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Abstract

In the present dissertation� we study three numerical methods� each adapted
to a special stochastic optimization problem� More precisely� we propose and
implement two numerical methods and prove their convergence property� Both
methods are based on a time discretization� The �rst method is adapted to the
resolution of piecewise deterministic control systems and will be used to compute
an approximation of the optimal scheduling rule in a �exible workshop� The
second method is adapted to the resolution of piecewise deterministic games
where the information structure is S�adapted and will be used to compute the
equilibrium strategies in a piecewise deterministic oligopoly�

In addition to these two methods� we implement a decomposition method
adapted to hybrid stochastic models with two time scales� This method has been
proposed by Filar and Haurie� The originality of this approach lies in the coupling
of a linear programming method with a policy improvement algorithm� Another
valuable contribution is the implementation of a parallel version of the method�
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Chapter �

Introduction

��� Motivations

Many interesting models in economic sciences involve dynamic systems subject
to uncertainties� This can be shown by a brief survey of the literature in� for
example� production management �see �	���� investment planning �see ��� and
�
��� or �nance �see ���� and �
���� The theory of stochastic optimization o�ers
tools to handle a broad variety of those models� It happens that� for most real
life problems� economists have to utilize complex models for which an analytical
solution cannot be obtained� In such circumstances� numerical methods o�er an
interesting alternative to approximate the solution of these complex models�

Unfortunately� in many applications� the size of the optimization problem
is such that numerical methods reach their limit� This is the so�called �curse of
dimensionality already pointed out by Bellman ����� The resolution of such prob�
lems is therefore only possible if they can be simpli�ed� When the model allows
it� time�scale decomposition is a possibility to achieve this simpli�cation� This
permits one to split the initial problem into many smaller weakly linked prob�
lems� The decomposition can be achieved by applying the theory of singularly
perturbed systems� In addition to the simpli�cation obtained� the decomposition
permits a parallel implementation which decreases the computation time�

Many economic models also involve competition between several agents� and
cannot� in general� be reduced to an optimization problem� However� as in the
case of classical optimization� numerical methods may o�er a way to approximate
the solution to these problems� as long as the curse of dimensionality does not
strike again�

The aim of the present work is threefold� Firstly� we propose to exploit mathe�
matical programming techniques in stochastic optimization� These techniques are
expected to be more e!cient than the usual dynamic programming methods� but�
they are valid only when the stochastic process does not depend on the actions�
Secondly� when the stochastic process does depend on the actions and hence when

�




 �� Introduction

only dynamic programming approaches can be used� we explore a time�scale de�
composition method in order to simplify the initial problem� Thirdly� we show
how to extend the stochastic programming approach to multi�agent models�

����� Stochastic optimization and manufacturing 	ow con�

trol

Manufacturing engineering is a domain where researchers have been particularly
active in applying and developing the theory of stochastic optimization� Nowa�
days the market calls for rapid changes� due mainly to the fast evolution of
technology and the rapid changes of consumer desires� In addition� the global�
ization of markets increases the competition pressure on �rms� Consequently� to
survive� �rms have to adapt their production quickly to the changes in demand�
Moreover� an increasing number of �rms have adopted just�in�time production
which requires su!cient �exibility� These facts show that the cornerstone of the
competitiveness of a �rm is its �exibility�

To achieve �exibility� �rms invest in machines which can perform multiple
operations� Such �exible machines are equipped with magazines containing all
the tools the machine requires� When� in a production sequence� the machine has
to perform a di�erent operation than the preceding one� the tools are changed
automatically� Flexible machines are e!cient but also very expensive� Good
scheduling is therefore important in order to utilize the machine to its maximal
capacity so as to recover the high cost of investment�

The scheduling has to take into account the uncertainty concerning the avail�
ability of the machines or the level of the demand� One is confronted with a
complex class of optimization problems under uncertainty for which there exists
an analytical solution only for the simplest cases� for example a single machine
producing a single part� In the more general context the challenge still remains
to implement e!cient scheduling rules for real�life production systems�

One possibility to cope with the complexity of the problem is to compute
suboptimal scheduling rules �see� e�g�� �	�� and �

��� Although appealing� such
an approach is obviously not totally satisfactory� as one cannot guarantee the
performance level of the suboptimal scheduling rules� Another approach consists
of applying numerical methods to approximate� as closely as desired� the optimal
scheduling rules� This approach has been used by several authors �see� e�g��
���� and ����� who implemented dynamic programming techniques� But these
methods su�ers from the curse of dimensionality and tend to become ine�ective
for stochastic models with more than two parts�

The �rst part of this thesis is a contribution to the modeling of stochastic
manufacturing systems� We propose a new approach combining stochastic pro�
gramming and simulation that will be valid when the disturbance jump process
does not depend on the control�
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����
 Singularly perturbed systems and time�scale decom�

position

Numerous interesting cases in economic science can be cast in the formalism
of stochastic control problems that are amenable to the dynamic programming
approach� It is well known that dynamic programming is a numerical method
which attains rapidly its limits when the state space of the control system is too
large� In this context� the resolution of these problems is only possible if they
can be simpli�ed� To achieve this simpli�cation� a decomposition of the initial
problem into many smaller weakly linked problems can be a powerful tool� The
two main possibilities are spatial and time�scale decompositions�

Spatial decomposition is possible� for example� for a model of a �rm with one
parent company and many subsidiary companies� Each subsidiary company can
be seen as an isolated system linked to the parent company� once the general
strategy of the parent company is known� each subsidiary company has its own
autonomy�

Time scale decomposition arises when events occur at very di�erent time
scales� Each time scale is associated with a hierarchical level of decomposition�
Roughly speaking� this decomposition concept is based on two approximations�
given a level� events at higher levels occur with lower frequencies and are consid�
ered constant whereas event at lower levels occur with higher frequencies and are
approximated with their average rate�

In manufacturing engineering the concept of hierarchical decomposition has
been intensively used with success �see Gershwin �	���� Moreover� decomposition
permits parallel implementation which can drastically decrease the computation
time�

It has been shown in ���� and ���� that time scale decomposition can be
achieved via the methodology developed for singularly perturbed system� In the
second part of this thesis� we will implement this theory using an example of a
production system with two time scales�

����� Stochastic games

In economic sciences� one is very often depicting competition between several
agents and� in this context� the classical theory of optimization is inappropriate�
However� Game theory� which is a mathematical theory of con�icts� o�ers tools
to handle multi�agent optimization� Game theory was initiated in the early �
th
century with Cournot�s work on oligopolistic competition �see �
	��� In the middle
of the 
�th century von Neumann and Morgenstern ��
�� proposed a �rst general
theory of games� Since then� Game theory has become a very useful and popular
tool for economists� as testi�ed by the growing literature in this �eld and the
recent attribution of the Nobel prize in economics to J� Nash� R� Selten and J�
Harsanyi for their pioneering works in this �eld�
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Good methods are available to compute equilibria in a static context� Un�
fortunately� interesting economic problems occur often in dynamic context� For
dynamic games there exist only a few methods to compute equilibria" these en�
compass a more restricted class of problems than those for static games� A second
di!culty is often associated with the dynamic structure� for an important part
of economic reality� uncertainty about the future plays an important role� To
take into account uncertainty in his models� the economist has then to deal with
stochastic dynamic games� In this class of games there are few cases for which
there exists an e!cient numerical method�

The third part of the thesis is a contribution to the computation of stochastic
Nash�Cournot equilibrium� we propose a numerical method to compute the equi�
librium of a class of dynamic stochastic game� namely the piecewise deterministic
nonzero�sum games�

��� Literature review

��
�� Manufacturing 	ow control

Manufacturing control models with random events can be modeled as systems
with jump Markov disturbances� These systems are de�ned over an hybrid state
where a discrete stochastic state is described by a controlled Markov chain while
a continuous state is governed by a set of deterministic di�erential equations de�
pending on the value of the discrete state� Sworder ����� and Wonham ��
�� were
the �rst to study this class of stochastic control systems in the linear�quadratic
context� For more general cases� the most relevant publication is Rishel�s paper
���
�� wherein the author established stochastic minimum principles that have to
be satis�ed at optimality�

Olsder # Suri �
�� proposed a stochastic control model based on Rishel�s
formalism for production planning in a �exible manufacturing system� In their
model� each machine is subject to random failure according to an homogeneous
Markov process� They obtained a solution for a simple problem but described
the derivation of the solution for real�life problems as practically impossible�

In ����� Kimemia and Gershwin proposed a three level� decomposition method
for approximating the optimal policy in complex manufacturing systems� The top
level is dedicated to evaluate the value function� To obtain an approximation of
the value function� the authors suggested decomposing the nth�order Bellman
partial di�erential equation that has to be satis�ed by the value function in n
�rst order ordinary di�erential equation� This is achieved by approximating the
polyhedral production capacity sets by inscribed or circumscribed hypercubes�

�The decomposition proposed in this paper has four levels� However� Maimon and Gersh�
win ���� found that the two intermediate levels should not be separated� Consequently the
decomposition method has three levels�
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Once the value function is estimated� the middle level can compute the instan�
taneous production rates by solving a linear program� At the lower level the
production rates are translated into actual part dispatch actions� The authors
also showed that the optimal policy is a so�called hedging point policy� where a
safety stock is maintained when the capacity is su!cient in order to hedge against
future capacity shortages�

Gershwin� Akella and Choong proposed in �	�� a new implementation of
the hierarchical policy proposed by Kimemia and Gershwin� They postulated
a quadratic value function which permitted them to reduce the complexity of
the top level problem and simpli�ed the middle�level computations� At the lower
level they devised a simple rule to dispatch parts to the work stations so as to
reduce the accumulation of material into the system�

In ���� Akella and Kumar studied the problem of controlling the production
rate over an in�nite horizon for a manufacturing system� producing a single com�
modity with one unreliable machine� so as to minimize the discounted inventory
cost� They show that the optimal solution is a hedging stock policy and give an
explicit formula for the hedging stock level�

The same problem� where discounted inventory cost are replaced with average
inventory cost� has been considered by Bielecki and Kumar ��
�� They studied the
steady�state probability distribution of the inventory level under a hedging stock
strategy and used it to obtain the optimal hedging stock value� They showed
that zero�inventory is optimal when the system has su!cient excess capacity�

The case where the machine can be in one of many possible states of wear� has
been studied by Sharifnia in ���
�� In this paper� the author derived equations
for the steady�state probability distribution of the surplus level� when a hedging
stock strategy is used� Once this distribution function is determined the average
surplus cost is easily calculated in terms of the value of the hedging points� This
average cost is then minimized to �nd the optimal hedging points�

Extending the work of Bielecki # Kumar ��
� and Sharifnia ���
�� Algoet
��� derived� for the multiple part�type and multiple machine model� a system
of linear �rst�order partial di�erential equation that has to be satis�ed by the
steady�state probability distribution of the surplus level� However� analytical
solutions are known only for the single machine single part�type model under a
hedging point strategy�

For complex manufacturing systems where stochastic events occur at very
di�erent time scales� Gershwin �	�� proposed a hierarchical approach with many
levels� This approach is based on two approximations� given a level of hierarchy�
events at higher levels occur with lower frequencies and are considered constant
whereas event at lower levels occur with higher frequencies and are approximated
with their average rate�

In ����� Boukas and Haurie presented a model of �exible manufacturing system
including age�dependent machine failure rates and allowing preventive mainte�
nance� By using an adaptation of the approximation technique initially proposed
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by Kushner �see ������ they computed the optimal control for a single part�type
two�machine system�

Caramanis and Sharifnia �

� proposed a near optimal controller whose design
is computationally feasible for realistic size systems� The design uses a decom�
position of the multiple part�type problem to many analytically tractable one
part�type problems� The decomposition is achieved by replacing the polyhedra
production capacity sets with inscribed hypercubes� as suggested by Kimemia and
Gershwin in ����� They presented computational results for a three�machine�state
two�part�type �exible manufacturing system�

In �
��� Malham� and Boukas showed that the transient statistical evolution
of a single product manufacturing system under hedging point control policies is
characterized via a system of coupled partial di�erential equations� They demon�
strated the Markov renewal nature of the controlled process� This allowed them
to characterize the ergodicity� the steady state �if it exists� and the speed of
convergence to steady state�

