. 6 / June 2022 / Journal of Optical Communications and Networking

457

B server Electrical packet switch

Fig. 1.

Optical Circuit Switch Fabric

E

(b)

Abstract models (a) for the TRN model and (b) for the PRN model.

§3.1

ToR-Reconfigurable Network

In general, N >> k.

k reconfigurable optical
uplinks to OCS fabric

Kk uplinks per ToR

Reconfigurable OCS Layer

| P -
‘ '__ ToR switch K

N ToRs

Due to limited ToR switch ports, the number of ToR switches generally
exceeds the number of uplinks per ToR (i.e. k << N).

Since k < N, this is a sparse graph optimization problem.

Can be mapped onto i bl
and solved using Gale-Shapley, etc.
Gale-Shapley Stable Matching Algorithm
Sender preference Receiver preference
1 3,2 @ | 2,3
2 1,3 2 3,1
3 2,1 . 3 1,2

Sparse adjacency matrix
describing the ToR-level
graph.

/—-‘Ihk

Logical topology between ToRs
after optimization is sparse.

§32 Pod-Reconfigurable Network

Reconfigurable inter-pod link bundle to
Ocs fabric ~______

l A mirapodinis
N

Kk’ uplinks per pod

Reconfigurable OCS Layer J %
1 SIS
é

‘This is a dense multi-graph optimization problem as k' > N.

Can be mapped onto a Maximum Concurrent Flow
problem, and solved using an integer linear program (ILP).

Max. Concurrent Flow ILP
[CTven traffic matrix, T

AR UX, 1, T)

subject to: 1) X is a valid logical topology

X7\, Logical topology between pods
1 1 after optimization is dense.

46 dst

ToR switch ~ "~~-___--

N pods
Due to aggregation of ToR uplinks, the number of uplinks per pod

uZy.

. 2) f is a valid routing solution

8) D> fulivj) * tuy < X% € for all i,

o

exceeds the number of pods (i.e. k' >> N).

Dense adjacency matrix describing the 5
pod-level multi-graph. B B

Fig. 2.

Overview of pod- and ToR-reconfigurable network topologies. We summarize the optimization problems and the employed algorithms

for both reconfigurable network models. # and #' denote the number of uplinks per ToR switch and per pod, respectively. IV denotes the number

of nodes in the topology optimization problem.

A full-mesh network that links every node pair in an all-to-all
topology is a specific instance of a dense graph.

When optimizing topology in sparse graphs, as shown in
Fig. 2, one approach is using maximum weighted bipartite
matching problems, which can be solved in polynomial time
using algorithms such as Edmonds—Karp [56]. The main
issue with algorithms such as Edmonds—Karp, however, is that
they are centralized algorithms that scale poorly with network
size (e.g., Edmonds—Karp has an O(n%) runtime, where 7 is
the number of nodes in the matching graph). An alternative
approach is to cast the problem as a stable matching problem
that can be solved in a distributed fashion using algorithms
such as Gale-Shapley [15] with a runtime of O(#?), where 7 is
the number of nodes.

B. Pod-Reconfigurable Network

In contrast to a TRN, which places the OCS layer directly
between ToR switches, a PRN places the OCS layer between
pod units. A pod consists of several racks that are aggregated
into a logical unit of deployment and are interconnected by a
static switch fabric using either electrical wires or optical fibers.

In large-scale systems beyond thousands of racks, aggregating
multiple racks into pods helps improve the modularity, man-
ageability, and cabling complexity of PRNs compared to TRNs
[57]. In enterprise DC networks with FT topologies, pods
typically interconnect several racks that are in close proximity
to a two-level leaf-spine sub-network [26]. The pod unit also
arises naturally in topologies that contain notions of groups,
such as DF [12,13]. In this work, we consider PRNs with two
variants of intra-pod topology: (1) two-layer Clos (PRN-2L)
and (2) a full-mesh similar to a DF group (PRN-M).

1. Dense Multi-Graph Optimization

Unlike a TRN model where topology optimization is done
at the ToR-switch level, the optimization is done at the pod
level in a PRN model. This changes the nature of the graph
optimization from that of a TRN in two main ways: (1) aggre-
gating racks into a pod means that there are far fewer pods than
the number of racks (e.g., aggregating two racks into a pod
means the number of pods is a factor of two fewer than the
number of racks), and (2) the total number of reconfigurable
uplinks per pod generally exceeds the total number of pods.



Reconfigurable Network
Classification

Pod-reconfigurable ToR-reconfigurable

—— r A \
2-Layer Mesh Flat n-Dimensional
Cl
\os ‘ 4 o%'e ‘
g 2%
1) Helios ;) Eexﬂy ’ «o% 1) Hyper-FleXLION
2) Flexfly+ Yl %,
1) ProjecToR 1) Rotornet
2) Firefly 2) Opera
3) Mordia 3) Sirius
Fig. 3. Classification of reconfigurable networks.

Thus, aggregating racks into pod units makes the PRN opti-
mization problem smaller in size than an equal-sized TRN.
In addition, the optimization problem in a PRN also changes
from a sparse graph matching problem in the case of a TRN,
to a dense multi-graph optimization problem. As outlined in
Fig. 2, optimizing PRNs generally involves solving a dense
multi-graph optimization problem based on variants of the
multi-commodity flow problem. Of course, it is still possible to
render the PRN optimization graph sparse by over-deploying
pods to the point where the number of pods exceeds the num-
ber of uplinks per pod, though we leave such designs for future
analysis.

Classifying reconfigurable networks. The proposed PRN
and TRN abstractions allow us to effectively classify many
prior reconfigurable network proposals, as shown in Fig. 3.
PRNSs reconfigure topology between pods; pods comprise
multiple EPSs that are interconnected statically via an intra-
pod fabric. Conversely, TRNGs alter the topology between racks
directly by reconfiguring the ToR switch uplinks.

C. Flow Control

Congestion control protocols such as TCP and InfiniBand (IB)
that are running on today’s high performance clusters were
designed assuming the network topology is static. When net-
work topology becomes dynamic, the host transport protocol
may need to be redesigned. At present, the literature focus-
ing on transport protocol design for reconfigurable networks
remains underdeveloped. Past work has relied on standard
TCP/IB protocols [16,35,49], modified TCP stacks [58], or
novel transport protocols specific to the underlying network
architecture [14,40].

To ensure that our comparison of reconfigurable and static
networks is fair, we use the same flow control mechanism for
all simulated networks to manage congestion. The flow con-
trol needs to generalize well across a broad class of networks
(both static and dynamic), and also works well under different
reconfiguration periods. Given this, we consider a simplified
flow control as follows. First, we assume a /lossless network
by implementing link-layer credit flow control. Hosts rely
on back-pressure for congestion control by sending packets
only when downstream EPSs have sufficient buffer space.
Second, we assume each host has sufficient buffer to support
the reassembling of out-of-order packets. This design choice is
necessary for our purposes for two reasons: (1) it allows us to
implement per-packet load balancing to improve bandwidth

utilization on every evaluated topology, and (2) it allows the
transport layer to work well not only under different static
topologies, but also under dynamic topologies reconfigured at
different time scales.

4. SCALABILITY ANALYSIS

We now analyze the network scalability of PRNs and TRNs in
terms of (1) the maximum number of server hosts for a given
set of EPS and OCS radices and (2) the processing overhead of
demand-aware reconfigurations.

A. Network Scalability

We first look at the scalability of dynamic and static networks
in terms of number of hosts (i.e., servers) as a function of EPS
radix. For this analysis, we utilize an important concept from
graph theory known as the Moore bound [59,60].

Moore bound. The Moore bound is the upper bound on
the number of switches (and thus the number of server hosts) a
k-regular network with a target diameter of & can support. (All
switches have # identical network-facing ports.) The expression
for the Moore bound, M, 4, is

(k—1)% -1

M, ,=1+F ,
k,d + )

for k> 2. (1)

For flat networks (i.e., networks that directly interconnect
ToRs), Eq. (1) can be used to estimate the maximum network
size attainable given fixed-radix EPSs as basic building blocks.
Table 1 shows the maximum network size as a function of
EPS radix, &, for every studied topology. For the PRN and
TRN models, we consider two variants for each class. The
two TRN variants we consider are a flat TRN (TRN-Flat),
which is representative of architectures such as ProjecToR [15],
RotorNet [40], and Sirius [14], and a TRN that partitions
racks into three dimensions (TRN-3D), which is representa-
tive of architectures such as Hyper-FleX-LION [16]. The
two PRN variants considered are a PRN with two-level Clos
intra-pod fabric (PRN-2L), such as Helios [43], and a PRN
with mesh intra-pod fabric (PRN-M), such as Flexfly [35]
and Flexspander [49]. All considered PRN designs preserve a
dense pod-level topology (i.c., the number of pods < number
of uplinks per pod); thus, the pod-level network graph has a
diameter of one. For static networks, we consider FTs with
three- and four-level FTs (FT3 and FT4, respectively), and
canonical DFs with one inter-group port per switch (i.e., /=1
according to the notation in Kim ez a/. [12]). Figure 4 shows
the network size of different topologies as a function of EPS
radix, and Table 1 contains the expressions of the various topol-
ogy parameters as a function of EPS radix. Given an EPS radix,
k, we allocate % ports for connection to hosts. To ensure a fair
comparison between different topologies, the diameter of each
evaluated topology is fixed according to Table 1.

