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A B S T R A C T   

Management of agricultural soil quality requires fast and cost-efficient methods to identify multiple stressors that 
can affect soil organisms and associated ecological processes. Here, we propose to use soil protists which have a 
great yet poorly explored potential for bioindication. They are ubiquitous, highly diverse, and respond to various 
stresses to agricultural soils caused by frequent management or environmental changes. 

We test an approach that combines metabarcoding data and machine learning algorithms to identify potential 
stressors of soil protist community composition and diversity. We measured 17 key variables that reflect various 
potential stresses on soil protists across 132 plots in 28 Swiss vineyards over 2 years. We identified the taxa 
showing strong responses to the selected soil variables (potential bioindicator taxa) and tested for their predictive 
power. 

Changes in protist taxa occurrence and, to a lesser extent, diversity metrics exhibited great predictive power 
for the considered soil variables. Soil copper concentration, moisture, pH, and basal respiration were the best 
predicted soil variables, suggesting that protists are particularly responsive to stresses caused by these variables. 
The most responsive taxa were found within the clades Rhizaria and Alveolata. Our results also reveal that a 
majority of the potential bioindicators identified in this study can be used across years, in different regions and 
across different grape varieties. 

Altogether, soil protist metabarcoding data combined with machine learning can help identifying specific 
abiotic stresses on microbial communities caused by agricultural management. Such an approach provides 
complementary information to existing soil monitoring tools that can help manage the impact of agricultural 
practices on soil biodiversity and quality.   

1. Introduction 

In a context of ongoing human population growth where agricultural 
landscapes occupy an increasing proportion of the total land area on 
Earth, there is a growing need for assessing the impact of agriculture on 
soil quality and functioning. Management of agricultural soil quality 
relies mostly on in situ measurements of multiple variables such as pH, 
bulk density, nutrient, and pesticide concentration. Despite providing 

quantitative information on soil quality and how it changes through 
space and time, such in situ measurements do not directly reflect the 
stresses caused by agricultural practices on soil organisms and, thereby, 
do not integrate the key role that soil organisms play in soil functions 
such as plant productivity and nutrient cycling (Giller et al., 1997, Wagg 
et al., 2014). Bioindicators that can reflect several abiotic stressors 
affecting soil biodiversity and its associated functions are thus needed 
for the management of agricultural soil quality. 
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A number of bioindicators have been suggested for monitoring soil 
quality such as: soil microbial biomass, soil animals, plants, and soil 
enzymes (Killham, 2002). Bioindicators should be commonly found and 
easily sampled, represent the local environmental conditions (as 
opposed to regional), and show some specific responses to target envi
ronmental variables that can be reliably measured. Protists fulfil these 
criteria (Payne, 2013). They are present in all agricultural soils world
wide. Progresses in metabarcoding technology make it possible to 
characterize most of their biodiversity in a reproducible and cost- 
effective way (Taberlet et al., 2018). Because soil protists are ecologi
cally distinct from bacteria, fungi and other soil taxa (e.g. different 
physiology and ecological preferences), the information they provide on 
soil quality is complementary to that provided by other bioindicators. 
Their responsiveness to soil conditions – such as pH (Dupont et al., 
2016), nitrogen level (Zhao et al., 2019, Zhao et al., 2020), soil moisture 
(Geisen et al., 2014), and quantity of pesticides (Fournier et al., 2020) – 
point toward a great potential for bioindication of agricultural soil 
ecosystem quality. In addition, protists are more sensitive than other 
microbial taxa to abiotic stresses such as changes in soil nitrogen 
fertilization (Zhao et al., 2019) or synthetic pesticides (Fournier et al., 
2020). Such responsiveness to abiotic stresses caused by fertilization or 
pesticides – usually associated with detrimental effect on soil quality – 
reinforce the idea of using soil protists to identify several abiotic 
stressors affecting soil biodiversity and quality in agroecosystems. 
Despite its potential, the use of soil protists as bioindicator remains 
underexplored. 