Haurie and van Delft ���� established a relationship between hedging points
and the turnpike property� In this paper they studied a general class of piecewise
deterministic systems that includes manufacturing �ow control models� They
used the Markov renewal decision process formalism to characterize optimal poli�
cies via a discrete event dynamic programming approach� Then� they associated
with these optimality conditions a family of control problems with random stop�
ping time� Finally� they showed that these problems can be reformulated as
in�nite horizon deterministic control problems� for which the turnpike property
holds under convexity assumptions�

The theoretical results of this paper permitted Boukas� Haurie and van Delft
���� to propose a numerical technique� called �turnpike improvement � for approx�
imating the solution of manufacturing �ow control problems�

Sharifnia� Caramanis and Gershwin ����� investigated setup scheduling prob�
lem in the context of a multilevel hierarchy of discrete events with distinct fre�
quencies� They considered a feedback setup scheduling policy which uses corridors
in surplus space to determine the timing of the setup changes� They also deter�
mined conditions for linear corridors which result in a stable limit cycle of the
trajectory of the surplus levels�

In �
��� Caramanis and Liberopoulos proposed a near optimal controller design
technique� This technique estimates the parameters of a quadratic approximation
of the value function that characterizes the optimal policy� A sample trajectory of
the system�s performance under a trial controller is simulated to provide a mea�
sure of its performance� From this sample run� in�nitesimal perturbation analysis
extracts gradient information with respect to controller parameters� Gradient and
performance estimates are then employed to optimize the parameters in order to
obtain a near optimal controller�

In ���� Krichagina� Lou� Sethi and Taksar considered the problem of a single
unreliable machine producing a single product with a stochastic demand� More
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precisely the demand has two components� one is deterministic with a constant
rate whereas the other is stochastic with random demand batches� Under heavy
loading conditions they showed that the control problem can be approximated
by a singular stochastic control problem� which can be solved explicitly�

Following the work of Caramanis and Liberopoulos �
��� Haurie� L�Ecuyer
and van Delft ���� used stochastic approximation coupled with in�nitesimal per�
turbation analysis method to approximate optimal control in a manufacturing
control model� They considered an a priory �xed class of feedback control laws
depending on a �small� �nite set of parameters and proved that� under appropri�
ate conditions� stochastic approximation coupled with in�nitesimal perturbation
analysis converges to the best policy in this class�

Using a similar approach to that used by Akella and Kumar ���� Hu� Vakili and
Yu ��
� analyzed the one machine one part�type in�nite horizon discounted cost
problem� where the failure rate of the machine depends on the rate of production�
They showed that the linearity of the failure rate function is both necessary and
su!cient for the optimality of the hedging point policy�

Hu and Xiang ���� studied the same one part�type one machine model as
Akella and Kumar in ��� but replaced the exponential failure and repair times
with general times� They showed that if the failure rate is increasing �respectively
decreasing� with the age of the machine� the hedging stock will also increase
�respectively decrease� with the age of the machine�

In ���	�� Srivatsan and Dallery studied the performance of hedging point poli�
cies in a single�unreliable�machine two�part�type system� They �rst generalized
known stability results for hedging point policies in single�part�type systems and
extended them to two�part�type systems� They used an average cost analysis
of trajectories to partially characterize an optimal policy belonging to this class�
However� they obtained a complete characterization for special parameter values�

We end this survey of the literature on manufacturing �ow control by recom�
mending the works of Gershwin �	�� and Sethi # Zhang ������ where most of the
above quoted papers are nicely summarized�

��
�
 Singularly perturbed systems

Schweitzer ����� seems to be the �rst who studied singularly perturbed Markov
chains� In the last section of his paper he showed that a perturbation formalism
exists in the multiple subchain case under some assumptions�

Although Schweitzer�s paper deals with uncontrolled Markov chains� it in�
spired numerous applications concerning controlled Markov chains� For example�
an interesting application in the domain of hydropower production has been con�
duced by Delebecque and Quadrat in �

�� In this paper� they used averaging and
singular perturbation techniques to approach the optimal policy for the manage�
ment of a system of hydroelectric dams�
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In ����� Delebecque and Quadrat studied the optimal control of Markov chains
with an almost block diagonal structure� where the generator is composed of N
diagonal blocks linked by a small additive perturbation� They proposed a policy
improvement algorithm involving only decentralized computations within the N
blocks and computations relative to an aggregate N states Markov chain�

In ����� Bielecki and Filar considered a singularly perturbed MDP with the
limiting average cost criterion� They proved that an optimal solution to the
perturbed MDP can be approximated by an optimal solution of a limit Markov
control problem� They also demonstrated that the limit Markov control problem
is equivalent to a suitably constructed nonlinear program in the space of long�run
state�action frequencies�

In �
�� Abbad and Filar proposed a uni�ed approach to the asymptotic analysis
of a Markov decision process disturbed by ��additive perturbation� They studied
the limiting average and the discounted cost criterion and obtained results for a
general additive perturbation�

In ���� Abbad� Filar and Bielecki considered a singularly perturbed MDP
with the limiting average cost criterion� They assumed that the underlying pro�
cess is composed of several separable irreducible processes� which are �united 
into a single irreducible process by a small perturbation� They proposed two
algorithms for the solution of the limit Markov control problem� The �rst is a
linear program possessing the primal block�diagonal structure inherited from the
underlying process� whereas the second is an aggregation�disaggregation policy
improvement algorithm�

Filar� Gaitsgory and Haurie ���� studied� in the context of singular perturba�
tion theory� the stochastic control of hybrid systems involving two di�erent time
scales� The fast mode of the system is represented by deterministic state equa�
tions whereas the slow mode of the system corresponds to a jump disturbance
process� They considered both the �nite and in�nite discounted horizon cases
and showed how an approximate optimal control law can be constructed from
the solution of the limit control problem�

In ����� Filar and Haurie studied singularly perturbed systems composed of a
fast mode� described as a deterministic or stochastic di�usion subsystem and a
slow mode described as a jump process� They dealt with an in�nite time horizon
and limit average cost criterion and showed the convergence of the optimal average
cost of the perturbed system toward the optimal average cost of a limit�control
problem� They hinted to the connection which can be established with the theory
of singularly perturbed controlled Markov chains ������ �
�� ���� when a numerical
method is implemented as indicated in ����� In a second paper ����� they detailed
this numerical method for a production system and established a link between
the theory of singularly perturbed controlled switching di�usions and the theory
of singularly perturbed controlled Markov chains�
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�� Continuous time stochastic games

The third part of the present thesis deals with piecewise deterministic di�eren�
tial games with S�adapted� information structure� a special case of the class of
dynamic stochastic games played in continuous time� Before reviewing the liter�
ature on this speci�c topic� let us brie�y survey the three classes of games� which
are close to our interest� namely the di�erential games� the stochastic Markov
games and the stochastic di�erential games�

Introduced by Isaacs in ����� the study of di�erential games was motivated
by pursuit evasion problems �typically a jet �ghter vs� a bomber�� These game
are played in continuous�time and the state variables obey di�erential equations�
Four major monographs in this �eld are Isaacs ��	� and Krassovski # Soub�
botine ���� for two�player zero�sum di�erential games� Friedman �	�� for more
general di�erential games� and the book written by Ba$ar and Olsder �
� which
encompasses the wider class of dynamic games�

Stochastic Markov games were �rst introduced by Shapley ����� in �
���
These games are played in stages as follows� At each stage� the game is in one
of a �nite number states� Each player chooses his action in a set which depends
on the current state of the game and receives a reward depending on the current
state of the game and the actions chosen by all the players� Finally� the state
of the game makes a random transition� also depending on the players� actions�
to another state and the game continuous at the next stage� Actually� the state
is a stochastic process which is described by a controlled Markov chain� Each
player tries to maximize his expected total reward� Since the pioneering work of
Shapley� there have been numerous publications in this �eld and a compilation
of the most valuable contributions can be found in the monograph of Filar and
Vrieze ��	��

Friedman �	�� seems to be the �rst who studied stochastic di�erential games�
These games are played in continuous�time and the state obeys a stochastic dif�
ferential equation� In ��
�� Elliott considered a two�person zero sum game and
proved� when the Isaacs condition holds� the existence of a saddle point in feed�
back strategies� Uchida ����� considered the N �person nonzero�sum case and
showed that if the Nash condition �generalized Isaacs condition� holds there is a
Nash equilibrium point in feedback strategies�

We can now turn to the class of games that we will study in this disserta�
tion� namely the piecewise deterministic di�erential games� This class of dynamic
games has been considered by Haurie in ���� and ����� These games are charac�
terized by an hybrid state equation where a continuous state is governed by a
deterministic di�erential equation� while a discrete stochastic state is described
by a controlled Markov chain�

In ����� Haurie and Roche proposed a turnpike adjustment algorithm for a
piecewise deterministic di�erential game played with a Piecewise Open Loop

�S�adapted for 	sample path adapted
�
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�POL� information structure� In the POL information structure the players ob�
serve� at each jump time of the discrete state� both the discrete and the continuous
states and then choose open�loop controls to be implemented until the next jump
occurs� The algorithm ���� has been implemented for the computation of a POL
Cournot equilibrium in a duopoly with random market condition�

In this thesis we will focus our interest on games played in the S�adapted
information structure� S�adapted information structure was �rst introduced by
Haurie� Smeers� Zaccour and Legrand� in two papers� ���� and ����� It corre�
sponds to an information structure where the players adapt their actions to an
observation of the realization of the random disturbances a�ecting the game dy�
namics� These disturbances are supposed to take the form of a jump process� In
���� they exhibit some properties of the S�adapted information structure� whereas
in ���� a detailed example dealing with the modeling of the competition in the
European gas market is fully developed�

In ����� G%rkan� &zge and Robinson proposed a simulation�based method
for solving stochastic variational inequality� This method� called sample�path
optimization� was then applied on a slightly modi�ed version of the model of
European gas market proposed in �����

In �

� Pineau and Murto proposed an example of a game with S�adapted
information structure to analyze the Finnish electricity market� This market has
the property of being strongly in�uenced by the price of gas� This motivated
the authors to introduce in their model a stochastic jump process describing the
price of the gas�

��� Thesis organization and contributions

In the present dissertation� we study three numerical methods� each adapted
to a special stochastic optimization problem� More precisely� we propose and
implement two numerical methods and prove their convergence property� Both
methods are based on a time discretization� The �rst method is adapted to the
resolution of piecewise deterministic control systems and will be used to compute
an approximation of the optimal scheduling rule in a �exible workshop� The
second method is adapted to the resolution of piecewise deterministic games
where the information structure is S�adapted and will be used to compute the
equilibrium strategies in a piecewise deterministic oligopoly�

In addition to these two methods� we implement a decomposition method
adapted to hybrid stochastic models with two time scales� This method has been
proposed by Filar and Haurie in ���� and ����� The originality of this work is the
coupling of a linear programming method with a policy improvement algorithm�

�Haurie� Zaccour and Smeers for the �rst paper� Haurie� Zaccour� Legrand and Smeers for
the second�
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Another valuable contribution is the implementation of a parallel version of the
method�

Note that� for the sake of simplifying the reading of the thesis� the convergence
proofs of each method is placed in an appendix at the end of the corresponding
part� Finally let us mention that the three parts are self�contained and each one
can therefore be read independently of the others�

����� Manufacturing 	ow control via stochastic program�

ming methods

In the �rst part of the thesis we propose a new approach for the resolution of
piecewise deterministic control systems� This method combines optimization and
simulation and is valid when the disturbance jump process is not controlled� This
method is used for the resolution of a �exible manufacturing system where the
machines are subject to random failures and repairs�

In Chapter �� we present the formulation of the manufacturing �ow con�
trol problem we propose to solve� We consider a �exible workshop consisting
of unreliable machines producing several part types and we wish to minimize
work�in�process� inventory and backlog costs on a �nite time horizon� This prob�
lem is a special instance of the class of piecewise deterministic control systems for
which the dynamic programming solution leads to a system of coupled Hamilton�
Jacobi�Bellman equations�

In Chapter 	� using a discretization of the continuous time scale� we refor�
mulate the initial continuous time control problem as an approximating discrete
time control problem which has the structure of a stochastic linear program� The
convergence proof of the approximating value function to the value function of
the initial problem� when the discretization step tends to zero� calls for techniques
of approximation of viscosity solutions and is proposed in Appendix A�

An event tree describing the stochasticity of the system is associated to the
stochastic program� In Chapter �� we show how the large size of the event
tree� and hence the large size of the stochastic program� can be reduced using a
Monte�Carlo sampling method� The convergence� when the sample size increases
to in�nity� of the solution of the stochastic program de�ned on the randomly
sampled tree toward the solution of the discrete time control problem follows
from the strong law of large numbers�

In Chapter �� we illustrate the convergence of the method on a single�part�type
manufacturing �ow control problem� For this small example a direct dynamic
programming method is more e!cient than the method presented in this work
and will be taken as bench mark� We can show that for larger models� the method
proposed in this presentation is more e!cient than a direct dynamic programming
approach�

Finally� in Chapter �� we apply the numerical method to two examples that
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are close to real life implementation� The �rst example is a two�machine two�
part�type �exible workshop whereas the second example is a six�machine four�
part�type �exible workshop�

����
 Decomposition method in a singularly perturbed hy�

brid stochastic model

The second part of the thesis is dedicated to the study of the optimal control of
hybrid stochastic systems with two time scales� When the time scale ratio tends
to zero� following the works of Filar and Haurie ���� ���� we obtain an approxima�
tion of the problem that can be solved as a block�diagonal linear programming
problem� where each sub�block can be identi�ed as an MDP� We propose the im�
plementation of a decomposition approach coupling a linear programming method
with a policy improvement algorithm� This coupling permits us to exploit opti�
mally both the primal block�diagonal structure and the special structure of each
sub�block�

In Chapter ��� we expose the two�time�scale hybrid stochastic control prob�
lem� The system is driven by two dynamics� fast and slow� The fast mode of
the system is characterized by a continuous stochastic variable which takes the
form of a controlled jump and di�usion process� The slow mode of the system is
described by a discrete stochastic variable which takes the form of a controlled
Markov jump process� One looks for an optimal control law such that the ex�
pected average reward per unit of time is maximized subject to the dynamics of
the fast and slow processes�

In Chapter ��� following Filar and Haurie ���� ���� we obtain an approximation
of the problem that can be solved as a structured linear programming problem�
This approximation is obtained in two steps� Firstly� using the numerical method
proposed by Kushner and Dupuis ����� we derive an approximation of the initial
problem that can be solved as a Linear Program �LP�� This LP does not exhibit
a particular structure and for large models would be di!cult to solve� Secondly�
using the theory of singularly perturbed systems developed by Abbad� Bielecki
and Filar �
� ���� we obtain a second LP which exhibits a primal block�diagonal
structure� The solution of this second LP is an approximation of the solution of
the �rst LP� when the time scale ratio tends to zero�

In Chapter �
� we explain how a decomposition method using the Analytic
Center Cutting Plane Method �ACCPM� can be implemented for the resolution
of the structured LP�

Finally� in Chapter ��� we apply the decomposition method to an example
of production problem� The model concerns a �rm producing one good with
two di�erent human resources� The size of each employee category is described
by a continuous vector variable� whose dynamics is represented by a controlled
jump and di�usion process� The control describes the enrollment e�ort of new
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employees� whereas the jump and di�usion term describes the uncontrolled de�
parture or arrival of employees� The pro�t function depends on the number of
employees� the enrollment e�ort and the random state of the market� The state
of the market� i�e� the selling price� can be in one of four di�erent states and is
described by a controlled Markov jump process whose transition rates depend on
the production level� which� in turn� depends on the number of employees� The
time scale for the uncontrolled departure or arrival of employees is supposed to
be much �faster than the changes of market state� The objective of the �rm is
to control the number of di�erent employees� in order to maximize its expected
pro�t over an in�nite horizon� With this example� we can show the advantages
of the decomposition method coupled with a policy improvement algorithm com�
pared with a frontal method� In particular we put in evidence the reduction of
the RAM memory utilized� the reduction of the execution time and the accuracy
of the solution concerning the policies� We also show that we can obtain a good
speed�up in parallelizing the decomposition method�

����� Computation of S�adapted equilibria in piecewise de�

terministic games via stochastic programming meth�

ods

In the third part of the thesis we propose a new method to compute equilibria
in a piecewise deterministic di�erential game played with S�adapted informa�
tion structure� This method is based on a discretization of the continuous time
scale and is valid when the disturbance jump process does neither depend on the
continuous states nor on the controls�

Before studying the piecewise deterministic game� in Chapter ��� we inves�
tigate a deterministic version of the game� Brie�y described� we consider an
oligopoly where several competing �rms supply a market for an homogeneous
good� Each �rm can control through investments its production capacity� which
depreciates with time� The pro�t rate of a given �rm is a function of the total
production capacity of the di�erent �rms� i�e� the total supply� and the invest�
ment e�ort of this �rm� Finally� the game is played with an open�loop information
structure over a �nite horizon� The uniqueness of the equilibrium is proved under
concavity properties of the reward functions�

A discretization of the time scale permits one to reformulate the initial contin�
uous time game as an approximating discrete time game� The open�loop equilib�
rium of this approximating game can be computed via the solution of a variational
inequality� for which e!cient methods exist� Under concavity properties of the
reward functions it is shown that the equilibrium of the approximating game is
unique� We then show that the equilibrium strategies of the approximating game
permit one to construct ��equilibrium strategies for the initial game�

In Chapter �� we study a stochastic extension of this game� where the pro�t
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rate functions depend on the random market condition� The random market
condition is described by an uncontrolled continuous�time discrete�state Markov
chain taking value in a �nite set� The game is played with an S�adapted informa�
tion structure� which permits the players to adapt their actions to the realization
of the random process but not to the action of the other players� This information
structure has been introduced by Haurie� Zaccour and Smeers in Ref� ���� and
Haurie� Zaccour� Legrand and Smeers in Ref� �����

As in the deterministic game� we discretize the continuous time scale in order
to obtain a discrete time approximating game� The S�adapted equilibrium of this
approximating game can be computed via the solution of a variational inequality
and is proven to be unique under concavity properties of the reward functions�
We then show the proximity existing between the equilibrium strategies of the
approximating game and those of the initial game�

Finally� in Chapter �
� we apply the method to a stochastic duopoly model
already studied by Haurie and Roche in ����� Haurie and Roche considered the
Piecewise Open�Loop �POL� information structure� where the players observe�
at each jump time� the market condition and the production capacity of each
�rm and then choose open�loop controls to be implemented until the next jump
occurs� Numerical results con�rm the conjecture that� when the jump Markov
process is uncontrolled� S�adapted and POL equilibria are likely to yield quite
close outcomes�
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Manufacturing Flow Control via

Stochastic Programming Methods
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Chapter �

Introduction to Part I

Piecewise deterministic control systems �PDCS� o�er an interesting paradigm for
the modeling of many industrial and economic processes� The theory developed
by Wonham ��
�� or Sworder ����� for linear quadratic systems� Davis �
��� Rishel
���
� ���� and Vermes ���
� for more general cases� has established the founda�
tions of a dynamic programming �DP� approach for the solution of this class of
problems� There are two possible types of DP equations that can be associated
with a PDCS� �i� the Hamilton�Jacobi�Bellman �HJB� equations de�ned as a set
of coupled �functional� partial di�erential equations �see e�g� ���
� �����" �ii� the
discrete event dynamic programming equations based on a �xed�point operator
� la Denardo ���� for a value function de�ned at jump times of the disturbance
process �see e�g� ������

The modeling of manufacturing �ow control processes has greatly bene�ted
from the use of PDCS paradigms� Olsder # Suri �
�� have �rst introduced this
model for a �exible manufacturing cell where the deterministic system represents
the evolution of parts surpluses and the random disturbances represent the ma�
chine failures and repairs� This modeling framework has been further studied and
developed by many others �we cite Gershwin et al� �	��� �		� and Akella # Kumar
���� Bielecki # Kumar ��
� as a small sample of the large literature on these mod�
els� nicely summarized in the books of Gershwin �	�� and Sethi # Zhang �������
When the model concerns a single part system and the failure process does not
depend on the part surplus and production control� an analytic solution of the
HJB equations can be obtained as shown in ���� As soon as the number of parts
is two or more� an analytic solution is di!cult to obtain and one has to rely on
a numerical approximation technique� A solution of the HJB equations via the
approximation scheme introduced by Kushner and Dupuis ���� has been proposed
by Boukas # Haurie ����� A solution of the discrete event dynamic programming
equations via an approximation of the Denardo �xed�point operator has been
proposed in Boukas� Haurie # Van Delft ����� Both methods su�er from the
curse of dimensionality and tend to become ine�ective as the number of parts
is three or over� Caramanis # Liberopoulos �
�� have proposed an interesting

��
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approach based on the use of a sub�optimal class of controls� depending on a
�nite set of parameters� these parameters being optimized via an in�nitesimal
perturbation technique� Haurie� L�Ecuyer # Van Delft ���� have further studied
and experimented such a method based on a combination of optimization and
simulation�

In the �rst part of the present thesis we propose another approach combining
optimization and simulation that will be valid when the disturbance jump process
does not depend on the continuous state and control� The approach exploits the
formal proximity which exists� under this assumption� between the PDCS for�
malism and the Stochastic Programming �SP� paradigm introduced in the realm
of mathematical programming by Dantzig �
�� and further developed by many
others �see the survey book of Kall and Wallace ���� or the book of Infanger
��
� as representatives of a vast list of contributions�� The proposed method is
based on a two�step approximation� �i� the state equations for the �nite horizon
continuous time stochastic control problem are discretized over a set of sampled
times" this de�nes an associated discrete time stochastic control problem which�
due to the �niteness of the sample path set for the Markov disturbance process�
can be written as a SP problem� �ii� The very large event tree representing the
sample path set is replaced with a reduced tree obtained by randomly sampling
over this sample path set� It will be shown that the solution of the stochastic
program de�ned on the randomly sampled tree converges toward the solution of
the discrete time control problem when the sample size tends to in�nity� The
solution of the discrete time control problem converges to the solution of the �ow
control problem when the discretization mesh decreases� Therefore SP methods
can be implemented to solve this class of PDCS and the recent advances in the
numerical solution of very large scale stochastic programs can be exploited to ob�
tain insight for problems that fall out of reach of standard dynamic programming
techniques�

The �rst part of this thesis is organized as follows� In Chapter � we recall
a formulation of the manufacturing �ow control problem proposed by Sharifnia
����� with the PDCS formalism and the HJB equations one has to solve in order
to characterize the optimal control� In Chapter 	 we construct the discrete time
approximation leading to a SP problem which will be characterized� usually� by
a very large event tree representing the uncertainties� In Chapter � we show how
to use a random sampling of scenarios to reduce the size of the event tree and
we prove convergence of this Monte�Carlo method� In Chapter � we compare
di�erent approaches on a simple single part model� In Chapter � we experiment
the SP approximation method on two instances of a more realistic multi�part
model� Finally� in Appendix A� we prove the convergence of the discrete time
approximation using the theory of viscosity solutions�
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The manufacturing �ow control

problem

In this chapter we recall the model of a �exible manufacturing system which
was proposed by Sharifnia in ������ We have chosen this model since it was
already linked to linear programming in a discrete time approximation of the
solution of the manufacturing �ow control problem �MFCP�� in the absence of
random disturbances� The random disturbances introduced in many formulations
of the MFCP are represented as an uncontrolled Markov chain that describes
the evolution of the operational state of the machines� Under these conditions�
the discrete time approximation proposed in ����� will easily lend itself to a
formulation as a stochastic linear programming problem�

��� The continuous �ow formulation

We consider a �exible workshop consisting of M unreliable machines� and pro�
ducing P part types� We use a continuous �ow approximation to represent the
production process� Each part� to be produced� has to visit some machines in a
given sequence� We call this sequence a route� For a given part the route may
not be unique� therefore there are R routes with R � P � An input bu�er is
associated with each machine� Set�up times are assumed to be negligible and
processing times are supposed to be deterministic� An instance of this type of or�
ganization is represented in Figure ���� Assume that the machines are unreliable�
the repair and failure times are exponentially distributed random variables� The
demand is supposed to be known in advance� The objective is to minimize the
expected cost associated with the work�in�process and �nished parts� inventory�

For a more formal description of the model we introduce the following vari�

�
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Figure ���� Flexible workshop producing P parts with M machines

ables�

v�t� � �v��t�� � � � � vB�t��
T � bu�er processing rates

w�t� � �w��t�� � � � � wR�t��
T � part release rates

q�t� � �q��t�� � � � � qB�t��
T � bu�er levels

d�t� � �d��t�� � � � � dP �t��
T � �nished parts demand rates

y�t� � �y��t�� � � � � yP �t��
T � �nished parts surplus levels�

The state variables are q�t� and y�t�� while w�t�� v�t� are the control variables�
The state equations are

�q�t� � A�v�t� � A�w�t� �����

�y�t� � A�v�t�� d�t� ���
�

where the term A�v�t� in Eq� ����� represents the internal material �ows among
bu�ers� the term A��t�w�t� in Eq� ����� represents external arrival into the system
and the term A�v�t� represents the arrival of �nished parts in the last bu�er� The
i�th line of A� is composed of a �� in cell �i� i�� and a �� in cell �i� j� if the bu�er j
is upstream to bu�er i� All other entries of row i are � valued� The incidence
matrix A� is of dimension B�R� with f�� �g entries that determine which bu�ers
receive the new arrivals� Eq� ���
� represents the dynamics of �nished parts
surplus� The P �B matrix A� has a �� in entry �i� j� if bu�er j is the last bu�er
of a route for part i� Otherwise� this entry is ��

Let �j denote the processing time of parts in bu�er j and B�m� be the set of
bu�ers for machine m� The capacity constraints on the control are de�ned as



���� The continuous flow formulation 
�

follows� X
j�B�m�

�jvj�t� � �m�t� m � �� � � � �M� �����

where f�m�t� � t � �g is a continuous time Markov jump process taking the values
� or �� �m�t� � � indicates that the machine m is operational �up� at time t�
�m�t� � � that it is not operational �down� at time t�

The following inequality constraints have to be satis�ed

v�t� � � ���	�

w�t� � � �����

q�t� � �� �����

Notice that ����� represents a state constraint�
Let�s call

x�t� � �q�t�� y�t��

the continuous state of the system and

	�t� � ��m�t��m�������M

its operational state while

u�t� � �w�t�� v�t��

is the control at time t� The operational state 	�t� evolves as a continuous time
Markov jump process with transition probabilities that are easily computed from
the failure and repair rates of each machine

P 
	�t� dt� � jj	�t� � i� � qijdt� ��dt� �i �� j�

P 
	�t� dt� � ij	�t� � i� � � � qiidt� ��dt�
lim
dt��

o�dt�

dt
� �

for i� j � I � f�� �gM � As usual we de�ne qii � �Pi��j qij�

A production policy � can be viewed either as

� a piecewise open�loop control u��t��t� � t � � that is adapted to the vector
jump process f	�t� � ��m�t��m������M � t � �g and satis�es the constraints
���������� when one uses a discrete event dynamic programming formalism

� a feedback law u�t� � ��t� x�t��	�t��� when one uses the coupled HJB dy�
namic programming equations formalism�





 �� The manufacturing flow control problem

The variable y	�t� � �maxfyj�t�� �g�j�������p represents the inventory of �n�
ished parts while y��t� � �maxf�yj�t�� �g�j�������p represents the backlog of �n�
ished parts� The objective is to �nd a policy �� which minimizes the expected
total cost

E�


Z T

�

fhq�t� � g	y	�t� � g�y��t�g dt�� �����

where h� g	 and g� are cost�rate vectors for the work�in�process and �nished
parts inventory'backlog respectively�

��� The system of coupled HJB equations

To summarize� the optimal operation of the �exible workshop is a particular
instance of a stochastic control problem

J i��� x�� � min
�

E� 


Z T

�

L�x�t�� dt� �����

s�t�

�x�t� � f�x�t�� u�t�� ���
�

P 
	�t� dt� � jj	�t� � i� � qijdt� o�dt� �i �� j� ������

P 
	�t� dt� � ij	�t� � i� � � � qiidt� o�dt� i� j � I� ������

lim
dt��

o�dt�

dt
� � ����
�

u�t� � U��t� ������

	��� � i� x��� � x� ����	�

������

where L�x� and f�x� u� satisfy the usual regularity assumptions for control prob�
lems�

De�ne the value functions

J i�t� x� � min
�

E� 


Z T

t

L�x�s�� dsjx�t� � x and 	�t� � i�� i � I� ������

If these functions are di�erentiable in x� then the optimal policy is characterized
by a system of coupled HJB equations

� �

�t
J i�t� x� � min

u�U i
f�L�x� � �

�x
J i�t� x�f�u� �

X
j ��i

qij
J
j�t� x�� J i�t� x��g�

i � I t � 
�� T 
 ������

J i�T� x� � � 	x� ������



���� The system of coupled HJB equations 
�

When the value functions J i�t� x� is known� the optimal strategy u��x� t� i� is
obtained as the solution of a set of (static( optimization problems

min
u�U i

�

�x
J i�t� x�f�u�� ����
�

In the case of our MFCP these problems reduce to simple linear programs�
The value function di�erentiability issue can be addressed through the use of

the so�called viscosity solution �see Appendix A��

Theorem �� The optimal value function is obtained as the unique viscosity so�
lution to the system of coupled HJB equations�

Proof� The proof follows directly from theorems 	� � and � given in Appendix A�
These theorems assume that the assumptions � to 	� stated in Appendix A� hold�
Clearly we can easily show that assumptions �� 
 and 	 are satis�ed by the MFCP�
Unfortunately� Assumption � is not satis�ed because of Equation ��� which for�
bids negative bu�er levels� However we can construct an auxiliary MFCP which
allows negative bu�er levels but penalizes this with a huge cost� This auxiliary
MFCP satis�es assumptions � to 	 and therefore the conclusion of the present
theorem are valid for its value function� If the penalty cost is big enough� the aux�
iliary MFCP has� at optimality� the same property as our MFCP� i�e� the value
function and the optimal strategies are the same for both models� Consequently
the conclusion of the present theorem are also valid for the original MFCP�




	 �� The manufacturing flow control problem



Chapter �

A stochastic linear programming

reformulation

In this chapter we de�ne a stochastic programming problem that will be used to
approximate the solution of the MFCP under study�

��� A discrete time reformulation

We discretize time as in ������ This permits us to replace the continuous time
state equation with a di�erence equation and to approximate the continuous time
Markov chain by a discrete time Markov chain� Let tk denote the k�th sampled
time point k � �� �� � � � � K with t� � � and tK � T � 	tk � tk� tk��� �q�k� �� q�tk��
�y�k� �� y�tk�� �w�k� �� w�tk�� �v�k� �� v�tk�� ��m�k� �� �m�tk� and replace the
di�erential state equations with the di�erence equations�

�q�k� � �q�k � �� � 	tkA��v�k� � 	tkA� �w�k�

�y�k� � �y�k � �� � 	tkA��v�k�� 	tk �d�k��

for k � �� � � � � K� The control and state constraints becomeX
j�B�m�

�j�vj�k� � ��m�k� m � �� � � � �M�

�v�k� � �

�w�k� � �

�q�k� � � � k � �� � � � � K

�q��� � �q�

�x��� � �x��

Denote �x�k� � ��q�k�� �y�k��T the continuous state variables� �u�k� � � �w�k�� �v�k��T

the control variables and �	�k� � ���m�k�m�����M� the discrete state variable that


�




� �� A stochastic linear programming reformulation

evolves according to a Markov chain with transitions probabilities

P 
�	�k � �� � jj�	�k� � i� � qij	tk �i �� j�

P 
�	�k � �� � ij�	�k� � i� � � � qii	tk�

This time discretization can be envisioned when the average times to repair and
failure are much greater than 	tk� The solution of the associated discrete time
stochastic control problem can be obtained through the solution of the following
discrete time DP equations�

�J i�k � �� �x�k � ���

� min

u�k��U i

fL��x�k��	tk �
X
j ��i

qij	tk �J
j�k� �x�k�� � �� � qii	tk� �J

i�k� �x�k��g �	���

for i � I and k � � � � �K" with terminal conditions�

�J i�K� �x�K�� � �� �	�
�

The following result can be established� using techniques of approximation of
viscosity solutions �see Appendix A��

Theorem �� The solution of the discrete time DP equation ��������	 converges
uniformly when 	tk 
 � to the viscosity solution of the system of coupled HJB
equation of the continuous time model �
����
���	�

Proof� The proof follows directly from Theorem �� given in Appendix A� The�
orem �� assumes that the assumptions � to 	� stated in Appendix A� hold� As
we mentioned in the proof of Theorem �� our MFCP does not� in general� satisfy
Assumption �� Consequently� to prove the present theorem� the same auxiliary
MFCP and the same arguments as in the proof of Theorem � need to be used�

��� The scenario concept

Since the disturbance Markov jump process is uncontrolled� the solution of the
discrete time stochastic control problem can also be obtained via the so�called
stochastic programming technique� This is a mathematical programming tech�
nique based on the concept of a scenario� For our problem we call scenario 

a sample path f��������� � � � � ��M� ����� � � � � ������K�� � � � � ��M� �K��g of the �	��� process�
On a time horizon of K periods� as the state in the �rst period is identical for
all scenarios� the discrete time Markov chain will generate �
M�K�� di�erent sce�
narios� We denote u�i�k� the control for period k when the realized scenario is

i�

For two scenarios 
i and 
j that satisfy

�����i�k�� � � � �
��M�i �k�� � �����j�k�� � � � �

��M�j �k�� 	k � l �	���



���� A linear stochastic programming problem 
�

the controls u�i�k� and u�j�k� must be equal for all k � l� These conditions are
called the nonanticipativity constraints�

There are two possible ways to take these constraints into account in the
optimization problem

�i� introduce as many subproblems as there are scenarios and couple them
through the nonanticipativity constraints explained above�

�ii� handle the scenario tree on a node by node basis with the nonanticipativity
constraint taken into account implicitly�

The second approach is usually preferable because it reduces the number of con�
straints in the associated mathematical program� LetN �k� � fN��k�� � � � �Nik�k�g
be the set of the nodes at period k� For each scenario 
 and for each period k� 

passes through one and only one node Ni�k� �that we denote 
 �
 Ni�k��� If 
i
and 
j are indistinguishable until the period l� that is if �	��� holds� then they
share the same node Ni�k� at all periods k � l� Note that since all scenarios are
indistinguishable in the �rst period� we have only one node for this period� e�g�
N ��� � fN����g� Each node n� except N���� noted n�� has a direct ancestor�
denoted A�n�� in the set of the nodes of the previous period� If 
 passes through
Ni�k� at period k � �� then it passes through the ancestor of Ni�k� at period
k � �� The set of all scenarios passing through the node Ni�k� is denoted by
Ni�k�� The probability of the node Ni�k� is then

p�Ni�k�� �
X

���Ni�k�

p�
�

where p�
� denotes the probability of the scenario 
� We must then index each
variable on the node set� �qn�k�� �yn�k�� �in�k�� �vn�k�� ��mn �k� for all n � N �k��

To illustrate this representation� consider a workshop of one machines with
an horizon of � periods� In the �rst period the machine is up� There exist 	
scenarios which are listed in Figure 	��� In the scenario 
� the machine is up
during all periods� In the scenario 
� �resp� 
�� the machine is up during all
periods except period � �resp� period 
�� In the last scenario 
�� the machine is
down during all periods except period �� For example� the scenario 
� is de�ned
by ������� ���
�� ������ � ��� �� ��� N �
�� the set of nodes at period 
� contains two
nodes� N��
� and N��
�� The direct ancestor of N���� is N��
��

��� A linear stochastic programming problem

To summarize� we have to solve a stochastic linear program with the objective
function

�J��
���x�� � min
KX
k��

X
n�N �k�

p�n�fh�qn�k� � g	�y	n �k� � g��y�n �k�g	tk� �	�	�
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N����

N����

��

N����

N����

N����

N����

N����

��

��

��

� �z �

N ���

� �z �

N ���

� �z �

N ���

Figure 	��� The scenario tree of a workshop with � machine and � periods

For the �rst period the constraints are

�qn���� � �q� � 	t�A��vn���� � 	t�A� �wn���� �	���

�yn���� � �y� � 	t�A��vn����� 	t� �dn����� �	���X
j�B�m�

�j��vn��j��� � ��mn���� m � �� � � � �M� �	���

with the initial conditions

���mn�����m�������M � �	

��q�� �y�� � �x��

For each period k � 
 � � �K the following constraints must hold for n � N �k��

�qn�k� � �qA�n��k � �� � 	tkA��vn�k� � 	tkA� �wn�k� �	���

�yn�k� � �yA�n��k � �� � 	tkA��vn�k�� 	tk �dn�k�� �	�
�X
j�B�m�

�j��vn�j�k� � ��mn �k� m � �� � � � �M� �	����

For k � � � � �K and n � N �t� the following non�negativity constraints must hold�

�vn�k�� �wn�k�� �qn�k� � �� �	����

The optimal policy ��� is then described by the controls �un�k� � � �wn�k�� �vn�k��
for n � N �t��



���� Identification of hedging points 



��� Identi�cation of hedging points

The stochastic programming formulation will be used primarily for a computation
of the control law at the initial time �� Using parametric analysis we will be able
to identify a suboptimal policy for running the �exible manufacturing system in a
stationary �ergodic� environment� The optimal control for an MFCP is often an
hedging point policy� In the continuous time� in�nite horizon HJB formulation
the hedging point corresponds to the minimum of the �potential� value function�
In a �nite time horizon formulation� the minimum of the value function at time �
will tend to approximate the optimal hedging point when the horizon increases�
In our discrete time� �nite horizon formulation� if we let the initial stocks �q�
and �y� be free variables� their optimal values will therefore give an indication of
the hedging points� Actually� the discretization of time will often eliminate the
uniqueness of the hedging points de�ned as the minimum of the value function�
It will be then useful to identify the hedging point as the initial state for which
the actual optimal production rate is exactly equal to the demand rate�



�� �� A stochastic linear programming reformulation



Chapter �

Approximating the stochastic linear

program by sampling

In this chapter we propose a sampling technique to reduce the size of the stochas�
tic programming problem one has to solve to approximate the control policy�

��� The approximation scheme

To solve the linear stochastic program introduced in chapter 	� we have to consider
the event tree representing the �
M�K�� di�erent possible scenarios� This number
of possible scenarios increases exponentially with the number of periods and the
problem becomes rapidly intractable� To reduce the size of the problem we extract
a smaller event tree composed of randomly sampled scenarios�

Only the control for the �rst period is really relevant and we want to �nd the
optimal policy ���t� x�t��	�t�� for t � �� We will solve the sampled stochastic
programming model for di�erent initial states �x� on a given �nite grid G� Then
the control ����� x����	���� is approximated by �u����� the solution for the �rst
period in the sampled stochastic programming model when �	 � 	��� and where
�x� is the nearest point to x��� in G�

��� Convergence of the sampled problems solu	

tions

Let us introduce a few simplifying notations� Consider a discrete probability
space ���B� P �� where � is the �nite set of possible realizations 
 of the uncertain
parameters and P the corresponding probability distribution� As � is �nite� the
event set is B � 
�� Let S � j�j be the number of di�erent scenarios� The
elements of � are denoted � � f
�� � � � � 
Sg� Let p�
i� denote the probability of
the realization 
i� A generic stochastic optimization problem can be represented

��



�
 �� Approximating the stochastic linear program by sampling

as a convex optimization problem �here x and y are used to represent generic
variables in an optimization problem" they don�t have the signi�cation given to
them in the MFCP�

z � min
X
���

f�x� 
�p�
� �����

s�t�

x � C � Rn ���
�

We assume that f�x� 
� is convex in x on the convex set C but not necessarily
di�erentiable� This formulation ����� ��
� encompasses the classical two�period
stochastic program with recourse

f�x� 
� � cx �min
y

C�
�y

s�t D�
�y � d�
� �B�
�x
y � �

C � fx � Rnj Ax � b� x � �g�
In this formulation the variable x represents the decision in the �rst period and
y is the recourse in second period� Once the optimization w�r�t� y has been done
for each possible realization 
� the problem is reduced to the form ����� ��
��

The stochastic programming problem obtained from the time discretization
of the MFCP can also be put in the general form ����� ��
� through a nested
reduction of a sequence of two stage stochastic programming problems� The
variable x will then represent the decision variables for the initial period �the one
we are particularly interested in��

We now formulate an approximation of the generic problem obtained through
a random sampling scheme� A sampled problem� with sample size m� is obtained�
if we draw randomly m scenarios among the S possible� A speci�c scenario 
i
is selected at a given draw with probability p�
i�� We denote 
m � f
j� j �
�� � � � � mg� the scenario sample thus obtained� The sampled SP problem is de�ned
as

z�
m

� min
x

�

m

mX
j��

f�x�
j� �����

s�t�

x � C � Rn� ���	�

Let �i be the observed frequency of scenario 
i in the sample 
m� If we denote
by wi �

�i
m

the observed proportion of scenario 
i� the problem ����� ��	� can also



���� Convergence of the sampled problems solutions ��

be reformulated as

z�
m

� min
x

SX
i��

f�x� 
i�wi �����

s�t�

x � C � Rn� �����

The convergence of the sampled problem solution to the original solution is
stated in the following theorem�

Theorem �� When m

 the solution z�
m

of the sampled stochastic optimiza�
tion problem �
�
� 
��	converges almost surely to the solution z of the original
stochastic optimization problem �
��� 
��	�

Proof� According to the strong law of large numbers we know that the observed
proportions �wi�i�������S converge almost surely to the probabilities p�
i�i�������S
when the sample size m tends to in�nity� Furthermore� one can easily show
that the function minx�C

PS

i�� f�x� 
i�pi is convex� and therefore continuous� in
�pi�i�������S � RS� These two properties lead to the desired result�
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Chapter �

Empirical veri	cation of

convergence

In this chapter we illustrate the convergence of the SP method on a single�machine
single�part�type MFCP� The solution of this MFCP in the in�nite horizon case�
obtained in ��
�� is recalled in the �rst section� A solution for the �nite horizon
case has been proposed in ��

� under the rather strong assumption that once
the machine fails it will never be repaired� In the general case with �nite horizon
there is no analytical solution available� however a direct numerical solution of the
HJB equations can be obtained with good accuracy� using the weak convergence
technique proposed by Kushner and Dupuis ����� This alternative numerical
solution will be used to control the convergence of our sampled SP models�

Indeed for this example the direct solution of the dynamic programming equa�
tions is more e!cient than the sampled SP method� However� when there are
two or more part�types we expect the sampled SP method to be more e!cient
than the direct dynamic programming method�


�� The in�nite horizon case

We consider as a test problem the single�machine single�part�type example pro�
posed by Bielecki and Kumar ��
�� The problem is�

min
�

E�

�
lim
T��

�

T

Z T

�

L�x�t�� dt

�

��
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s�t� �x�t� � u�t�� d

P 
	�t� dt� � jj	�t� � i� � qijdt� ��dt� �i �� j�

P 
	�t� dt� � ij	�t� � i� � � � qiidt � ��dt�
u�t� � U��t� U� � f�g U� � 
�� umax� � 
��

�

�
�

	��� � i � f�� �g
x��� � x�

With L�x�t�� � g	x	�t� � g�x��t��
The HJB system of equations is�

g � L�x�� �

�x
W ��x�d� q��
W

��x��W ��x��

g � min
u�U�

fL�x� � �

�x
W ��x��u� d� � q��
W

��x��W ��x��g

Where g is the minimum expected cost growth rate and W i�x� is the di�erential
cost to go function at initial state i�

Bielecki and Kumar have shown that the optimal policy is de�ned by

u��x� �

��
�

umax if x � Z
d if x � Z
� if x � Z

where Z is the so�called hedging point given by

Z �

�
ln�ab��	 g�

g�
��

b
if g	 � b�g	 � g�� � �

� otherwise
�����

with

b �
q��
d
� q��
umax � d

and

a �
umaxq��

b�q�� � q����umax � d�
�

the minimal average cost per unit of time g is given by

g � g	�Z � a� � a�g	 � g�� exp��bZ��



���� The finite horizon case ��


�� The �nite horizon case

The same model with a �nite time horizon T is a particular case of the model
developed earlier� Although an analytical solution is not available� an accurate
numerical solution can be obtained via a direct solution of the dynamic program�
ming equations� This numerical solution shows that for the �nite�time horizon
the optimal control is still an hedging point policy but with a safety stock that
decreases when one gets closer to the end of horizon T � i�e�

u��x� t� �

��
�

umax if x � Z�T � t�
d if x � Z�T � t�
� if x � Z�T � t��

where Z��� is an increasing function called the hedging curve�


�� Accuracy of the SP solution

We solve the �nite horizon model with the following data ��	�� p�


�� g	 � ��
g� � ��� d � ���� q�� � ���� � �q��� q�� � ���� � �q�� and � � ��

To control the convergence of our SP solution� we implemented the method
of Kushner and Dupuis ����� Chapter �
� on the x�state space grid

G � f�����
������
����� � � � � ��g
and with a time step ������ The hedging point computed according to ����� is
Z � ���
��� The solid line in Figure ��� is the hedging curve obtained via the
Kushner and Dupuis numerical technique� One notices that� as expected� the
hedging curve tends asymptotically to the hedging point value 	�

�
 when the
horizon increases�

The size of the associated stochastic programming model increases exponen�
tially with the number of periods K� The largest possible value K permitted by
the memory on our machine �IBM RISC ����� with �
� Mb memory� running
SP'OSL software� was equal to �� corresponding to 	�
� di�erent scenarios� For
the computations concerning a model with more than �� periods� we applied the
following recursive method� We �rst compute the value functions �J���� �� and
�J���� ��� de�ned in Equation �	�	�� for �� periods� Then� in the objective func�
tion� a piecewise linear approximation of each value functions is introduced as a
terminal cost penalty� The value functions of this new model are computed and
a piecewise linear approximation of each of this new value function is introduced
in the objective function� We can repeat this recursive procedure as often as de�
sired� This corresponds to a value iteration on a two stage dynamic programming
process�

In the SP approach we have identi�ed the initial stock for which the optimal
policy in the �rst period is to produce the same amount as the demand d� As
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Figure ���� The hedging curve Z�T � t�

noticed previously these values correspond to the hedging points� We notice that
the time discretization yields an approximation of the exact hedging curve by a
discontinuous function which remains however quite close to Z�T � t��

Figure ��� compares the value of Z�T�t� obtained via three di�erent methods

� the solid line corresponds to the solution of the dynamic programming equa�
tions obtained via the Kushner and Dupuis method�

� the dashed line shows the solution obtained with the SP method where
	t � ����

� the dotted line shows the solution obtained with the SP method where
	t � 
���

It can be observed that the hedging curve Z�T � t� is approximated in the SP
approach by a discontinuous function with values 	t � d � I where I is an integer
and d is the demand rate�

In Figure ��
 we have represented the value function J��T � t� x� with a solid
line� when evaluated by a direct solution of the DP equations and a dashed line
when evaluated through the SP approach with K � ���


�� Accuracy of the SP solution with sampling

We investigate now the convergence of the solution of the SP method with sam�
pling to the solution of the SP method when the whole scenario tree is taken
into account� For all numerical experiments of this section we use 	t � �� As we
noticed in the previous section� the approximation of the hedging curve Z�T � t�
obtained with the SP reformulation is a step function� Consequently there are
times to go T � t at which Z�T � t� is discontinuous� Therefore we investigated
the SP method with sampling for the computation of Z�T � t� at two possible
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Figure ���� Z�T � t� for T � t � ���

values of the time to go T � t� one near a discontinuity �T � t � ��� and one far
from a discontinuity �T � t � ���� We took di�erent sample sizes to construct
the approximating event tree and the results are shown in Figure ��� for the time
to go T � t � �� and in Figure ��	 for the time to go T � t � ��� We see
that a sample size of ��� is not su!cient for both cases� A sample size of ���� is
su!cient for T � t � �� but not for T � t � ��� However a sample size equal to
����� is su!cient for T � t � ���
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Chapter 


Numerical experiments

In this chapter we apply the numerical method presented in this part of the
dissertation to two examples that are closer to a real life implementation� In the
�rst section we approximate the optimal strategy for a �exible workshop with
two machines and two part types� As the size of the model is not too big� we
display the optimal strategy in full details and discuss the results� In the second
section we study a larger system� namely a �exible workshop with six machines
and four part types� Due to the size of the model� the optimal strategy cannot be
fully displayed in a simple �gure and therefore only the optimal hedging stocks
are given�

��� Implementation

Our approximation scheme leads to the solution of a stochastic program� To
generate and solve the stochastic program we coupled two softwares� AMPL and
SP'OSL� AMPL ���� is a modeling language for mathematical programming�
which is designed to help formulate models� communicate with a variety of solvers�
and examine the solutions� SP'OSL ���� is an interface library of C�language
subroutines that supports the modeling� construction and solution of stochastic
programs�

We obtain the solution of the stochastic program in four steps�

�i� We describe the �exible workshop topology using the algebraic facilities of
AMPL� First we model the �exible workshop without the stochasticity on
the machine availability �all machines are always up�� This corresponds to
a single scenario from the scenario tree which is from now on called the base
case scenario�

�ii� The base case scenario is passed� in an MPS �le� to SP'OSL and the whole
stochastic program is constructed by specifying for every possible scenario
the di�erence with the base case scenario and its probability or its sampled

	�
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Figure ���� Flexible workshop producing two parts with two machines

frequency� All scenarios with null probability are discarded� The sampled
scenarios are then aggregated into a scenario tree�

�iii� The stochastic program is solved with SP'OSL routines� which implement
a Benders decomposition�

�iv� The results are graphically displayed using MATLAB�

��� Two	machine two	part	type example

The example considered is a �exible workshop composed of two machines pro�
ducing two parts� One operation has to be performed on each part on either the
�rst machine or the second one� thus there are four routes� The �rst machine is
specialized on the �rst part and the second machine is specialized on the second
part� The processing time � for each part� is equal to ����� for the specialized
machine and ����� for the other machine� The penalty for work�in�process� for
�nished part inventory and backlog are the following�

h � ��� �� �� ��

g	 � ��� ��

g� � ��� ���

The failure rate is equal to ��� for the �rst machine and ��� for the second one�
The repair rate is equal to ��� for the �rst machine and ��� for the second one�
The demand is supposed to be constant at 
�� units per period for each part�
The �exible workshop is represented in Figure ���� We consider a time horizon
T � � with K � � periods� The total number of possible scenarios is about �����
and we took as sample size m � ������
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For this simple example� as only one operation has to be performed on each
part� it is penalizing to have non�zero inventory in the internal bu�ers� So the
state �x�k� is reduced to �y�k� and the policy �u�k� is fully determined by �v�k�� For
the �nite grid G approximating �x� we took the following values�

�y� � G � f��y����� �y�����j �y����� �y���� � f�
�������� �� ���� � � � � ���gg�
The value function �J


���� �y�� is shown in Figure ��
 for �	 � ��� ��� In this �gure�
we see that the value function attains a minimum on a plateau� The values of �y�
that minimize this function can be regarded as hedging points� Due to the time
discretization� the set of hedging points is not� as in the continuous time case� a
curve or a point� but a surface� For other values of 	� the value function presents
the same general shape�

For convenience� the optimal policy in the �rst period is rearranged as fol�
lows� the total amount of part � produced during the �rst period is denoted
by U���y�� �	�� and the total amount of part 
 produced during the �rst period
is denoted by U
��y�� �	�� The functions U���y�� �	� and U
��y�� �	� are shown in
Figure ��� for �	 � ��� �� and in Figure ��	 for �	 � ��� ���

Here again we see a di�erence between the optimal policy of our discrete�time
approximation and a typical (bang�bang( optimal policy of the continuous time
model� It can be explained as follows� Suppose that for the continuous time
model the optimal (bang�bang( policy is to produce at minimum rate from t � �
to t � t� and then produce at maximum rate �Figure ��� top�� Suppose that
we discretize the time scale the same way as in chapter 	 with tk�� � t� � tk�
This optimal policy will translate on the discrete time scale as follows� produce
at minimum for the periods � to k��� produce at maximum for the periods k��
to K and produce between minimum and maximum for the period k �Figure ���
bottom�� This is clearly not a (bang�bang( policy�

An interesting result is displayed in Figure ��� which gives a cross�section
of the surface shown in Figure ��� for �y���� � �� We see that the priority is
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Figure ���� Optimal policy for 	 � ��� ���

−200
0

200
400

600
800 −200

0
200

400
600

800
0

50

100

150

200

250

X1
X2

U
1


a� U���y�� ����

0
200

400
600

800
0

200
400

600
800

0

20

40

60

80

100

120

140

X1
X2

U
2


b� U	��y�� ����

Figure ��	� Optimal policy for 	 � ��� ���



���� Two	machine two	part	type example 	�

min

max

min

max

tktk��

t�

Figure ���� E�ects of a time discretization on a (bang�bang( policy

−200 −100 0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

X2

U

Figure ���� The functions U���y����� �	� �dotted line� and U
��y����� �	� �solid line�
for �y���� � �� In the initial period the two machines are up



	� �� Numerical experiments

PART 1 PART 3PART 2 PART 4

51

3

2

4

6

7

8

9

10

11

12

13

14

Figure ����

given to the part with the highest backlog� We see also that a high surplus of
part 
 �above ���� hedges also for part �� However this cross�hedging reaches a
saturation point� a surplus of part 
 higher than ��� has the same e�ect as a
surplus of ����

��� Six	machine four	part	type example

The larger example considered here is a �exible workshop composed of six ma�
chines� among which � are unreliable� and producing four parts� The workshop
topology is pictured in Figure ���� The processing time vector is given by

� � ������� ������ ����� ������ ������ ������ ������

������ ����� ����� ������ ������ ������ �������

For machines � and �� the failure rate is equal to ��� and the repair rate is equal
to ���� The failure rate for Machine 
 is equal to ��
 and the repair rate is equal
to ���� The other machines are reliable� The penalty for work�in�process equals
� in each internal bu�er" the penalty for �nished part inventory �resp� backlog�
equals � �resp� ��� for each part type� We considered a time horizon T � �� The
demand is supposed to be constant at ��� units for each part type�

We solved the model with K � � periods and a sample of ����� scenarios�
Given the size of the state space� it is impossible to describe the optimal policy
with a simple picture� However we give in Figure ��� the hedging stocks when the
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six machines are operational� Since upstream from each route there is a �ctive
in�nite bu�er� we obtain� as expected� a zero hedging stock for the �rst bu�er
on each route� Although we do not show the complete optimal strategy for this
model� we must emphasize that it is possible to do so�
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Chapter �

Concluding remarks for Part I

We have shown in this �rst part of the thesis that a stochastic programming
approach could be used to approximate the solution of the associated stochas�
tic control problem in relatively large scale MFCPs� As this approach combines
simulation and optimization� it can be considered as another possible method for
gaining some insight on the shape of the optimal value functions that will ulti�
mately de�ne the optimal control� In fact� the strength of the proposed numerical
method is that it is simulation based although no assumption on the nature of
the optimal policy are made� Consequently the numerical approximation of the
optimal strategy gives insight on the true nature of the optimal strategy� The
stochastic programming approach exploits the fact that the disturbance Markov
jump process is uncontrolled� It also allows the use of advanced mathematical
programming techniques like decomposition and parallel processing�
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Appendix A

Convergence of the stochastic

programming approach

The scope of this appendix is to prove� using viscosity techniques� the convergence
of the discretization scheme proposed in Chapter 	� More precisely� the theory
developed throughout this appendix is needed to prove theorems � and 
� Let
us �rst recall that the approximation scheme is based on a time discretization
which reformulates the original Piecewise Deterministic Control System �PDCS�
as a stochastic program� Therefore� as the value function of the PDCS is a
vector valued function� it is necessary to extend the classical viscosity solution
�rst introduced by Crandall� Ishii and Lions �see e�g� �
���� Such an extension
was already done in �
�� and ���� in a slightly di�erent context� The scheme
of proof used in this appendix is an extension of some techniques �rst used for
deterministic control system by Capuzzo�Dolcetta in ��
��

The theory developed in this appendix encompasses a wider class of problems
than the manufacturing �ow control problems presented in the previous chapters�
Thus� for the sake of generality� we were obliged to change slightly some nota�
tions used in the previous chapters� However� this is not too unpleasant as the
appendix is self�contained and can therefore be read independently of the rest of
the dissertation�

This appendix is organized as follows� In Section A�� we formulate the PDCS
and the admissible strategies and give the hypotheses needed throughout the
appendix� We recall the dynamic programming principle stated in ���
� and
prove regularity properties satis�ed by the vector value function of the PDCS� In
Section A�
 we de�ne the vector viscosity solution and show that it is consistent
with the classical solution� We prove� using �xed point arguments� that the vector
value function of the PDCS is the unique Lipschitz continuous vector viscosity
solution of a system of coupled Hamilton�Jacobi�Bellman�s �HJB� type equations�
In Section A�� we recall brie�y the approximation scheme studied in Chapter 	
and its interpretation in terms of stochastic program� We prove that the sequence
of vector value functions associated to the approximating stochastic programs

��
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converges to the vector viscosity solution of the HJB system� and consequently
to the vector value function of the initial PDCS� as the discretization�s step tends
to zero�

A�� The piecewise deterministic control system

A���� Dynamics of the PDCS

We consider a piecewise deterministic control system� with hybrid state �y�t�� ��t���
where y�t� � IRm denotes the continuous part of the state while ��t� denotes the
discrete part� The discrete state� ��t�� belongs to a �nite set I � f�� 
� � � � � Ig�
and evolves according to a continuous time Markov jump process with transition
rates de�ned by

P 
��t� dt� � jj��t� � i� � qijdt� o�dt� i� j � I� i �� j

P 
��t� dt� � ij��t� � i� � � � qiidt� o�dt� � �A���

with

qii � �
X
i��j

qij � � �A�
�

and

lim
dt��

o�dt�

dt
� � �A���

The continuous state evolves according to a di�erential equation that depends on
the value taken by the discrete state� More precisely� if the discrete state at time
t is ��t� � i� then the continuous state evolves according to the following state
equation from time t on until the next jump of the discrete state occurs

�y�t� � f i�y�t�� u�t��� u�t� � U i� �A�	�

where the control u�t� takes value in a set U i�

Assumption �� U i is a closed compact set for all i in I�
Assumption �� The functions f i� i � I are Lipschitz continuous in x� contin�
uous in �x� u� and bounded� i�e�

� jjf i�x� u�� f i�y� u�jj � Cf jjx� yjj� 	i � I� x� y � IRm� u � U i�

� f i�x� u� is continuous in �x� u��

� jjf i�x� u�jj �Mf � 	�x� u� � IRm � U i�



A��� The piecewise deterministic control system ��

Assumptions � and 
 insure the existence and uniqueness of the solution of �A�	�
for each possible initial point �x� i� at time t�

Denote X� � IRm the compact set of possible initial continuous state� Let
X � IRm � 
�� T � be the set of points �y� t� such that there exists a trajectory
starting at time t � � from a point x � X� and reaching the continuous state
y at time t� It is clear from Assumptions � and 
 that the reachable set X is a
closed bounded subset of IRm � 
�� T ��

De�ne �� as follows�

�� � sup
u�U i�I
x ��y

hf i�x� u�� f i�y� u�� x� yi
jx� yj� � �A���

Assumption �� �� � C	� C	 � ��

Lemma �� Let �x�s�� ��t�� and �y�s�� ��t�� be two trajectories starting respec�
tively at time t � � at �x�� ��� and �y�� ��� associated with the same control u���
and the same realization of the jump process� Then we have for all s � �

jx�s�� y�s�j � jx� � y�je	�s�

Proof� Since the evolution of the discrete state does not depend on the value of
the continuous state� the lemma follows directly from Gronwald theorem �see e�g�
�	���

A���
 Admissible controls and piecewise open loop strate�

gies

For a given initial hybrid state of the system �x� i� at time � � an admissible open
loop control� will be a measurable mapping

u��� � 
�� T 

 U i

such that the solution of �A�	�� with initial condition y��� � x exists and is
unique� Let us denote U i the set of such mappings�

In this context a strategy of the controller is described in the following way� At
each jump time of the system� i�e� at each instant � when a jump of the discrete
state occurs� the controller observes the new hybrid state �y���� ����� � �x� i� and
chooses an admissible open loop control in the set U i� This open loop control
will be applied� until time � �� when either a new jump of the system occurs� or
the �nal time is reached� i�e� � � � T � During the interval of time 
�� � �
� the
associated trajectory y��� of the continuous state is solution of