PRN-M, TRN-3D, and DF show weaker scalability
compared to the other topologies. For DE, this is due to its
full-mesh intra-group fabric; a DF group with m switches
requires 7 — 1 EPS links to be allocated for intra-pod connec-
tions. This, as a result, leaves fewer ports available for global
connection, thereby limiting the maximum number of groups



Vol. 14, No. 6 / June 2022 / Journal of Optical Communications and Networking 459

Research Article

Table 1. Expression of the Largest-Attainable Scale (in Terms of the Number of Servers) That Different Classes of
Topologies Can Support Given an EPS Radix of K

PRN TRN
Quantity 2L Mesh Flat 3D FTIn DF DF+ EXP
OCS radix )P +1 R T G RG] L4 0 0 0 0
Total EPS Btk GHD’ = QG+D  GFD @-DET G Ltk G+ G+
&4 541
[ 2

Num. G (€ e O 1 T L O A G A G A O AR O
endpoints /I% _ é] ¢y +t4
Diameter 3 3 3 2m—1) 3 3 3
Examples Helios [43], Flexfly [35], Sirius [14], Hyper-FleX- VL2[19] Dragonfly [12], Dfly+ [13], Xpander [24],

spatially switched ~ Flexspander RotorNet [40], LION Cray Aries [61] Megafly [62]  Jellyfish [23],

modular DCN [57] [49] ProjecToR [15]

Slimfly [25]

“The concentration (i.e., server nodes per switch) is set to be £ to prevent a network bottleneck due to server oversubscription. FTn denotes an n-level fat tree.

108
g | =™ T o e e R A AT
% 10° -8
~
-
8
£ 10t
2 —+- TRN-Flat (d=3) DF (d=3)
4 =A- TRN-3D (d=3) === FT3(d=4)
102 £~ PRN-Mesh (d=3) —— FT4(d=6)
—%— PRN-2L (d=3)
T T T T T
50 100 150 200 250
Packet switch degree (k)
Fig. 4. Maximum network size (number of servers) as a function

of EPS radix for various network topologies.

that can be built. Compared to PRN-M, PRN-2L’s two-tiered
pod fabric gives it much higher scalability. In fact, PRN-2L
exhibits higher scalability than all other topologies in Table 1,
with the exception of FT4. Note that since DF+ also possesses
a two-level spine-leaf Clos intra-pod topology identical to that
of PRN-2L, both topologies exhibit similar scalability as a
function of EPS port count; this is not shown in Fig. 1 to avoid
clogging up the figure.

B. Minimum OCS Radix Requirements

The OCS port count is a key factor when determining the
maximum attainable scale of a reconfigurable network.
Figure 5 shows the maximum number of hosts a network
topology can support as a function of the OCS radix, given
an EPS radix of 32. As we assume all network topologies are
built using EPSs’ identical port counts, changing the EPS
radix does not affect the relative scalability of different network
topologies. The maximum network size of static networks
(e.g., FT, DE and EXP) are shown in Fig. 5 as straight lines as
reference. Note that each curve shows two regions: a growing
region that indicates the network size is OCS-radix limited,
and a flat region that indicates the network size is EPS-radix
limited.

Figure 5 shows the TRN-Flat curve flattening out at the
slowest rate, which indicates that it requires a large OCS port
count to scale. This is because the minimum required OCS
radix is proportional to the number of racks. Considering that

5 o FT4
Wt EXP
g0t T ey e e e FT3
@ et s ; &=| DF
4 N —F
§ 103 X Flat region: EPS-limited
2 Curved region: OCS-limited
10°
—+— TRN-Flat (d=3) ~E~ PRN-Mesh (d=3)
—A— TRN-3D (d=3) —%— PRN-2L (d=3)
10! T T T T T T T
50 100 150 200 250 300 350
OCS radix
Fig. 5. Maximum network size (number of servers) as a function

of OCS radix for various networks built using radix 32 EPSs. Note
that static networks do not require OCSs, so we show their sizes as
horizontal dotted lines for comparison. The DF+ line overlaps with
the EXP and is thus not shown.

medium and large networks could contain ®(1000)’s of racks,
some past TRN-Flat designs such as Firefly [38] and ProjecToR
[15] have opted for wireless transceivers on ToR switches
over OCS-based solutions to achieve better scalability. This is
because the wireless transceivers essentially act as an OCS with
an infinite radix. Partitioning the racks in a TRN into multiple
dimensions similar to Hyper-FleX-LION [16] and HyperX
[11] can lower the minimum OCS radix requirement, but also
causes scalability to be more EPS-radix limited. Overall, PRN
has a lower requirement on the OCS radix, as the minimum
OCS radix scales with the number of pods, rather than the
number of racks in the case of a TRN. This suggest that PRNs
are suitable for large-scale deployments with many racks and/or
when the OCS radix is low.

Figure 6 shows the minimum requisite OCS radix as a func-
tion of the EPS radix on the left, and the minimum OCS radix
per unit rack as a function of the EPS radix on the right. We
similarly find TRN-Flat exhibiting the worst scaling property
out of all the compared network topologies in terms of mini-
mum required OCS radix. By partitioning the racks into three
dimensions in TRN-3D, the minimum required OCS radix
is lowered substantially compared to TRN-Flat. Although
the TRN-3D outperforms both PRN-2L and PRN-Mesh



= PRN-2L PRN-Mesh ~—{— TRN-Flat —E~ TRN-3D
10° 10-1
10° §
51072
£ 10t g
g 81073
n 10 -1
g Gy 3
2 =104
10 Calient S320 8 10
1
10 O 1075
10° T T T T T T T T T T
50 100 150 200 250 50 100 150 200 250

Packet switch degree (k) Packet switch degree (k)

Fig. 6. The left figure shows the minimum required OCS radix as
a function of the EPS radix. The horizontal dotted line marks the port
count of a commercial Calient S320 with 320 ports. The right figure
shows the minimum required OCS radix per server as a function of

the EPS radix.

given the same EPS radix, its maximum network size (in num-
ber of servers) is actually smaller than both PRN variants, as
TRN-3D’s network size is more EPS-radix limited.

C. Demand-Aware Processing Overhead

We estimate the demand-based optimization overhead in terms
of average compute time for a PRN and a TRN as the network
scales, as shown in Fig. 7. These experiments are implemented
in Python 2.7, and run on a desktop with 2.6 GHz dual Intel
i7 cores with 16 GB of RAM. For the PRN, we use Gurobi
[63] to solve a relaxed linear programming (LP) that maximizes
throughput [64]. For the TRN, we implement two variants of
matching algorithms: (1) a centralized max-weight matching
and (2) a distributed Gale—Shapley matching based on [15].
The compute time is averaged over 50 runs per network size;
each run takes a randomly generated traffic matrix as input.

In general, the processing overhead is a function of the prob-
lem size (i.e., the number of pods for a PRN and the number
of ToR switches for a TRN). To make this analysis concrete,
we express the average compute time in terms of network size,
measured in terms of server numbers, assuming an EPS radix
of 32. Each ToR switch connects to 16 servers, and each pod in
a PRN contains 16 racks. We see that computing TRN match-
ings with a centralized max-weight matching scales poorly,
with compute time quickly exceeding 1 s for systems beyond
1600 servers (100 racks). Although the PRN’s relaxed-LP
algorithm is also centralized, PRNs can benefit from solving a
substantially smaller optimization problem that scales with the

Y

e

PLs

" = TRN: Dist. Gale-Shapley

, i =—- TRN: Cent. Weighted Matching
—§- PRN: Relaxed LP

I T T T T T T

0 10000 20000 30000 40000 50000 60000

Network size (num servers)

Fig. 7. Demand-aware processing overhead as a function of
network size.

number of pods, as opposed to the TRNs” matching problems
that scale with the number of racks. However, as the network
scales beyond 32k servers, the PRN’s processing overhead
exceeds that of TRN with distributed Gale—Shapley imple-
mentation. For larger-scale systems (25k servers and above)
where the processing overhead is of the order of 100 ms, a “set-
and-forget” paradigm, in which the topology reconfiguration
is triggered by the arrival of new jobs, may be the preferred
approach.