The association of metabarcoding data with supervised machine 
learning (SML) (Peters et al., 2014, Thessen, 2016) represents a prom
ising approach in the context of bioindication and biomonitoring (Cor
dier et al., 2019). This approach allows for quantitative predictions of 
individual soil variables contrary to other bioindication methods that 
produce qualitative approximations. It has been successfully applied to 
protists in aquatic ecosystems to quantitatively predict several variables 
related to ecosystem quality (Cordier et al., 2017; Aylagas et al., 2018) 
(see Pawlowski et al., 2016 for a review). The great advantage of SML is 
that it is not constrained by strict statistical assumptions about the dis
tribution of data and can fully exploit the large mass of data generated 
by metabarcoding by automatically sorting the ecological signal from 
the background noise. This approach can thus (i) identify responsive 
taxa without the need for strong taxonomic or ecological knowledge 
(taxonomy-free approaches: e.g. Apothéloz-Perret-Gentil et al., 2017) 
and (ii) produce quantitative predictions of individual variables relevant 
for soil quality. Here we assume that quantitative predictions can be 
used to identify a stress or a disruption of the structure and functioning 
of soil microbial communities resulting from agricultural soil manage
ment or changes in environmental conditions. We believe that the 
metabarcoding-SML quantitative approach can be implemented in 
agricultural soils to provide direct information about the response of soil 
microbes (here protists) that would complement classical soil abiotic 
monitoring based on in situ measurements. 

Here, we test the metabarcoding-SML approach using a case study in 
Swiss vineyard soils. We used data from 132 soil samples collected over 
two years in 28 Swiss vineyards from a winegrowing region with rela
tively homogenous climatic conditions but differing in agricultural 
practices and soil characteristics. Our specific goals are 1) to assess 
which soil variables can be best predicted based on soil protists (i.e. 
identify variables that can cause a stress on soil protist communities); 2) 
to identify the taxa and diversity metrics that best predict these variables 
(i.e. identify responsive taxa and diversity metrics with high potential as 
bioindicators) and assess whether individual taxa and diversity metrics 
provide redundant or complementary information; and 3) to determine 
whether predictions are context-dependent. 

2. Methods 

2.1. Sampling sites and treatments 

A total of 132 soil samples were taken in 28 vineyards located be
tween 500 m and 800 m a.s.l. in Wallis (Switzerland) in 2016 (N = 74) 
and 2017 (N = 58). With ca. 4,800 ha of vineyards, the region is the 
highest producer of wine in Switzerland. This region has a continental 
climate with Mediterranean influences (mean annual temperature ~ 
9.2 ◦C; mean annual precipitations ~ 690 cm y-1 in Sion at ~ 500 m a.s. 
l.). The 28 vineyards have similar climatic conditions but differed in soil 
texture and chemistry, in the use of pesticide (principally copper con
tent), and in the cover and diversity of the vegetation in the vineyard 
inter-rows. In 10 vineyards, vegetation in all inter-rows was removed by 
application of glyphosate-based herbicides 2–3 times a year. In 8 vine
yards, the inter-rows were managed by vegetation removal in every 
other row by herbicide application. In 10 vineyards, spontaneous 
vegetation was maintained, and the vegetation was cut 2–4 times per 
season (Steiner et al., Personal communication). 

2.2. Soil sampling 

Soil sampling was carried out over two consecutive years on the 13th 
of June 2016 and the 26th of May 2017. Sampling was done in two 
adjacent rows, starting five meters from the edge of the south eastern 
end of each vineyard. Ten subsamples per inter-row were collected until 
10 cm depth within a span of 8–10 m. Subsamples were pooled per inter- 
row, sieved with a 2 mm mesh and stored at 4 ◦C before DNA extraction, 
which was performed within 3–4 days after sampling. 

2.3. Environmental variables 

A total of 17 soil variables were selected based on their importance 
for vineyard soil functioning and their potential impact on soil microbial 
communities (Table 1). These variables were classified into five broad 
categories: vegetation-related variables, soil texture, soil chemistry, 
microbial variables, and pesticide use. The bioavailable copper content 
was determined by extraction using diethylenetriaminepentaacetic acid 
(DTPA). A total of 20 ml DTPA was added to 10 g of soil. The solution 
was stirred for 2 h, filtered, and analyzed using an atomic absorption 
spectrometer (Schaller 2000). Soil microbial biomass was estimated as the 
microbial carbon per gram of dried soil [μg Cmicrobial g− 1] using substrate 
induced (400 µl 40% glucose solution) respiration and calculation of 
microbial biomass C (according to Beck et al., 1997 & Anderson and 
Domsch, 1978). Basal respiration rate was measured as the O2 

Table 1 
List of the measured soil variables.  