We believe that these overheads can be improved in pro-
duction by employing a variety of relaxation techniques,
such as partitioning the network into smaller logical slices
[65], exploiting parallelization/GPU-aided acceleration, or
implementing the core sub-routines in “close-to-metal” pro-
gramming languages such as C. We leave these explorations for
the future.

5. COST AND POWER CONSUMPTION
ANALYSIS

In this section, we compare the cost and power consumption
of four different network topologies: (1) FT, (2) EXP, (3) PRN,
and (4) TRN at small, medium, and large system scales. The
small, medium, and large networks support ~8k, ~50k, and
IM endpoints, respectively. (A million server nodes is the
expected scale of exascale computing.) We assume PRNs have
a two-layer Clos leaf-spine intra-group topology similar to
that of a DF+ group, while TRNSs use a flac ToR-level physical
topology (i.e., TRN-Flat). Further, we assume that all networks
are built using 100 Gb/s per-port EPSs with a homogeneous
switch radix of 32. This means that the relative cost and power
consumption of the studied network topologies are insensitive
to a different choice of EPS radix. The minimum requisite
OCS radices to support small-, medium-, and large-scale sys-
tems are shown in Table 2. (Note that for all reconfigurable
networks, the minimum requisite OCS radix decreases when
the EPS radix increases. For example, when the EPS radix is
256, the requisite OCS radix for a TRN-Flat to support a large-
scale system with 1 million servers is 7813. This is because a
larger EPS radix means more servers can be aggregated under
each ToR switch, which helps reduce the number of pods and
ToR switches in the network.)

A. Power Consumption

We estimate the network power consumption by summing up
the expected power consumption from the following compo-
nents: (1) EPS, (2) OCS, and (3) optical transceivers. Based
on vendor-published data [66], each 32-port EPS switch has a

Table 2. Minimum Requisite OCS Radix for Each
Network Built Using 32-port EPSs at Three Different
Scales’

Scale PRN-2L PRN-M TRN-Flat TRN-3D
Small 32 32 500 8
Medium 391 391 6250 19
Large 3907 3907 62,500 40

“‘Small-, medium-, and large-scale systems carry ~8k, ~50k, and ~1 mil-
lion servers, respectively.



HEE EPS BN OCS EE Transceiver

~8k servers ~100k servers ~1M servers

o
=

150

e
w

100

Power consumption (MW)
(=]
[¥)

0.1 50
00 z Z E zZ z E 0 zZ E
Py Ay £y
= == ==
B OE K 5 B B & é &

Fig. 8. Network power consumption breakdown at three different
scales: small scale with ~8k hosts, medium scale with ~50k hosts,
and large scale with ~1M hosts. Note that OCSs add negligible
power consumption to the network, and thus their power breakdown
is barely visible.

HE EPS B Transceiver N OCS

> Small Medium Large

o

S 4 15

2

X 6

P . 10

g2

2 2 ’

?

So 0 0

BERSTERT  Fef-SaR T ReRSS&6®"
So | Il = co | Il = oSS || Il =
(RIS ISR Iilss Il
il siin i
EEZEEZZ ZzEEZZ Al
= =h E E =) =)
Fig. 9. Network cost breakdown of network topologies at three

different scales: small scale with ~8k hosts, medium scale with ~50k
hosts, and large scale with ~1M hosts.

power consumption of 136 W. The OCS power consumption
is assumed to be 90 W for a 320-port MEMS OCS, based on
the power consumption of a single 320-port Calient MEMS
OCS [33]. Without packet-decoding and buffering, OCSs
consume significantly less power than EPSs on a per-port basis.
For optical transceivers, we assume each component has 2.2 W
power consumption for 100 Gb/s per-port bandwidth [67,68].

Figure 8 shows the estimated total network power con-
sumption at different scales. As expected, FTs are the most
power-consuming designs at all scales, as their hierarchi-
cal topology require many transceivers and EPSs to build.
Conversely, the lack of a hierarchical structure allows TRNs
and EXPs to scale with fewer switches and transceivers. This
makes them more power efficient than a FT. This also explains
why PRN-M is less power consuming than PRN-2L at small
and medium scales. At large network scale, however, the gap in
power consumption between PRN-M and PRN-2L shrinks.
This is because PRN-2L can be built using 32-port EPSs,
while flatter networks such as PRN-M, TRNs, and EXDs
require higher radix switches that are individually more power
consuming.

B. Cost Model

We now describe the cost model used to estimate the cost of
different network topologies at small (8k hosts), medium (50k
hosts), and large (IM hosts) scales. Our cost model breaks
down the network cost based on three components: (1) EPSs,
(2) optical transceivers, and (3) OCSs, similar to past works
[12,22,25,27,69]. For EPS and transceiver costs, we use the
reported prices from vendors for the Mellanox SN2700 Open
Ethernet 100 GbE switch [66] and the Enhanced Data Rate
(EDR) 100 Gb/s QSFP28 optical transceiver [67], which have
reported per-unit prices of $17,285 and $555, respectively.
In contrast to EPSs and optical transceivers, the commercial
price of OCSs is considerably more obscure. This is because
OCSs are at present an emerging technology manufactured
in low volume. To estimate the cost of OCSs, we introduce a
multiplicative factor § on top of the average cost of an electrical
port. Past works [22] have utilized § = 1.5, but this is overly
pessimistic, as OCS pricing is based on low volume OCS pro-
totypes. We believe that commercialization will help drive the

cost of OCSs down significantly. In this experiment, however,
we estimate the cost using § = 0.5, 1, and 1.5.

Figure 9 depicts the network cost breakdown, which shows
that FTs are the most costly designs. This is because multi-
rooted FTs require more switches and transceivers to support
for the same sized network as other topologies. By comparison,
flat networks such as EXPs and TRNs that directly connect
ToR switches are more cost efficient than FTs for the same
scale. While the cost of a small-scale PRN is close to that of a
three-level FT when 8 = 1.5, the cost of FTs quickly dominates
at medium and large scales.

6. SYSTEM-SCALE SIMULATIONS

In this section, we evaluate the performance of both reconfig-
urable and static networks using simulations. At a high level,
our evaluation is structured as follows:

* Section 6.B compares various static and reconfigurable
network topologies.

* Section 6.C compares reconfigurable networks under
varying reconfiguration periods with no reconfiguration la-
tency.

e Section 6.D discusses the difference between rotation-
based reconfigurable networks and static meshes.

¢ Section 6.E studies the effects of different duty cycles on
performance.

A. Methodology

We wuse the event-driven packet-level simulator called
NetBench [70] to evaluate network performance. Compared
to the static evaluation used in prior works [16,35,50], our
simulated networks incorporate live topology reconfiguration
during simulation runtime and can therefore more realisti-
cally capture the effects of online topology reconfiguration
on performance. We have extended NetBench to support
in situ topological reconfigurations, which is a feature most
network simulators do not natively support. The code is made
public to support the reproducibility of this work [71]. Since
NetBench does not model the compute phases, we emulate
barrier/synchronous communications to a limited degree by
aligning co-flow arrivals in the trace. We recognize that this



may not fully capture the inter-dependencies between syn-
chronous flows, which can introduce some biases into our
simulations. We wish to explore the extent of these biases in
future works. We assume EPSs have 100 Gb/s links and imple-
ment virtual output queueing (VOQ) with 20 KB buffer space
per port. Network interface controllers similarly have 20 KB
per-port buffer space. Packets have a maximum transmission
unit (MTU) of 1500 bytes.

Topology. We assume all network topologies are con-
structed using EPSs with radix 32. Since all compared
networks assume the same EPS radix, our analyses based
on EPS radix of 64 (omitted for brevity) show little change in
the relative performance of the evaluated network topologies.
PRN uses a two-level Clos (leaf-spine) interconnect for its
intra-pod topology, similar to a DF+ group. The simulated
TRN interconnects all ToR switches with the OCS layer. The
requisite OCS radices to build the simulated TRN and PRN
are 232 and 16, respectively.