Variable 
category 

Description Short 
name 

Vegetation Plant cover [%] P_cover  
Plant species richness P_rich  
Plant diversity (Simpson index) P_sim  
Plant diversity (Shannon index) P_sha  
Vegetation treatment (three categories: herbicide, 
vegetation removal, spontaneous vegetation) 

Veg_trt  

Age of the vegetation cover [years] age_veg 
Soil texture Clay content [%] Clay  

Sand content [%] Sand  
Stone content [%] Stone 

Soil chemistry pH pH  
Nitrogen content unit [%] N  
Carbon content unit [%] Ctot  
Soil organic matter content [%] SOM  
C/N ratio CN  
Soil moisture content [%] H2O 

Microbial Basal respiration [μg O2 h− 1 g− 1] BR 
Pesticide Copper concentration [mg/kg] Cu  
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consumption per hour per gram of dry soil [μg O2 h− 1 g− 1] following the 
method of Scheu (1992). Total carbon and nitrogen content were 
measured using the Dumas combustion technique (Dumas, 1826; see 
Bremner and Mulvaney, 1982) with the “vario MAX CNS” analyser of the 
ELEMETA company. C/N ratio is the ratio of the total carbon content 
over the total nitrogen content. Soil organic matter content (SOM) was 
derived from the total soil carbon content. For calcareous soils (pH <
6.9), the calcium-carbonate fraction (i.e. inorganic carbon) was deter
mined and subtracted from the total carbon content. Soil moisture content 
was estimated using 3.5 g of soil as the weight loss after 12 h drying at 
80 ◦C. Soil pH was measured from a solution of 10 g of dried soil mixed 
with 25 ml of 0.01 M CaCl2 (ratio = 1:1.5). Prior to measurement, the 
solution was stirred for 5 min and left for three hours to allow the sus
pended solids to settle. Soil clay (2 and 0.02 mm), sand (2 and 0.02 mm) 
and stone contents [%] were estimated as the relative weight of these soil 
fractions. Finally, the percentage of soil covered by vegetation was visually 
estimated in 1 m2 quadrats. Plant species richness was estimated as the 
total number of species present in each individual plot. And plant species 
diversity was estimated using both the Shannon (lower importance of 
rare species) and Simpson (higher importance of rare species) diversity 
indices. Two variables describing vegetation management in each 
vineyard were derived from interviews with the winemakers. Vegetation 
treatment is a categorical variable representing how vegetation was 
managed in the inter-rows of each vineyard: herbicide, alternate her
bicide, spontaneous vegetation. The age of the vegetation cover is the 
number of years the vegetation in the inter-rows has been present. 

2.4. DNA extraction, amplification and sequencing 

DNA was extracted from 0.25 g of homogenized mixed samples with 
the DNeasyPowerSoil Kit ® following the provided protocol (QIAGEN N. 
V., Netherlands). DNA extracts were quantified using a Nano Drop 1000 
Spectrophotometer (Thermo Fisher Scientific, USA), stored at − 20 ◦C, 
and sent to McGill University, Génome Québec Innovation Center, for 
PCR amplification and sequencing. The V9 SSU rRNA hypervariable 
region was amplified with the general eukaryotic primer pair 1380f/ 
1510r (Amaral-Zettler et al., 2009). Paired-end DNA sequencing was 
performed on an Illumina MiSeq platform. Sequencing data and meta
data are stored at the European Nucleotide Archive retrievable, upon 
acceptance of this article, with the accession number PRJEB32992. 

2.5. Sequence data processing and taxonomic assignment 

The absence of sequencing primers in the dataset was verified using 
cutadapt (Martin, 2011). The analysis of the reads was then done using 
the Divisive Amplicon Denoising Algorithm (DADA2) software (Call
ahan et al., 2016). The DADA2 pipeline infers exact amplicon sequence 
variants (ASVs) from sequencing data using the following steps: 
filtering, dereplication, sample inference, chimera identification, and 
merging of paired-end reads. We then assigned taxonomy to the ASVs 
with QIIME2 (Bolyen et al., 2019) using a pre-trained Naive Bayes 
classifier (Wang et al., 2007) and the Silva database (Ref NR 99, release 
132) for protists (Quast et al., 2012). ASVs which were not assigned to 
protists were discarded. Through this approach, we obtained a total of 
714′516 protist sequences classified into 2298 distinct ASVs. The main 
groups of protists were characterized by a relative abundance of around 
35% of Alveolata, 32% of Rhizaria, 14% of Stramenopiles, 10% of 
Amoebozoa, and 6% of Chloroplastida. 

2.6. Data analyses 

We first calculated 23 metrics representing different aspects of pro
tist alpha diversity: diversity, richness, evenness, rarity, and dominance 
(R package Microbiome (Lahti et al., 2017); see Table S1 for further 
explanations). We selected metrics that are relevant for each diversity 
aspects and that differ in the importance given to the number of taxa 

present and the total number and abundance of rare and/or dominant 
taxa (Table S1). We then built and tested various machine learning 
models using protist ASV occurrence and diversity metrics as predictors 
of soil variables: k-nearest neighbors regression (Hechenbichler and 
Schliep, 2004), Support Vector Machines with Linear Kernel (svmLinear, 
R package kernlab; Karatzoglou et al., 2004), extreme Gradient Boosting 
(xgbdart; R package xgboost; Chen and Guestrin, 2016), cubist (R 
package Cubist; see e.g. Kotsiantis et al., 2007 for a review), and Neural 
network regression (R nnet; Venables and Ripley, 2002). Environmental 
data were scaled and centered before analysis. Cu, M_bio, P_bio, C_tot, 
and H2O were log-transformed prior to analyses to facilitate the visu
alization of the results. ASVs and diversity metrics with near zero vari
ance or very high correlation were removed from the dataset as they do 
not improve the quality of the predictions. Data splitting was carried out 
in two ways. We first divided the data into a training (70%) and a test 
(30%) set by randomly sampling an equal number of data points above 
and below the median of the response variable (hereafter random 
splitting). We then used the 2016 data as the train set and the 2017 data 
as the test set (temporal splitting). Bootstrap resampling was used for 
model training and tuning. We also compared the predictive perfor
mances of models based on ASV alone, diversity metrics alone, or both to 
assess whether individual taxa abundance and diversity metrics provide 
complementary information. 

The correlations between observed values and values predicted 
based on protists were measured using Kendall’s Tau where 0 represents 
no relationship and 1 represents perfect correlation. This metric pro
vided an estimation of the strength of the response of protists to specific 
soil characteristics that reflects the general bioindication potential of 
protists for a specific variable. The contribution of all soil taxa and di
versity metrics to these predictions was estimated using importance 
measures (mean decrease in accuracy). These importance metrics 
identify the taxa and diversity metrics showing a strong relationship to 
specific variables and having an important contribution to the model. 
Ranking the taxa or diversity metrics based on importance metrics al
lows us to identify the best potential bioindicators. 

To evaluate the dependency of predictive performance on the 
inherent variability of the measured soil variables, the tau values were 
correlated with the standard deviations of each soil variable. A positive 
correlation means that performance increases with variability whereas a 
negative one indicates the opposite. To explore the potential trans
ferability of the method to other geographical and agricultural context, 
the correlations between model residuals and longitude, elevation, and 
grape variety were calculated. Strong correlation suggest that the suit
ability of the method depends on geographic location and/or grape 
variety. Grape variety represents slightly different agricultural practices 
and microclimatic conditions as winemakers optimize the variety given 
local conditions. Because climatic conditions in our study change more 
strongly with longitude than latitude, we focused only on longitude in 
this analysis. Data preprocessing, model calibration, and model valida
tion were done using the R package ‘Caret’ (Kuhn, 2008). All analyses 
were done in R version 4.0.2 (R Development core team, 2019). 