We use three static network topologies for baseline com-
parison: (1) a fully non-blocking three-layer FT (FT3), (2) a
DF+/Megafly (DF+), and (3) an EXP/low-diameter (EXP).
DF+ topology [13,62] has been shown to outperform DF net-
works. (This is because DF+’s two-level leaf-spine intra-group
topology provides a non-blocking property for all intra-pod
communications. This choice of intra-pod topology is also
advantageous, as it requires only two virtual channels (VCs)
to guarantee deadlock freedom, while a DF clique group
would require three VCs.) The EXP baseline is representative
of various low-diameter and EXP networks such as Slimfly
[25], Jellyfish [23], and Xpander [24]. The DF4/Megafly and
EXP networks are static, non-reconfigurable baselines to the
PRN and TRN, respectively. Any differences in performance
between the DF+ and EXP topologies and their dynamic
PRN and TRN counterparts can be attributed to topology
reconfiguration.

We equalize the EXP, DF+, TRN, and PRN in terms
of cost following the cost model to ensure a fair perform-
ance comparison. (We do not include OCS port cost in the
equalization process, as adding OCSs only introduces topo-
logical reconfigurability, but does not add capacity to the
network.) This is done by overprovisioning the EXP and TRN
by a factor of two, as shown in Table 3. The exception to this
is the non-blocking FT, which is more expensive and acts as a
reference.

Routing. The routing used on a PRN is based on the traffic-
aware, globally-direct oblivious (TAGO) routing scheme in
[64], which sends intra-pod traffic using equal cost multi-path

Table 3. Simulation Parameters of Different
Topologies

Topology  Routing Policy  #VCs Overprovision Factor
PRN TAGO [64] 2 1

TRN VLB [72] 2 2

DF+ TAGO [64] 2 1

EXP HYB [22] 4 2

FT3" ECMP 1 -

“With the exception of fat tree, which is more expensive, all other
simulated topologies are equalized in terms of cost.

App Type Number of
Ranks
MILC HPC 512
Nekbone HPC 1024
AMG HPC 1728
AMR HPC 1728
MiniDFT HPC 4525
v ul)l ul)z 1(|)3 1(I)4 1(|)5 1<|)6 1(|)7 108 Hadoop e 66%

Message/Flow size (bytes)
Fig. 10.  Flow size distribution of the simulated workloads (left)

and a table of the application parameters (right).

(ECMP) and inter-pod traffic using direct and indirect pod-
to-pod routes. Packets that traverse indirect pod-to-pod routes
will first be routed to a randomly chosen intermediate pod,
before being forwarded to their destination pod. For TRNs, we
employ a variant of topology-aware VLB similar to RotorLB
[40], which sends traffic via both direct and indirect paths.
Packets traversing indirect paths are first sent to an intermedi-
ate ToR before being routed to the destination rack. For the
EXP, we implement a hybrid valiant- ECMP (HYB) multi-path
routing as described in Kassing ez @/ [22]. Finally, the FT
topology uses ECMP routing. All simulated topologies employ
per-packet load balancing.

Workloads. Our simulations are driven by a mix of both
synthetically generated loads and traces collected from real
HPC and DC workloads. The HPC workloads are identified
by the Exascale Computing Project (ECP) [73]. We collected
the network traces for each of the simulated HPC mini-apps
using DUMPI [74], which translates the MPI collectives into
network flow arrivals. The DC workload is based on Hadoop,
a common big data processing workload in production DCs
[30]. Figure 10 shows the workload parameters and flow size
distributions. For the scales of the simulated workloads, the
processing overhead for a demand-aware reconfiguration based
on Fig. 7 is under 10 ms.

B. Comparing Network Topologies

Our first set of experiments uses synthetic loads to stress test the
networks under a variety of traffic patterns:

* Permutation. Each rack sends all its traffic to one
randomly chosen destination rack.

* Group permutation. Each rack sends all its traffic evenly
to racks in the adjacent group/pod.

* 3D stencil. Racks are logically arranged in a 3D lattice;
racks communicate with their neighbors in each dimension.

* Disaggregated storage. Racks are split evenly into two
groups: compute racks and storage racks. Storage racks com-
municate solely with the compute racks. Compute racks have
an equal probability of communicating with both compute and
storage racks.

* Bisection. Racks are evenly binned into two groups.
Racks in group 1 communicate with equal probability with
racks in group 2, and vice versa.

¢ Uniform. Uniform probability of communication be-
tween every rack pair.



Research Article

Vol. 14, No. 6 / June 2022 / Journal of Optical Communications and Networking 463

—9— PRN —e— TRN —%— DF+ —— EXP —— FT3

Permutation (f=1) 3D stencil (f=6)

Group perm. (f=16)

Bisection (7:64) Disa&g. storage (7 =95) Uniform (? =127)

el 7] [l [ ]
Z ol | {1 | Y B scssstttt
.0 [4 / L] [ ]
2Ll /] / | 7] [/l
o - | A o2 [ ]
z O/ WP taeaaiaseyy ’

Fig. 11.

(i.e., fan-out), £, is annotated alongside each workload.

Average packet latency for different topologies under varying loads. The average number of communication partners per rack

We characterize the fan-out, f, of the traffic pattern as the
average number of racks a source rack sends traffic to. In the
context of a traffic matrix, fan-out/-in refers to the average
number of non-zero entries in a row/column. For instance, in
a network with NV racks, a uniform traffic pattern would have
f=N-—1, while a permutation traffic pattern would have
= 1. The associated fan-out of each synthetic traffic pattern
is annotated in Fig. 11. All network topologies carry 128 racks.
For PRNs and TRNs, the logical topology is reconfigured
based on the expected traffic pattern between pods (for PRN)
or between racks (for TRN) at the start of the simulation and
fixed throughout the simulation.

The average packet latency of network topologies under
varying injection rates is depicted in Fig. 11. TRN outperforms
all other topologies when traffic patterns have small fan-outs
(e.g., permutation, stencil, and group permutation), capable
of supporting as much as 90% injection rate before saturation.
Owing to its ability to steer the ToR uplinks to establish direct
high bandwidth circuits between the “hot” rack pairs, a TRN
can effectively bypass the need for multi-hop routing and
still retain high throughput. However, a TRN’s performance
degrades quickly for workloads with fan-outs that exceed the
total number of uplinks per ToR EPS, such as bisection, disag-
gregated storage, and uniform. In our experiment setup, each
ToR EPS has 32 uplinks with which to form direct channels,
so communication between rack pairs that are not directly
connected will have to traverse indirect two-hop routes via an
intermediate rack. This leads to larger hop counts and creates
congestion for other packets.

PRNs showcase excellent performance in all workloads
except group permutation, which is adversarial to topologies
such as DF4 with notions of group/pods. As expected, PRNs
still outperform DF+ due to their topological reconfigura-
bility, allowing PRNs to place their inter-pod links between
traffic hotspots. PRNs show better performance when fan-out
is large, as their dense pod-level topology can provide the path
diversity needed to reach “faraway” racks, while the static intra-
pod topology can be used to handle local traffic. We see that
DF+ (green cross line) and PRNs (blue diamond line) perform
equally under uniform traffic, as PRNs’ inter-pod topology,
like that of DF+, is also uniform.

Overall, TRNs are better optimized for workloads with
small fan-outs, but suffer performance degradation as fan-out

Table 4. Server-to-Server Fan-Out Statistics of
Simulated HPC and DC Traces

Fan-Out Statistics

Application Min. Avg. Max.
AMG 18 79.2 293
AMR 15 36.2 168
Nekbone 16 29.6 36

MiniDFT 292 296 316
MILC 20 30.5 40

Hadoop 1 136 586

increases. Our evaluation shows PRNs to be more versa-
tile under both small and large fan-out workloads, as each
PRN rack can reach “faraway” racks using the inter-pod
links and relies on the static intra-pod interconnect for local
communication.

C. Effects of Reconfiguration Period on Performance

Using HPC and DC workloads, we evaluate the effects of
reconfiguration period on performance of a PRN and a TRN
under idealized conditions (i.e., no reconfiguration latency
and no demand-aware processing overhead), starting from
100 ns and increasing in factors of 10 (e.g., 100 ns, 1 ps, 10 s,
100 ps, 1 ms, 10 ms, 100 ms, 1 s). We measure performance
using average flow throughput, where the throughput of each
flow is measured by the ratio of total bits transferred to the
time taken for bits to be transferred. The server-level fan-out
of the evaluated HPC and DC traces are shown in Table 4.
We assume that reconfiguration is instantaneous (i.e., zero
latency) in this experiment to isolate effects of reconfigura-
tion latency on performance. For the PRN, we employ a
demand-aware reconfiguration by switching the inter-pod
logical topology based on the current traffic demand between
pods. For the TRN, we simulate both demand-aware and
demand-oblivious (rotation-based) reconfigurations. TRN-
DA represents networks such as ProjecToR [15] and Firefly
[38], and the demand-oblivious rotation-based TRN (TRN-
R) represents networks such as RotorNet [40] and Sirius [14].
Figure 12 shows the average flow throughput for all simulated
workloads.