3. Results 

3.1. Which soil variables can be predicted based on soil protists? 

Correlations between predicted and observed values (Tau) were 
overall high but dependent on the type of variables. Focusing on the best 
model for each variable, the correlations between observed and pre
dicted values based on test data were all significant (P < 0.01) with 
Kendall’s Tau values ranging between 0.24 and 0.62 (Fig. 1; see Table S2 
for the detailed results of each model). Edaphic variables were the best 
predicted variables with soil moisture (Tau = 0.62), basal respiration 
(Tau = 0.57), pH (Tau = 0.54), and copper concentration (Tau = 0.52) 
showing the highest Tau values. To the contrary, vegetation-related 
variables showed the lowest Tau values (plant Shannon: Tau = 0.27; 
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plant Simpson: Tau = 0.29; and time since the vegetation cover was 
installed: Tau = 0.24). However, this contrasts with vegetation treat
ment (Veg_trt), the only categorical variable in our dataset, that showed 
a kappa value of 0.62 with an accuracy of 0.81, a sensitivity of 0.79, and 
a specificity of 0.83. 

3.2. Which taxa and diversity metrics best predict soil variables? 

Rhizaria and Alveolata were the two taxonomic groups showing the 
strongest correlations with environmental variables (based on impor
tance metrics; Fig. 2A). Diversity metrics, especially those metrics 
related to evenness and rarity, showed significant correlations as well 
(Fig. 2B). In addition to these general trends, importance metrics 
allowed identifying the most responsive individual taxa and diversity 

Fig. 1. Protist-based predictions of environmental variables. (A) Coefficients of correlation (Kendall’s Tau) between observed and predicted values. All correlations 
were significant (p < 0.01). See descriptions of the abbreviations of the variable names in the Table 1. (B-E) Scatterplots of observed versus predicted values for the 
four best predicted variables. Linear regression lines are fitted, and the grey area represents 95% confidence intervals. 

Fig. 2. Importance of (A) ASV and (B) diversity metrics as predictors of agricultural soil variables. Variable importance was measured by the residual sum of squares 
(RSS) in models based on various machine learning algorithms. (C-F) Relationship between the four best predicted soil variables and the respective most important 
predictors. Dashed blue lines are local weighted regressions (loess). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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metrics (Fig. 2C-F). For example, increased soil moisture was associated 
with a decrease in the relative abundance of an ASV within the clade 
Thaumatomonadidae (Fig. 2C). This ASV is thus a potential bioindicator 
of wetter soil conditions. Increased basal respiration was associated with 
a decrease in the relative abundance of ASV identified as Chlorococcum 
(Fig. 2D). Higher pH values were associated with an increase in the 
relative abundance of another ASV within the clade Thaumatomonadi
dae. Finally, increased copper concentration was associated with an 
increase in an ASV within the clade Cercomonas (Fig. 2F). Further in
formation about the responsiveness of species ASV and diversity metric 
are given in Fig. S2-4. Our results also reveal a high variability in the 
correlations between taxa abundance and environmental variables 
among and within taxonomic groups (Fig. S5). 

The complementarity between ASV and diversity metrics was low. 
Comparisons of models based on ASV alone and biodiversity metrics 
alone showed that ASV have a higher potential as bioindicators (42 % 
decrease in Tau values when using diversity metrics alone; P < 0.001; 
Fig. 3A). The combined use of ASV and diversity metrics resulted in a 
marginal increase in Tau values as compared to models based on ASV 
alone (7%; P = 0.33; Fig. 3A). Only few variables such as pH, vegetation 
cover, and plant richness were better predicted by diversity metrics 

(Fig. 3B-C). 

3.3. Are protist-based predictions context-dependent? 

The comparisons of the performances obtained using randomly split 
of training and test data to a temporal split revealed a significant 
decrease of 23 % (P < 0.001) in the correlation between observed and 
predicted values (Fig. 4A) when considering all variables and models. 
However, most variables showed no to very modest decrease in pre
dictive performance (<10%) with the exception of soil moisture that 
showed the most important decrease (Fig. 4B). 

The analysis of model residuals revealed no significant effect of 
elevation (p = 0.11) and longitude (p = 0.56) on predictive perfor
mances, but a significant effect of grape variety (p = 0.003) where re
siduals were on average 10% larger for “Pinot noir” (N = 121) than for 
“Chasselas” (N = 115). These trends varied among environmental var
iables. For example, in the case of soil moisture, pH and copper con
centration, model residuals were not significantly correlated to either of 
grape variety (p = 0.06; p = 0.15; and p = 0.36, respectively), elevation 
(p = 0.1; p = 0.3 and p = 0.6) or longitude (p = 0.64; p = 0.9 and p =
0.38) whereas, for basal respiration, model residuals decreased 

Fig. 3. Complementarity among ASV abundance and diversity metrics. (A) Model predictive performances as a function of different predictors (diversity metrics, 
individual ASV, or both). (B-C) Differences in model predictive performance (Tau) between (B) models using only ASV as predictors versus using only diversity 
metrics (baseline = ASV), and (C) models using only ASV as predictors versus using both ASV and diversity metrics (baseline = ASV). 
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significantly with elevation (p = 0.04) but were not significantly 
correlated with longitude (p = 0.16) or grape variety (p = 0.08). 

Finally, predictive performances were not correlated with environ
mental variability. The correlation between the standard deviation and 
Kendall’s Tau values of each variable was non-significant (p = 0.59). 

4. Discussion 

Our results largely confirm the suitability of soil protist community 
composition and diversity as bioindicators of biotic stress in agricultural 
soils. They highlight the high variability in the responses of individual 
taxa and diversity metrics to changes in the soil ecosystem. This vari
ability allowed the prediction of a broad range of variables relevant for 
soil quality assessments. Protist community composition and diversity 
were particularly responsive to soil copper content, pH, soil moisture, 
and the activity of soil microbes (basal respiration). Predictions of these 
variables based on protists can thus reflect stresses on the soil microbial 
food web related, for example, to the use of pesticides (copper), drought 
(soil moisture), soil acidification (pH), or decrease in microbial activity 
(basal respiration). Our results also suggest that our approach is able to 
identify small differences in environmental conditions and has a 
generally low but variable-specific sensitivity to different temporal, 
spatial or environmental contexts. 

4.1. Protists exhibit a great bioindication potential across multiple abiotic 
stressors 

Our results based on the metabarcoding-SML approach show that 
changes in protist communities can be used to quantitatively predict the 
selected environmental variables, confirming protist responsiveness to 
multiple stressors of the soil ecosystem. The correlations between 

observed and predicted values were all significant which further sup
ports the idea that protists have a great bioindicator potential. The 
correlations ranged between 0.24 and 0.62 (Tau), and were highest for 
copper concentration, soil moisture, microbial activity, and soil chem
istry. These predictions are based on the observed responses of soil 
protists to the selected environmental variables which were taxa-specific 
and agreed with previous studies about the impact of viticulture on soil 
microbial communities. For example, several studies pointed at the 
negative impact of Cu on soil microbes (e.g. Ekelund et al., 2003; Du 
Plessis et al., 2005). In our study, increased copper concentration 
showed negative correlations with protist richness and diversity metrics 
suggesting an overall negative impact of copper on protist communities. 
Despite this general negative impact of copper, several taxa such as 
flagellate ASVs of the genus Cercomonas (Rhizaria) responded positively 
to increased copper concentration suggesting the existence of a broad 
range of tolerance to copper among protist taxa. Increased pH led to a 
decrease in evenness (Fig. S3) as observed in Öztoprak et al. (2020). As 
for other environmental variables, our results highlight an important 
variability in the effect of pH among taxa. For example, most taxa within 
the clade Cavosteliida were positively associated with acidic conditions 
whereas a majority of taxa within the clades Alveolata and Tubulinea 
were positively associated with alkaline soils (Fig. S5). All other vari
ables provided similar results confirming the variability in ecological 
strategies among protists and their potential as bioindicators of agri
cultural soil quality. 

Individual ASVs, especially within the clades Rhizaria and Alveolata, 
were overall better predictors of soil variables than the diversity metrics. 
The complementarity between individual ASV and diversity metrics was 
low suggesting that the information provided by diversity metrics is 
largely redundant to that provided by individual ASVs. Nevertheless, a 
few variables such as pH, vegetation cover, and plant richness were 

Fig. 4. Model temporal transferability. (A) Model predictive performances as a function for different splitting of the data into training and test sets (random or 
temporal). (B) Differences in model predictive performance (Tau) between random splitting of the data versus temporal splitting (baseline = random splitting) for 
each variable. 
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better predicted by diversity metrics suggesting a direct impact of these 
variables on microbial diversity. Overall, our results confirm that pro
tists ASV and, to a lesser extent, diversity metrics can provide quanti
tative information on a broad range of relevant soil variables. This, in 
turn, enables the identification of multiple potential stressors of agri
cultural soil microbial diversity (here based on protists). 