464 Vol. 14, No. 6 / June 2022 / Journal of Optical Communications and Networking

Research Article

N PRN EEE TRN-DA [EE TRN-R

MILC

AMR MiniDFT

Avg. tput (Gbps)

100ns 1Ius 10us 100ps Ims 10ms 100ms 1s
Nekbone

0
100ns 1Ius 10us 100ps Ims 10ms 100ms 1s
AMG FB Hadoop

80
60
40

20

0
100ns 1Ius 10us 100ps Ims 10ms 100ms 1s

Avg. tput (Gbps)

0
100ns 1us 10ps 100ps 1ms 10ms 100ms 1s
Reconfiguration period

Fig. 12.

uration periods.

0
100ns 1us 10ps 100ps 1ms 10ms 100ms 1s
Reconfiguration period

60

40

20

0
100ns 1us 10ps 100ps 1ms 10ms 100ms 1s
Reconfiguration period

Cost-equivalent evaluation of a PRN and a TRN. Average flow throughput of HPC and DC workloads as a result of various reconfig-

1. Shorter Reconfiguration Periods Lead to Higher
Throughput

Intuitively, networks with shorter reconfiguration periods can
better adapt to demand variations over time and would yield
higher throughput as a result. As expected, this trend can also
be observed in Fig. 12 in both the PRN and TRN-DA.

2. PRNs Generally Outperform TRNs

Even though PRNs have a static intra-pod topology, we observe
a higher average throughput than TRNs for most workload
cases other than Nekbone. This is because although HPC and
DC workloads generate non-uniform communication pat-
terns, they are rarely as skewed as a rack-to-rack permutation
(see analysis in Section 6.B) to warrant direct rack-to-rack
links. Even without reconfiguring intra-pod topology, PRNs
can attain high throughput for local communication using
multi-path routing schemes (e.g., ECMP or £-shortest path) to
load-balance local links.

The results in Fig. 12 agree with our findings in Section 6.B
that PRNs outperform TRNs under large fan-out workloads.
For instance, in FB Hadoop and mini-density function theory
(Mini-DFT), two applications that have the highest average
fan-out, a PRN attains ~1.5—4x higher average throughput
than TRN-DA, given a 1 ps reconfiguration period.

3. PRN Is Less Dependent on Reconfiguration than TRN-DA
A PRN exhibits less throughput degradation than TRN-DA

and TRN-R as the reconfiguration period increases. Across all
simulated workloads, when the reconfiguration period changes
from 1 ps to 1 s, the PRN throughput degrades by approx-
imately 2.1x, while TRN-DA experiences a throughput
degradation as much as >100x in the case of FB Hadoop. The
robustness of PRNS to different reconfiguration periods is due
to two main reasons. First, the non-reconfigurable intra-pod

fabric in PRNs means that regardless of the rate of topology
reconfiguration, local communications between racks of the
same pod are not affected. So, workloads that communicate
more heavily with local racks (e.g., FB Hadoop) [30] are less
affected by the reconfiguration period.

Second, the pod-level connectivity graph of a PRN is dense
(i.e., number of uplinks per pod > number of pods), which
allows us to allocate at least one link between pod pairs that
do not expect heavy traffic to handle potential demand bursts.
As a result, the throughput performance is more robust to
longer reconfiguration periods, as the dense pod-level topology
is more resilient to demand changes. This is not possible in
a TRN with a sparse rack-to-rack logical topology, which is
dependent on frequent topology reconfigurations to opti-
mize its rack-to-rack matchings to better serve current traffic
demands.

4. TRN-R Delivers Lower Throughput for Simulated HPC
and DC Workloads

As expected, TRN-R performs worse than TRN-DA in the
same reconfiguration period, since it does not optimize topol-
ogy based on demand. Our findings show that performance
is higher with demand-aware reconfigurations with longer
reconfiguration periods than with demand-oblivious recon-
figurations with shorter reconfigurations. This suggests that
for the identified workloads, a reconfiguration strategy that is
infrequent but deliberate is better than one that is frequent but

oblivious. In our simulations, we did not identify a workload
for which TRN-R is conducive.

D. Rotating Expanders # Static Full Mesh

Prior works such as Sirius [14] argued that demand-oblivious
TRNs approximate a full-mesh interconnect by time-
multiplexing across a sequence of circuit configurations



o
N}
=]

0.15

Probability
K I
=
Probability
S
=

0.2 0.756

o
o
Gl

Il
=3
S

I I I
0 5 10 15 0 5 10 15
Total path capacity Total path capacity

(a) (b)
Fig. 13.  Distribution of total path capacity between two racks
across all OCS configurations for a TRN and a PRN. Both topologies
contain 128 ToR switches; each ToR switch has 16 reconfigurable
uplinks with unit capacity. (a) TRN-R 128 racks. (b) Eight-pod
PRN, 16 racks/pod.

such that over time, all endpoints receive an equal share of
direct connections. However, in our simulations, we found
that TRN-R performs poorly in terms of throughput (see
Section 6.C) when compared to other network architectures.
This suggests that while rotation-based reconfigurable net-
works may resemble a full mesh in a time-averaged sense, their
performance is far from that of a uniform mesh. Here, we
explore this contradiction.

Transient network paths. Maintaining a consistently high
capacity between racks is key to a high performance network.
Unlike static networks, the logical topology in reconfigurable
networks is dynamic, and thus the number of routes between
rack pairs also varies. Figure 13 shows the total number of
paths available between randomly selected rack pairs across all
possible OCS matchings. The figure shows that a large num-
ber of OCS configurations results in no paths between racks
(i.e., “disconnected” racks) in TRNs. Disconnected hosts have
to wait for the next reconfiguration epoch when a direct route
is reestablished before sending traffic, leading to long-tailed
packet latency. By comparison, ~98% of OCS configurations
result in non-zero path capacity between racks in a PRN, which
is key to its demonstrated high throughput.

Coordinated host transport injection. Round-robin
TRN-R architectures require customized host transport to
maintain a separate FIFO queue for each destination and
intermediate destination nodes. This is necessary to prevent
hosts from congesting the network unnecessarily by injecting
packets when the OCS configuration does not provide a path
to the destination. However, this requires tight integration
between the network controller and the host transport, which
can introduce significant overhead to system design.

E. Performance under Varying Duty Cycles

Thus far, we assumed zero-latency reconfigurations. However,
the process of reconfiguring an OCS requires a series of circuit
setups and tear downs that incurs a nonnegligible delay. No
packets can traverse the OCS during reconfiguration; this
duration is referred to as the circuit downtime. The duration
when optical circuits are online is referred to as the circuit
uptime. We refer to the ratio of circuit uptime to the recon-
figuration period as the duty cycle. To amortize the cost of
circuit switching, topology reconfiguration events must be
spaced sufficiently far apart. A common heuristic employed
by prior works is to select a reconfiguration period based

I 99% HEE 95% HEE 90%

Reconfiguration period

5 Tus 100us 10ms 1s

a

100 |- - | "

=

2 )

S0 == ;

el

8 —

N _—

Téoso -l &=

E ==
Reconfiguration latency

Fig. 14. Box plot of the normalized flow throughput of MILC in

a TRN-Flat network under various combinations of reconfiguration
period and reconfiguration latency. The duty cycle is the ratio of
circuit uptime to the reconfiguration period. Green crosses denote the
average normalized throughput.

on the reconfiguration latency to realize a 90% duty cycle
[15,38,43,54,58,75,76]. For example, if the reconfiguration
latency is 10 s, a corresponding reconfiguration period of
100 ps will realize a duty cycle of 90%.

We now study how duty cycles affect performance at various
reconfiguration delays. Note that we consider an end-to-end
reconfiguration delay that takes into account when a circuit is
torn down until a new circuit is established and can carry live
traffic again. To this end, we use an example demand-aware
TRN and vary the reconfiguration periods (1 ps, 100 ps,
10 ms, 1 s) and delay combinations to realize duty cycles of
99%, 95%, and 90%. Figure 14 shows the distribution of
normalized flow throughput for various combinations of
reconfiguration periods and delay in a TRN-Flat network
running MIMD Lattice Computation (MILC). The flow-
normalized throughput is the ratio of actual flow throughput
to the flow throughput when reconfiguration delay is zero.

The results show that even when duty cycles are identical,
differences in reconfiguration delay can still affect perform-
ance. Specifically, while varying the duty cycle results in little
difference in normalized throughput when reconfiguration
delay is low (i.e., <10 ps), lower duty cycles can degrade
throughput more noticeably when reconfiguration delay is
high. For instance, while the difference in average normalized
throughput of 99% and 90% duty cycles drops by ~40% for
reconfiguration delays above 100 s, there is very little appre-
ciable drop in performance when reconfiguration delays are
below 10 ps. This is because a circuit downtime of 1 ps is fairly
insignificant from the perspective of a packet, but a circuit
downtime of 100 ms corresponds to a loss of 10 Gbits per link
in a 100 Gbits/s network. Such an extended circuit downtime
may cause congestion to build at the switch buffers, leading to
a drastic increase in queueing delay and drop in throughput.
The disproportionate throughput drop with a lower duty cycle
when end-to-end reconfiguration delay is long suggests that
network operators should operate at duty cycles much higher
than 90% to ensure higher throughput.



7. DISCUSSION AND KEY TAKEAWAYS

In this section, we discuss the key takeaways from our evalu-
ation on cost-equivalens TRN and PRN, and discuss the
implications on network design.

* Not all (cost-comparable) reconfigurable networks
are built equal. The placement of OCSs plays a role in the
types of traffic patterns a reconfigurable network is optimized
for, regardless of the technology of OCSs. For instance, TRNs
have excellent performance when the communication pattern
is highly skewed (i.e., low fan-out). Conversely, PRNs outper-
form TRNs when the workload exhibits a low-skew (i.e., high
fan-out) communication pattern, where traffic is exchanged
between a large number of source—destination pairs.

* OCS placement affects dependence on the reconfig-
uration period. Prior works such as [77] have mentioned that
lower switching latency is needed for networks that place OCSs
closer to the edge. This is partly because traffic near the edge
(closer to the servers) tends to be burstier than that near the
network’s core [78] due to a lack of aggregation from switches
to “smooth” out the traffic arrivals, which means the optical
circuits need to be reconfigured more frequently to handle the
burstier arrivals. Our results agree with these observations, as
they show that a TRN, which places the OCSs closer to the
edge than a PRN, requires a shorter reconfiguration period for
good performance. This, in part, has to do with the TRN’s
sparse logical topology, which means that links have to be
reconfigured more frequently when each source host com-
municates with many destination hosts simultaneously. The
PRN’s performance is less dependent on the reconfiguration
period for three reasons: (1) a PRN has a static intra-pod fabric,
so intra-pod communication is independent of reconfigura-
tion; (2) traffic that traverses the reconfigurable optical network
is less bursty in a PRN than in a TRN due to aggregation of
traffic; and (3) a PRN’s inter-pod topology is dense, which can
provide high capacity between all source—destination pairs even
without frequent reconfiguration.

¢ A demand-aware network with a large reconfiguration
period outperforms a demand-oblivious network with a
short reconfiguration period. Our simulations show that
a TRN-DA with a 100 ms reconfiguration period delivers
0.99—4.98x higher average throughput compared to TRN-R
with a 1 ps reconfiguration period. This suggests that for the
identified workloads, it may be better to reconfigure topology
in a demand-aware but infrequent manner. This applies to
HPC systems that run long-lasting (of the order of several sec-
onds or longer) scientific applications [79] with highly skewed
and stable communication patterns [35,53] or ML clusters
with long-running training jobs that have predictable traffic
patterns [80] over time. Note that our choice of (primarily
HPC-focused) workloads does not cover the entire spectrum
of possible traffic patterns. For systems that support predomi-
nantly short-lived jobs with highly variable traffic patterns over
time, it may be beneficial to consider TRN-R-like reconfig-
urable networks that deliver uniform bandwidth to every pair
of hosts.

* No one-size-fits-all duty cycle; larger reconfiguration
latency demands a higher duty cycle. When reconfigura-
tion latency is low. Current reconfigurations are limited by a

sequence of events (physical switching, transceiver synchro-
nization, port draining, routing updates, etc). Our study shows
that even with the same duty cycle, the reconfiguration latency
matters. When end-to-end reconfiguration delay is high, the
network must operate at a much higher duty cycle (e.g., 99%
or more) to prevent congestion buildup.

In summary, a TRN is suited for small-scale networks that
run a well-behaved workload with low fan-out communication
patterns, such as ML training [80]. For clusters that support
large batch-processing jobs such as Hadoop, PRN is the bet-
ter design, and it can better serve high fan-out workloads.
In commodity clusters with high reconfiguration delay, the
reconfiguration period must also be much larger to amortize
the cost of circuit switching. Our findings suggest that PRNS,
being less dependent on low reconfiguration periods to deliver
high throughput, are more suited for reconfigurable networks
built with commercial OCSs, whose higher switching latency
may prohibit low reconfiguration periods.

8. CONCLUSION AND FUTURE WORK

While many reconfigurable networks based on optical circuit
switching have been proposed in the past, very little is under-
stood about the effects of physical OCS placement on system
performance. In this work, we evaluate two classes of reconfig-
urable networks: (1) PRNs, which place OCSs between pods,
and (2) TRNs, which place OCSs between ToR switches. We
compare reconfigurable networks and state-of-the-art static
networks in terms of cost/power consumption, scalability, and
network performance. Using realistic simulations driven by
real-world HPC and DC workloads, we assess reconfiguration
periods and their effect on network performance.

Our findings raise many open problems for future work.
First, further explorations in failure resilience and availability
will better flesh out the trade-offs among different reconfig-
urable networks. Second, as prevalent host transport protocols
such as TCP/IB today offer sub-optimal performance in
dynamic networks, designing congestion control protocols that
synergize with reconfigurable networks could further enhance
performance and incentivize the adoption of reconfigurable
networks in high performance systems.

Funding. Advanced Research Projects Agency - Energy (ARPA-E)
ENLITENED Program (Project Award No. DE-AR00000843); Laboratory
for Physical Sciences (LPS) Advanced Computing Systems (ACS) Research,
under the National Security Agency IAC MAC 19-1979 Subcontract.

REFERENCES

1. “The Top500 HPC list,” 2020, https://www.top500.0rg/green500/lists/
2020/11/.

2. K. Bergman, “Empowering flexible and scalable high performance
architectures with embedded photonics,” in IEEE International
Parallel and Distributed Processing Symposium (IPDPS) (2018),
p. 378.

3. G. Georgakoudis, N. Jain, T. Ono, K. Inoue, S. Miwa, and A. Bhatele,
“Evaluating the impact of energy efficient networks on HPC work-
loads,” in IEEE 26th International Conference on High Performance
Computing, Data, and Analytics (HiPC) (2019), pp. 301-310.

4. J. Shalf, S. Dosanjh, and J. Morrison, “Exascale computing
technology challenges,” in Proceedings of the 9th International


https://www.top500.org/green500/lists/2020/11/
https://www.top500.org/green500/lists/2020/11/

20.

21.

22.

23.

. C. E. Leiserson,

Conference on High Performance Computing for Computational
Science—VECPAR (Springer-Verlag, 2011), pp. 1-25.

. M. Besta, M. Schneider, M. Konieczny, K. Cynk, E. Henriksson, S.

Di Girolamo, A. Singla, and T. Hoefler, “FatPaths: routing in super-
computers and data centers when shortest paths fall short,” in
SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis (IEEE, 2020).

. J. Y. Yen, “Finding the k shortest loopless paths in a network,”

Manage. Sci. 17, 712-716 (1971).

. H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. Greenberg,

“COPE: ftraffic engineering in dynamic networks,” in SIGCOMM
(2006), pp. 99-110.

. H. Racke, “Minimizing congestion in general networks,” in 43rd

Annual IEEE Symposium on Foundations of Computer Science,
Proceedings (IEEE, 2002), pp. 43-52.

. M. S. Rahman, S. Bhowmik, Y. Ryasnianskiy, X. Yuan, and M. Lang,

“Topology-custom UGAL routing on Dragonfly,” in International
Conference for High Performance Computing Networking, Storage,
and Analysis (SC) (2019), paper 17.

. G. Michelogiannakis, K. Z. Ibrahim, J. Shalf, J. J. Wilke, S. Knight,

and J. P. Kenny, “APHID: hierarchical task placement to enable
a tapered fat tree topology for lower power and cost in HPC net-
works,” in 17th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID) (2017), pp. 228-237.

. J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber,

“Hyperx: topology, routing, and packaging of efficient large-scale
networks,” in International Conference for High Performance
Computing Networking, Storage, and Analysis (SC) (2009).

.J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven,

highly-scalable Dragonfly topology,” in Proceedings of the 35th
International Symposium on Computer Architecture (ISCA) (2008).