4.2. The environmental context has limited influence on protist-based 
predictions 

Our results revealed an overall low context-dependency of the pre
dictions based on protists which highlights the potential transferability 
of the proposed approach to other agricultural and environmental 
contexts. Our approach using protist metabarcoding data and machine 
learning algorithms was able to distinguish small differences in soil 
conditions and is relatively robust to large temporal variability and 
different spatial and environmental contexts. For instance, the lack of 
correlation between predictive performances (Tau) and variable stan
dard deviations shows that the predictive capacity of our approach was 
independent from the variability of the selected variables. For example, 
the range of pH values was narrow (between 6.7 and 7.6), but pH was 
among the best predicted variables. 

With respect to inter-annual variability, temporal instead of random 
data splitting leads to a 23% decrease in predictive power which can be 
considered emodest given the inter-annual variability in our data (e.g. 
43% decrease in soil moisture and 33% decrease in basal respiration in 
2017 compared to 2016; see Fig. S7). The highest decrease was observed 
for soil moisture with Tau values decreasing by about 0.4. This result is 
not surprising given the high temporal variability in soil moisture be
tween the two years. However, most of the other variables showed no to 
very modest decrease in predictive performances. Among them, basal 
respiration, for example, also showed an important inter-annual vari
ability. This suggests that, for most of the tested variables, inter-annual 
variability in soil conditions does not influence the response of soil 
protists. 

With respect to environmental and spatial transferability, our results 
point toward an increase in prediction error (as shown by the analysis of 
model residuals) in vineyards with the “Pinot noir” variety as compared 
to vineyards with the “Chasselas” variety. This effect was, however, 
limited (10% increase in model residuals) and no effect of longitude was 
observed. Our results thus suggest that, although some of the bio
indicators identified might be specific to a particular grape variety and/ 
or its associated environmental conditions, a majority can be used across 
different regions and grape varieties. 

4.3. Perspectives 

Our analysis raises several questions related to the effectiveness of 
using protists as bioindicators of stress in agricultural soils. Can the 
identified bioindicators be used over much larger spatial and temporal scales? 
The temporal and spatial extent of our study is limited, and the distri
bution range and temporal variability of the identified bioindicators is 
still little documented. As a consequence, the extent to which the 
identified bioindicators can be used over larger spatial scales (conti
nental to global) and/or over longer time periods is still uncertain. 
Further studies are needed to tease apart context-specific bioindicators 
from those that can be used over broader latitudinal gradients, longer 
time periods, and across different types of cultures. What are the 
ecological mechanisms driving the association between potential bioindicators 
and environmental variables? Correlations between taxon abundance and 
environmental variables can reflect a direct impact (e.g. physiological 
processes can only be completed within a given range of pH), an indirect 
association (e.g. a predator is indirectly impacted through changes in 
abundance of its preferred prey), or spurious correlations (no causative 
interactions). In addition, the absence of a taxon might be due to pro
cesses unrelated to environmental variables such as dispersal 

limitations. In such a case, including zeros in the analyses can lead to an 
underestimation of the importance of the environmental factor. How
ever, dispersal limitations are unlikely to play a key role in our study 
because of the relatively small spatial extent considered and using a 
presence-only approach should solve this potential issue when applying 
the approach over larger spatial extents. 

5. Conclusion 

Soil protists are a key component of the microbial food web that can 
be strongly impacted by agricultural practices and changes in soil con
ditions. An approach combining metabarcoding data with machine 
learning can provide quantitative information on these impacts thereby 
identifying a potential stress on the soil microbial foodweb. This 
approach thus offers an integrative and quantitative way to identify 
several stressors of microbial communities and provides complementary 
information to existing soil monitoring tools. Overall, the proposed 
approach can improve our understanding of agricultural soil ecosystems 
and help limit the impact of anthropogenic activities on soil quality 
through the development of more sustainable agricultural practices. 
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