. A. Shpiner, Z. Haramaty, S. Eliad, V. Zdornov, B. Gafni, and E.

Zahavi, “Dragonfly+: low cost topology for scaling datacen-
ters,” in IEEE 3rd International Workshop on High-Performance
Interconnection Networks in the Exascale and Big-Data Era
(HiPINEB) (IEEE, 2017), pp. 1-8.

. H. Ballani, P. Costa, R. Behrendt, D. Cletheroe, |. Haller, K. Jozwik,

F. Karinou, S. Lange, K. Shi, B. Thomsen, and H. Williams, “Sirius:
a flat datacenter network with nanosecond optical switching,” in
SIGCOMM (2020).

. M. Ghobadi, R. Mahajan, A. Phanishayee, N. Devanur, J. Kulkarni,

G. Ranade, P.-A. Blanche, H. Rastegarfar, M. Glick, and D. Kilper,
“ProjecToR: agile reconfigurable data center interconnect,” in
SIGCOMM (2016).

. G. Liu, R. Proietti, M. Fariborz, P. Fotouhi, X. Xiao, and S. J. B. Yoo,

“Architecture and performance studies of 3D-Hyper-FleX-LION
for reconfigurable all-to-all HPC networks,” in SC: International
Conference for High Performance Computing, Networking, Storage
and Analysis (2020).

. M. Y. Teh, J. J. Wilke, K. Bergman, and S. Rumley, “Design space

exploration of the Dragonfly topology,” in International Conference
on High Performance Computing (2017).

“Fat-trees: universal networks for hardware-
efficient supercomputing,” IEEE Trans. Comput. C-34, 892-901
(1985).

. A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,

D. A. Maltz, P. Patel, and S. Sengupta, “VI2: a scalable and flexible
data center network,” in SIGCOMM (2009).

M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” in SIGCOMM (2008).

A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R.
Bannon, S. Boving, G. Desai, B. Felderman, P. Germano, A.
Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Holzle,
S. Stuart, and A. Vahdat, “Jupiter rising: a decade of Clos topol-
ogies and centralized control in Google’s datacenter network,” in
SIGCOMM (2015).

S. Kassing, A. Valadarsky, G. Shahaf, M. Schapira, and A. Singla,
“Beyond fat-trees without antennae, mirrors, and disco-balls,” in
SIGCOMM (ACM, 2017), pp. 281-294.

A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: net-
working data centers, randomly,” in Networked Systems Design and
Implementation (NSDI) (2012).

24

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

. A. Valadarsky, G. Shahaf, M. Dinitz, and M. Schapira, “Xpander:
towards optimal-performance datacenters,” in International
Conference on Emerging Networking Experiments and Technologies
(CoNEXT) (2016).

M. Besta and T. Hoefler, “Slim Fly: a cost effective low-diameter
network topology,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis
(2014).

S. Zhao, R. Wang, J. Zhou, J. Ong, J. C. Mogul, and A. Vahdat,
“Minimal rewiring: efficient live expansion for Clos data center net-
works,” in Networked Systems Design and Implementation (NSDI)
(2019).

M. Zhang, R. N. Mysore, S. Supittayapornpong, and R. Govindan,
“Understanding lifecycle management complexity of datacenter
topologies,” in Networked Systems Design and Implementation
(NSDI) (2019).

T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding
data center traffic characteristics,” in Proceedings of the 1st ACM
Workshop on Research on Enterprise Networking (2009).

S. Kandula, J. Padhye, and P. Bahl, “Flyways to de-congest data
center networks,” in Proceedings of HotNets (2009).

A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in SIGCOMM (2015).
“Telescent G4 network topology manager,” 2021, https://www.
telescent.com/products.

A. Chatzieleftheriou, S. Legtchenko, H. Williams, and A. Rowstron,
“Larry: practical network reconfigurability in the data center,” in
15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI) (2018), pp. 141-156.

“Calient S-Series S320,” 2021, https://www.calient.net/resources/
datasheets/.

“Polatis optical circuit switch,” 2021, https://www.polatis.com/series-
7000-384x384-port-software-controlled-optical-circuit-switch-sdn-
enabled.asp.

K. Wen, P. Samadi, S. Rumley, C. P. Chen, Y. Shen, M. Bahadori, K.
Bergman, and J. Wilke, “Flexfly: enabling a reconfigurable Dragonfly
through silicon photonics,” in SC16: International Conference for
High Performance Computing, Networking, Storage and Analysis
(2016).

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-
scale broadband digital silicon photonic switches with vertical
adiabatic couplers,” Optica 3, 64-70 (2016).

T. Chu, L. Qiao, W. Tang, D. Guo, and W. Wu, “Fast, high-radix
silicon photonic switches,” in Optical Fiber Communication Con-
ference (OFC) (Optical Society of America, 2018), paper Th1J.4.

N. Hamedazimi, Z. Qazi, H. Gupta, V. Sekar, S. R. Das, J. P. Longtin,
H. Shah, and A. Tanwer, “Firefly: a reconfigurable wireless data
center fabric using free-space optics,” in SIGCOMM (2014),
pp. 319-330.

X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar, A. Vahdat, B. Y. Zhao,
and H. Zheng, “Mirror mirror on the ceiling: flexible wireless links for
data centers,” in SIGCOMM (2012).

W. M. Mellette, R. McGuinness, A. Roy, A. Forencich, G. Papen, A.
C. Snoeren, and G. Porter, “RotorNet: a scalable, low-complexity,
optical datacenter network,” in Proceedings of the Conference of
the ACM Special Interest Group on Data Communication (2017).

W. M. Mellette, R. Das, Y. Guo, R. McGuinness, A. C. Snoeren,
and G. Porter, “Expanding across time to deliver bandwidth
efficiency and low latency,” in Networked Systems Design and
Implementation (NSDI) (2020).

S. Kamil, J. Shalf, L. Oliker, and D. Skinner, “Understanding ultra-
scale application communication requirements,” in Proceedings of
the Workload Characterization Symposium (2005).

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V.
Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios:
a hybrid electrical/optical switch architecture for modular data
centers,” in SIGCOMM (2011).

J. L. Benjamin, T. Gerard, D. Lavery, P. Bayvel, and G. Zervas,
“PULSE: optical circuit switched data center architecture operating
at nanosecond timescales,” J. Lightwave Technol. 38, 4906-4921
(2020).


https://doi.org/10.1287/mnsc.17.11.712
https://doi.org/10.1109/TC.1985.6312192
https://www.telescent.com/products
https://www.telescent.com/products
https://www.calient.net/resources/datasheets/
https://www.calient.net/resources/datasheets/
https://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp
https://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp
https://www.polatis.com/series-7000-384x384-port-software-controlled-optical-circuit-switch-sdn-enabled.asp
https://doi.org/10.1364/OPTICA.3.000064
https://doi.org/10.1109/JLT.2020.2997664

45

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

. W. Wang, S. Das, and T. E. Ng, “Abstractions for reconfigurable
hybrid network update and a consistent update approach,” in
Proceedings of the ACM SIGCOMM 2021 Workshop on Optical
Systems (2021), pp. 6-11.

Facebook, “Facebook Open Switching System (“FBOSS”) and
Wedge in the open,” https://engineering.fb.com/2015/03/10/data-
center-engineering/facebook-open-switching-system-fboss-and-
wedge-in-the-open/.

Y. Shen, Reconfigurable Optically
(Columbia University, 2020).

K. A. Clark, D. Cletheroe, T. Gerard, |. Haller, K. Jozwik, K. Shi, B.
Thomsen, H. Williams, G. Zervas, H. Ballani, P. Bayvel, P. Costa,
and Z. Liu, “Synchronous subnanosecond clock and data recovery
for optically switched data centres using clock phase caching,” Nat.
Electron. 3, 426-433 (2020).

M. Y. Teh, Z. Wu, and K. Bergman, “Flexspander: augmenting
expander networks in high performance computing and data cen-
ters with optical bandwidth steering,” J. Opt. Commun. Netw. 12,
B44-B54 (2020).

G. Michelogiannakis, Y. Shen, M. Y. Teh, X. Meng, B. Aivazi,
T. Groves, J. Shalf, M. Glick, M. Ghobadi, L. Dennison, and K.
Bergman, “Bandwidth steering in HPC using silicon nanophoton-
ics,” in International Conference for High Performance Computing
Networking, Storage, and Analysis (SC) (2019), paper 41.

Y. Xia, X. S. Sun, S. Dzinamarira, D. Wu, X. S. Huang, and T. E. Ng,
“A tale of two topologies: exploring convertible data center network
architectures with flat-tree,” in Proceedings of the Conference of
the ACM Special Interest Group on Data Communication (2017),
pp. 295-308.

G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. Ng, M.
Kozuch, and M. Ryan, “C-through: part-time optics in data centers,”
in SIGCOMM (2011).

K. J. Barker, A. Benner, R. Hoare, A. Hoisie, A. K. Jones, D. K.
Kerbyson, D. Li, R. Melhem, R. Rajamony, E. Schenfeld, S. Shao, C.
Stunkel, and P. Walker, “On the feasibility of optical circuit switching
for high performance computing systems,” in SC: Proceedings of
the ACM/IEEE Conference on Supercomputing (2005), paper 16.

G. Porter, R. Strong, N. Farrington, A. Forencich, C.-S. Pang,
T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating
microsecond circuit switching into the data center,” in SIGCOMM
(2013).

W. Miao, J. Luo, S. Di Lucente, H. Dorren, and N. Calabretta, “Novel
flat datacenter network architecture based on scalable and flow-
controlled optical switch system,” Opt. Express 22, 2465-2472
(2014).

J. Edmonds and R. M. Karp, “Theoretical improvements in algo-
rithmic efficiency for network flow problems,” J. ACM 19, 248-264
(1972).

M. Fiorani, M. Tornatore, J. Chen, L. Wosinska, and B. Mukherjee,
“Spatial division multiplexing for high capacity optical interconnects
in modular data centers,” J. Opt. Commun. Netw. 9, A143-A153
(2017).

M. K. Mukerjee, C. Canel, W. Wang, D. Kim, S. Seshan, and A. C.
Snoeren, “Adapting TCP for reconfigurable datacenter networks,” in
Networked Systems Design and Implementation (NSDI) (2020).

M. Miller and J. Siran, “Moore graphs and beyond: a survey of the
degree/diameter problem,” Electron. J. Comb. 14, 1-61 (2012).

W. G. Bridges and S. Toueg, “On the impossibility of directed Moore
graphs,” J. Comb. Theory B 29, 339-341 (1980).

G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson,
T. Johnson, J. Kopnick, M. Higgins, and J. Reinhard, “Cray
Cascade: a scalable HPC system based on a Dragonfly network,”
in International Conference on High Performance Computing,
Networking, Storage and Analysis (SC) (2012).

M. Flajslik, E. Borch, and M. A. Parker, “Megafly: a topology for
exascale systems,” in ISC High Performance (2018).

Interconnected  Systems

63.

64.

65.

66.

67.

68.

69.

70.
. “minyee/reconf_network_eval: first release of reconfigurable net-

71

72.

73.

74.

75.

76.

77.

78.

79.

80.

Gurobi Optimization, “Gurobi optimizer reference manual,” 2019,
http://www.gurobi.com.

M. Y. Teh, Y.-H. Hung, G. Michelogiannakis, S. Yan, M. Glick,
J. Shalf, and K. Bergman, “TAGO: rethinking routing design in
high performance reconfigurable networks,” in Proceedings of
the International Conference for High Performance Computing,
Networking, Storage and Analysis (2020), paper 25.

P. Bakopoulos, K. Christodoulopoulos, G. Landi, et al., “NEPHELE:
an end-to-end scalable and dynamically reconfigurable optical
architecture for application-aware SDN cloud data centers,” |IEEE
Commun. Mag. 56(2), 178-188 (2018).

“Mellanox Spectrum SN2700 32-Port 100GbE Open Ethernet
Switch with Mellanox Onyx - Part ID: MSN2700-CS2R,” 2021,
https://www.colfaxdirect.com/store/pc/viewPrd.asp?idproduct=
2993&idcategory=0.

“Mellanox EDR 100Gb/s QSFP28 Optical Transceiver - Part ID:
MMA1B00-E100,” 2021, https://www.colfaxdirect.com/store/pc/
viewPrd.asp?idproduct=3187&idcategory=25.

H. Isono, “Latest standardization status and its future directions
for high speed optical transceivers,” Proc. SPIE 10946, 1094604
(2019).

M. R. Jokar, J. Qiu, F. T. Chong, L. L. Goddard, J. M. Dallesasse,
M. Feng, and Y. Li, “Baldur: a power-efficient and scalable network
using all-optical switches,” in IEEE International Symposium on
High Performance Computer Architecture (HPCA) (2020).

NetBench, https://github.com/ndal-eth/netbench.

work topology evaluation framework,” 2021, https://zenodo.org/
record/4897956.

L. G. Valiant and G. J. Brebner, “Universal schemes for paral-
lel communication,” in Proceedings of the 13th Annual ACM
Symposium on Theory of Computing (STOC) (Association for
Computing Machinery, 1981), pp. 263-277.

“Characterization of the DOE mini-apps” [Accessed 16 February
2019], https://portal.nersc.gov/project/CAL/doe-miniapps.htm.

H. Adalsteinsson, S. Cranford, D. A. Evensky, J. P. Kenny, J. Mayo,
A. Pinar, and C. L. Janssen, “A simulator for large-scale parallel
computer architectures,” Int. J. Distrib. Syst. Technol. 1, 57-73
(2010).

H. Liu, M. K. Mukerjee, C. Li, N. Feltman, G. Papen, S. Savage, S.
Seshan, G. M. Voelker, D. G. Andersen, M. Kaminsky, G. Porter,
and A. C. Snoeren, “Scheduling techniques for hybrid circuit/packet
networks,” in CoNEXT: Proceedings of the 11th ACM Conference
on Emerging Networking Experiments and Technologies (2015),
paper 41.

H. Liu, F. Lu, A. Forencich, R. Kapoor, M. Tewari, G. M. Voelker,
G. Papen, A. C. Snoeren, and G. Porter, “Circuit switching
under the radar with reactor,” in Networked Systems Design and
Implementation (NSDI) (2014).

N. Farrington, A. Forencich, G. Porter, P.-C. Sun, J. E. Ford, Y.
Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond
optical circuit switch for data center networking,” IEEE Photon.
Technol. Lett. 25, 1589-1592 (2013).

T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteris-
tics of data centers in the wild,” in Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement (ACM, 2010),
pp. 267-280.

G. Michelogiannakis, B. Klenk, B. Cook, M. Y. Teh, M. Glick, L.
Dennison, K. Bergman, and J. Shalf, “A case for intra-rack resource
disaggregation in HPC,” ACM Trans. Archit. Code Optim. 19, 29
(2022).

M. Khani, M. Ghobadi, M. Alizadeh, Z. Zhu, M. Glick, K. Bergman,
A. Vahdat, B. Klenk, and E. Ebrahimi, “SiP-ML: high-bandwidth
optical network interconnects for machine learning training,” in
SIGCOMM (2021), pp. 657-675.


https://engineering.fb.com/2015/03/10/data-center-engineering/facebook-open-switching-system-fboss-and-wedge-in-the-open/
https://engineering.fb.com/2015/03/10/data-center-engineering/facebook-open-switching-system-fboss-and-wedge-in-the-open/
https://engineering.fb.com/2015/03/10/data-center-engineering/facebook-open-switching-system-fboss-and-wedge-in-the-open/
https://doi.org/10.1038/s41928-020-0423-y
https://doi.org/10.1038/s41928-020-0423-y
https://doi.org/10.1364/JOCN.379487
https://doi.org/10.1364/OE.22.002465
https://doi.org/10.1145/321694.321699
https://doi.org/10.1364/JOCN.9.00A143
https://doi.org/10.37236/35
https://doi.org/10.1016/0095-8956(80)90091-X
http://www.gurobi.com
https://doi.org/10.1109/MCOM.2018.1600804
https://doi.org/10.1109/MCOM.2018.1600804
https://www.colfaxdirect.com/store/pc/viewPrd.asp?idproduct=2993&idcategory=0
https://www.colfaxdirect.com/store/pc/viewPrd.asp?idproduct=2993&idcategory=0
https://www.colfaxdirect.com/store/pc/viewPrd.asp?idproduct=3187&amp;idcategory=25
https://www.colfaxdirect.com/store/pc/viewPrd.asp?idproduct=3187&amp;idcategory=25
https://doi.org/10.1117/12.2507321
https://github.com/ndal-eth/netbench
https://zenodo.org/record/4897956
https://zenodo.org/record/4897956
https://portal.nersc.gov/project/CAL/doe-miniapps.htm
https://doi.org/10.4018/jdst.2010040104
https://doi.org/10.1109/LPT.2013.2270462
https://doi.org/10.1109/LPT.2013.2270462
https://doi.org/10.1145/3514245