�y�t� � f i�y�t�� u�t��� with y��� � x�
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To sum up� a strategy � is thus a mapping from 
�� T 
�IRm � I to �i�IU i�
Notice that since we have a deterministic control problem between two succes�

sive jumps� open loop and closed loop strategies are equivalent between these two
jumps� So in this case piecewise open loop and piecewise closed loop strategies
are equivalent�

A complete and precise description of admissible strategies involves the use of
a concept of solution of an ordinary di�erential equation with discontinuous right�
hand side� since the control u��� and consequently the functions f i�y�t�� u�t�� can
be discontinuous� This can be found in ���
� in a more general setup�

A���� Value function and optimality equations

Suppose that� at time t� the state of the system is �x� i� � Xt � I� where Xt �
fxj�x� t� � Xg� and that the controller uses a given strategy �� The trajectory
y��� of the continuous state together with the trajectory of the control u��� is
a stochastic processes with measure P induced by �� We de�ne the evaluation
function associated to the strategy � and initial state �x� i� as

J i��x� t� � EP 


Z T

t

L
�s��y�s�� u�s�� ds j y�t� � x� ��t� � i�� �A���

Assumption �� The instantaneous cost is Lipschitz continuous in x� continuous
in �x� u� and bounded� i�e

� jLi�x� u�� Li�y� u�j � CLjjx� yjj� 	x� y � X � u � U i�

� Li�x� u� is continuous in �x� u��

� jLi�x� u�j �ML 	x � IRm� u � U i�

Throughout the chapter we assume that Assumptions � to 	 are satis�ed�
We are interested to �nd the optimal vector value function �V i�x� t��i�������I

where

V i�x� t� � inf
�
J i��x� t�� i � �� � � � � I� �A���

Now we state the dynamic programming principle veri�ed by V i� This results
can be found� for example� in ����� in a slightly di�erent formulation� or in a more
general set up in ���
��

Proposition �� For any �x� t� in X and positive � we have

V i�x� t� � inf
u����U i

�
V i�y�t� ��� t � ��

�

Z t	�

t

Li�y�s�� u�s�� �
X
j�I

qijVj�y�s�� s�ds

	 �A���
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where y��� is given by �A��	 and i � �� � � � � I�

Theorem �� If Assumptions � to � hold then the functions V i�x� t� are bounded
and Lipschitz continuous in �x� t��

Proof� The boundedness is straightforward from the de�nition �A��� of the cost
function together with Assumption 	� Let us compute the di�erence V i��x� �t� �
V i�x� t�� We have

jV i��x� �t�� V i�x� t�j
� jV i��x� �t�� V i��x� t�j� jV i��x� t�� V i�x� t�j �A�
�

On the one hand� by de�nition �A��� of the cost function� we have

jV i��x� t�� V i�x� t�j

�





inf� EP

�Z T

t

L
�s���y�s�� u�s��dsj��t� � i� �y�t� � �x

�

� inf
�
EP

�Z T

t

L
�s��y�s�� u�s��dsj��t� � i� y�t� � x

�




� sup

�

EP

�Z T

t

jL
�s���y�s�� u�s��ds� L
�s��y�s�� u�s��jds j��t� � i� �y�t� � �x� y�t� � x

�
�

The Lipschitz property of L and lemma � imply

jV i��x� t�� V i�x� t�j � jj�x� xjjCLC� � jj��x� �t�� �x� t�jjCLC� �A����

where C� �
eC�T

C�
is a constant�

On the other hand�

jV i��x� �t�� V i��x� t�j �





inf� EP

�Z T


t

L
�s���y�s�� u�s��ds j ���t� � i� �y��t� � �x

�

� inf
�
EP

�Z T

t

L
�s��y�s�� u�s��dsj��t� � i� y�t� � �x

�



 �
Without loss of generality� we may suppose that �t � t� Using the fact that the
instantaneous cost L is bounded it comes that

jV i��x� �t�� V i��x� t�j
�





inf� EP

�Z T��
t�t�


t

L
�s���y�s�� u�s��ds j ���t� � i� �y��t� � �x

�
�

Z T

T��
t�t�

MLds

� inf
�
EP

�Z T

t

L
�s��y�s�� u�s��dsj��t� � i� y�t� � �x

�



�
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The �rst and the last terms in the previous expression involve stochastic replicas
and are therefore equal� We thus obtain

jV i��x� �t�� V i��x� t�j �MLj�t� tj �MLjj��x� �t�� �x� t�jj� �A����

Taking together inequalities �A�
�� �A���� and �A���� leads to the following result

jV i��x� �t�� V i�x� t�j � �ML � CLC��jj��x� �t�� �x� t�jj� �A��
�

which concludes the proof�

A�� Vectorial viscosity solution

In this section we extend the notion of classical viscosity solution for a system of
�rst order partial di�erential equations�

A�
�� De�nition and properties

We consider the following system of coupled �rst order di�erential equations with
boundary conditions�






�








�

H��x� t� V ��x� t�� � � � � V I�x� t��rV ��x� t�� � �
H��x� t� V ��x� t�� � � � � V I�x� t��rV ��x� t�� � �
���
HI�x� t� V ��x� t�� � � � � V I�x� t��rV I�x� t�� � �� 	�x� t� � X

V ��x� T � � V ��x� T � � � � � V I�x� T � � � 	x�

�A����

where H i are continuous functions from IRm � IR� IRI � IRm	� to IR�

De�nition �� The continuous vector function of X V �x� t� � �V ��x� t�� � � � � V I�x� t��
is said to be a continuous vector viscosity solution of the system �A��
	 if�

� for all � � C��X �� if �y� s� is a local maximum of V i � � for some i � I�
we have

H i�y� s� V ��y� s�� � � � � V I�y� s��r��y� s�� � �� �A��	�

and

� for all � � C��X �� if �y� s� is a local minimum of V i � � for some i � I�
we have

H i�y� s� V ��y� s�� � � � � V I�y� s��r��y� s�� � �� �A����
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If V �x� t� veri�es only �A���	 �respectively �A��
		� we call it a vector viscosity
sub�solution �resp� super�solution	�

A similar de�nition was proposed in �
�� and in ����� This de�nition is a
straightforward extension of the continuous viscosity solution for �rst order par�
tial di�erential equation �rst developed by Crandall� Ishii and Lions �see e�g�
�
����

The following theorem links classical solution and viscosity solution of �A�����
in the case where �A���� admits a classical solution �i�e� a continuously di�eren�
tiable solution��

Theorem 	� Suppose V i�x� t� is C� in X � for all i in I� then V �x� t� is a classical
solution of �A��
	 if and only if it is a vector viscosity solution of �A��
	�

Proof� Let V be a viscosity solution of �A����� We take � � V i in the def�
inition �� Since each point of X is a maximum and a minimum of V i � �
we obtain the two inequalities H i�x� t� V ��x� t�� � � � � V I�x� t��rV i�x� t�� � � and
H i�x� t� V ��x� t�� � � � � V I�x� t��rV i�x� t�� � � over X � and conclude that V is a
classical solution�
Conversely� if V is a classical solution of �A���� and if y is a local maximum �resp�
minimum� of V i � �� we have rV i�y� � r��y� and so H�y� V �y��r��y�� �
H�y� V �y��rV i�y�� � �� from which we conclude that V is a viscosity sub�
solution �resp� super�solution��

A�
�
 The viscosity solution of the PDCS

The dynamic programming principle applied to PDCS de�nes a system of coupled
HJB equations�

Theorem 
� The vector value function of the PDCS� V � �V�� � � � �VI�� de�ned
by �A��	 with �A��	 is a viscosity solution of the equation �A��
	 where the Hamil�
tonians are de�ned by

H i�x� t� V ��x� t�� � � � � V I�x� t��rV i�x� t�� �

min
u�U i

f�Li�x� u��
X
j�I

qijV
j�x� t�� �

�t
V i�x� t��rV i�x� t�f i�x� u�g i � �� � � � � I�

�A����

Proof� We �rst prove that the value function V is sub�solution� Consider � a
C��X � function� Suppose that a local minimum of V i � � is attained on ��x� �t��
Without any loss of generality we can assume that V i��x� �t� � ���x� �t�� Conse�
quently� there exists a real positive number� r� such that for all �y� s� such that
jj��x� �t�� �y� z�jj � r we have

V i�y� s� � ��y� s��
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and then for � su!ciently small� using proposition � we can write�

���x� �t�� ���y��t � ��� �t� �� � V i��x� �t�� V i��y��t� ��� �t � ��

�
Z 
t	�


t

Li��y�s�� u� ds�
X
j

Z 
t	�


t

qijVj��y�s�� s� ds� �A����

where �y��� is the continuous state trajectory corresponding to initial conditions
��x� i� at time �t� when the constant control u��� � u � U i is applied� Dividing
equation �A���� by � and letting � tend to zero we obtain�

� �

�t
���x� �t��r���x� �t�f i��x� u�� Li��x� u��

X
j ��i

qij
Vj��x� �t�� V i��x� �t�� � ��

This inequality is true for all u� and in particular for the control u that min�
imizes the left hand side of the last inequality� We thus can conclude that
V � �V�� � � � �VI� is a sub�solution of �A���� with �A����� in the sense of the
de�nition ��

We now prove that V is a super�solution� Let � � C��X � and ��x� �t� be a local
maximum of V i � �� Again we assume that V i��x� �t� � ���x� �t�� So� there exists
r � � such that� for any �y� s� satisfying jj�y� s�� ��x� �t�jj � r� we have �

V i�y� s� � ��y� s��

From �A��� we obtain the following equality�

V i��x� �t� � min
u����U i

fV i��y��t� ��� �t � �� �

Z 
t	�


t

Li��y�s�� u�s�� �
X
j�I

qijVj��y�s�� s�dsg

and consequently

���x� �t� � min
u����U i

f���y��t� ��� �t� �� �

Z 
t	�


t

Li��y�s�� u�s�� �
X
j�I

qijVj��y�s�� s� dsg�

Using the equality

���y��t� ��� �t � �� � ���x� �t�

�

Z 
t	�


t

�

�t
���y�s�� s� �r���y�s�� s�f i��y�s�� u�s��ds�
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we rewrite the last inequality

� � min
u����U i

f
Z 
t	�


t

Li��y�s�� u�s�� �
X
j�I

qijVj��y�s�� s�

�
�

�t
���y�s�� s� �r���y�s�� s�f i��y�s�� u�s��dsg

which implies

� � min
u����U i

f
Z 
t	�


t

min
w�U i


Li��y�s�� w� �
X
j

qijVj��y�s�� s�

�
�

�t
���y�s�� s� �r���y�s�� s�f i�y�s�� w��dsg

or again

� � min
u����U i

f
Z 
t	�


t

�H i��y�s�� s�V��y�s�� s��r���y�s�� s�� dsg�

Dividing by �� and letting � tend to zero we obtain

� � H i��x� �t�V��x� �t��r���x� �t��� �A����

which concludes the proof of the fact that V is a super�solution and �nishes the
proof of the theorem�

Let us denote C����X � the set of the Lipschitz continuous functions de�ned on
X �

Theorem �� In �i�IC
����X � there exists a unique viscosity solution of �A��
�A���	�

To prove theorem � we need a result that links �classical viscosity solution
with the solution of an optimal control problem� and a result that gives the
uniqueness of �classical viscosity solution� These results can be found for example
in ���� �theorem ���� that we recall below for the sake of completeness �

Theorem �� Consider the �nite horizon optimal control problem given by its
dynamics

�y � f�y�t�� u�t��� y��� � x

and the cost function

J�x� u���� �
Z T

t��

L�y�s�� u�s��ds�
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Suppose that the dynamics and instantaneous cost functions f and L are Lips�
chitz continuous with respect to their �rst argument� bounded and continuous in
�y� u� and that V� is bounded uniformly continuous� Then the value function of
the optimal control problem is the unique bounded uniformly continuous viscosity
solution of the Bellman equation

�V

�t
�H�x� V�rV � � �

associated to the boundaries conditions

V �x� �� � V��x�

with

H�x� V� p� � sup
u�U

f�pf�x� u�� L�x� u�g �

Proof of Theorem �� Existence follows directly from theorem �� since we have
exhibited such a solution�

In order to prove uniqueness� we introduce an operator T from the set �i�IC
����X �

to itself� and will show that it is contractive and consequently admits a unique
�xed point�

De�ne the operator T in the following way �

T � �i�IC
����X �
 �i�IC

����X �

�W�� � � � �WI� �
 �V�� � � � �VI��

where V i is the standard viscosity solution of the following equation

� � min
u�U i

f��Li�x� u�

� �

�t
V i�x� t��rV i�x� t�f i�x� u�� qiiV i�x� t�g� �A��
�

where

�Li�x� u� � Li�x� u� �
X
j ��i

qijWj�x� t� �A�
��

with terminal conditions V i�x� T � � � for all x�

Notice that if for i �� j� the functions Wj are Lipschitz continuous� then the
instantaneous cost functions �Li satisfy Assumption 	�
Notice also that� according to theorem �� the viscosity solution of this equation
can be interpreted as the solution of a problem of control with �nite horizon T �
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where the dynamics is given by the function f i� the instantaneous cost is given
by the function �L and the discount rate is given by qii�

Let us now prove that T is well de�ned� i�e� that T �W�� � � � �WI� exists� is unique�
and belongs to �i�IC

����X � for �W�� � � � �WI� � �i�IC
����X �� The existence

follows directly from the previous remark� T �W�� � � � �WI� can be interpreted as
a vector of classical viscosity solutions for decoupled optimal control problems�
According to Theorem � we have existence and uniqueness� The fact that each
component of T �W�� � � � �WI� belongs to C���� follows directly from the fact that
each component can be interpreted as the solution of a �nite horizon optimal
control problem without �nal cost and Lipschitz continuous instantaneous cost
function�
Now� from the de�nition of a vector viscosity solution and �classical viscosity
solution� it is straightforward to see that a �xed point of the operator T is a
vector viscosity solution of equation �A����A����� and conversely� any viscosity
solution of �A����A���� is a �xed point of the operator T �

Again we use theorem � to interpret each component of T �W�� � � � �WI� as the
value function of an optimal control problem� Now to prove that T is contractive
let us compute a upper bound for jjT W � T �Wjj� where the norm is de�ned as

jjWjj � jjW�� � � � �WI jj � max
i�I

max
�x�t��X

jW i�x� t�j�

We have then

T �W i�x� t�� T W i�x� t�

� inf
u���

Z T

t

eqii�s�t�Li�x�s�� u�s�� ds�
X
j ��i

qij

Z T

t

eqii�s�t� �Wj�x�s�� s� ds

�inf
u���

Z T

t

eqii�s�t�Li�x�s�� u�s�� ds�
X
j ��i

qij

Z T

t

eqii�s�t�Wj�x�s�� s� ds

� sup
u���

X
j ��i

qij

Z T

t

eqii�s�t�
 �Wj�x�s�� s��Wj�x�s�� s�� ds

�
Z T

t

X
j ��i

qije
qii�s�t� ds jj �W �Wjj

�

Z T

t

�qiieqii�s�t� ds jj �W �Wjj

� ��� eqii�T�t�� jj �W �Wjj
� ��� eqiiT �jj �W �Wjj � � jj �W �Wjj�



�
 A� Convergence of the stochastic programming approach

with � � � � � as qii � � and � � T �
� In the same way we could have proved
that

T �W i�x� t�� T W i�x� t� � � jj �W �Wjj�
The property of contraction follows since the previous inequalities are true for
any �x� t� in X �

�

A�� Approximation of the value function

A���� The discrete time problem

We now turn to the approximation of the viscosity solution of the coupled sys�
tem of HJB equations �A����A����� We use time discretization� Let us denote
	K � T�K the time step of the time interval 
�� T �� In order to obtain an ap�
proximation V i

K of the function V i associated to the time interval discretization�
K� we approximate the dynamics �x�t� � f i�x� u� by

x�t � 	K� � x�t� � 	Kf
i�x� u��

and the time derivative of the value functions

d

dt
V i�x�t�� t� �

�

�t
V i�x�t�� t� �rV i�x�t�� t�f i�x� u��

by

V i
K�x� f i�x� u�	K� t� 	K�� V i

K�x� t�

	K
�

Plugging these approximations in the system of equations �A����A����� we obtain
for any time t � f�� 	K� 
	K� �K � ��	Kg �

V i
K�x� t� � min

u�U i

�
Li�x � f i�x� u�	K � u�	K �A�
��

�
X
j ��i

qij	K Vj
K�x� f i�x� u�	K� t� 	K� � �� � qii	K�V i

K�x � f i�x� u�	K � t� 	K�

	
�

and terminal conditions

V i
K�x� T � � �� �A�

�

The approximating HJB system of equations �A�
��A�

� can be interpreted
as the dynamic programming equations for a stochastic discrete time problem
starting at time t� � �� and given by
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� the dynamics of the continuous state x

x��k � ��	K� � x�k	K� � f 

K�k�K��x�k	K�� u�k	K��	K�

x��� � x� � X�
�A�
��

� the discrete time Markov jump process �K�

P 
�K��k � ��	K� � jj�K�k	K� � i� � qij	K i �� j�
P 
�K��k � ��	K� � ij�K�k	K� � i� � � � qii	K� �A�
	�

� the evaluation function

J iK�x� �� � E

K��X
k��

L
K�k�K��x�k	K�� u�k	K��	K�� �A�
��

Analogously to a strategy in the continuous problem� a strategy of this discrete
problem is de�ned as a mapping from f�� 	K� 
	K� � � � � �K � ��	Kg � IRm � I to
the set �i�IU i�

A way to solve numerically this problem now is the following� Since the
stochastic process does not depend on the continuous state or on the control it is
possible to construct an event tree associated to this process� To each arc of this
tree �A�
	� gives a probability� Equations �A�
��A�
�� can thus be interpreted as
a stochastic program� where �A�
�� is the function to be minimized and �A�
��
is the set of constraints� In the previous chapters we used this technique with a
linear problem�

A���
 Interpolation of the discrete time value function

In order to get convergence results we need to de�ne the value function V i
K for

any t in the interval 
�� T �� We de�ne V i
K�x� t� for any t in 
�� T � by using equation

�A�
�� and �A�

� together with the following terminal conditions for any t in
the last segment ��K � ��	K� T 


V i
K�x� t� � min

u�U i

�
Li�x � f i�x� u��T � t�� u��T � t�

�
� �A�
��

A most natural way to get an interpolation of V i
K on any t would have been to

use linear interpolation techniques� Nevertheless the proofs of the results given
on the last section are much simpler using the interpolation introduced above�

Theorem �� The functions �V i
K�x� t��K are bounded by a constant M � and Lip�

schitz continuous in �x� t� with the same Lipschitz constant for any K�

Proof� The proof is similar to the proof of theorem 	� The fact that the func�
tions are bounded comes from boundedness of the instantaneous cost� which is
independent of K�



�	 A� Convergence of the stochastic programming approach

A���� Convergence result

We now turn to the approximation theorem �

Theorem �
� For any i � I� V i
K�x� t� converges to V i�x� t�� locally uniformly in

X as K tends to in�nity� where V is the viscosity solution of �A��
�A��� 	�

Proof� By Theorem 
 the family �V i
K�x� t��K is equicontinuous� Therefore� by

Ascoli Theorem� there exists a subsequence fV i
pgp of the sequence fV i

KgK that
converges locally uniformly to some function V � Let us prove that the vector
function V � �V �� V �� � � � � V I� is a vector viscosity solution of system �A����
A����� This will prove the theorem� since V has been proved to be the unique
Lipschitz continuous vector viscosity solution of �A����A�����

Let � be a C��X � function� and ��x� �t� a local maximum of V i � � for some
i in I� Without loss of generality we can suppose that this maximum is strict�
Hence there exists a positive integer r � � such that for any �x� t� in the ball B
centered in ��x� �t� and of radius r we have

�V i � ����x� �t� � �V i � ���x� t��

De�ne now the point f�xp� �tpgp� such that ��xp� �tp� is a maximum of V i
p � �

on the closed set B� Since V i
p converges uniformly to V i on B� it follows that

��xp� �tp� converges to ��x� �t�� Since f i�x� u� is bounded� for p large enough� ��xp �
f i��xp� u�	p� �tp� 	p�� belongs to B� and consequently from the de�nition of ��xp� �tp�
we have

V i
p��xp� �tp�� ���xp� �tp� �
V i
p��xp � f i��xp� u�	p� �tp � 	p�� ���xp � f i��xp� u�	p� �tp � 	p��

�A�
��

Using the expression �A�
��� and keeping in mind the equation �A�
�� we obtain

� � min
u�U i

f�V i
p��xp� �tp� � Li��xp � f i��xp� u�	p� u�	p

�
X
j ��i

qij	pVj
p��xp � f i��xp� u�	p� �tp � 	p� � �� � qii	p�V i

p��xp � f i��xp� u�	p� �tp � 	p�g

� min
u�U i

f���xp � f i��xp� u�	p� �tp � 	p�� ���xp� �tp� � Li��xp � f i��xp� u�	p� u�	p

�
X
j ��i

qij	p
Vj
p��xp � f i��xp� u�	p� �tp � 	p�� V i

p��xp � f i��xp� u�	p� �tp � 	p���g �A�
��

Since � is a C��X � function we have for some � in 
�� ���

���xp � f i��xp� u�	p� �tp � 	p�� ���xp� �tp� �

	pr���xp � �f i��xp� u�	p� �tp � �	p�f
i��xp� u� � 	p

�

�t
���xp � �f i��xp� u�	p� �tp � �	p��
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Substituting this last expression in �A�
�� and dividing by 	p we obtain

� � min
u�U i

fr���xp � �f i��xp� u�	p� �tp � �	p�f
i��xp� u� �

�

�t
���xp � �f i��xp� u�	p� �tp � �	p�

�Li��xp � f i��xp� u�	p� u�

�
X
j ��i

qij
Vj
p��xp � f i��xp� u�	p� �tp � 	p�� V i

p��xp � f i��xp� u�	p� �tp � 	p��g�

Now we let p tend to in�nity to get

� � min
u�U i

fr���x� �t� � f i��xp� u� � �

�t
���x� �t� � Li��x� u� �

X
j ��i

qij
Vj��x� �t�� V i��x� �t��g�

which establishes that V is a viscosity subsolution of �A����A����� The same
arguments can be used to prove that V is also a viscosity super�solution� This
ends the proof of the theorem�
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Part II

Decomposition Method in a

Singularly Perturbed Hybrid

Stochastic Model
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Chapter �

Introduction to Part II

Hybrid stochastic control models o�er a nice paradigm for the modeling of manu�
facturing and economic production systems �see ������	��� ����� ��
�� ��	� and �����
for a small sample of the abundant literature in this area�� Unfortunately� these
models are complex and the optimal control law is di!cult to compute� Although
an analytical expression of the optimal control law can sometimes be obtained for
a few very simple models� in general� numerical methods are the only possibility
to compute the optimal control law�

Often� these systems have the property that the stochastic events occur at
very di�erent time scales� In the present work we will study a class of hybrid
stochastic control problems with two time scales� The �fast mode of the system
is characterized by a continuous stochastic variable which takes the form of a
controlled jump and di�usion process� The �slow mode of the system is described
by a discrete stochastic variable which takes the form of a controlled Markov
jump process� By applying the numerical techniques developed by Kushner and
Dupuis ����� the hybrid stochastic control problem is then approximated by a
singularly perturbed controlled Markov chain� Due to the two di�erent time
scales� this controlled Markov chain is ill�conditioned and the optimal control
law is di!cult to compute because of numerical instabilities� However� the two�
time�scale structure permits a hierarchical approach between the slow and the
fast modes� When the time scale ratio tends to zero� the hierarchical approach
leads to an approximation of the initial control problem by a structured control
problem� called limit control problem�

Taking the limit� when the time scale ratio tends to zero� of the singularly
perturbed controlled Markov chain would not lead� in general� to an approxima�
tion of the limit control problem since the ergodic structure of that chain will
be altered� This phenomenon can be illustrated by the following example due to
Schweitzer ������ Let

M
 �

�
�� � �
� �� �

�

�
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be the perturbed Markov chain whose stationary distribution matrix is

M�

 �

�
��� ���
��� ���

�

for all � ���� �
� Taking the limit� when � tends to zero� of the stationary distri�
bution matrix leads to

lim

	�

M�

 �

�
��� ���
��� ���

�
�

which is di�erent from

M�
� �

�
� �
� �

�
�

the stationary distribution matrix of the unperturbed Markov chain M��
Fortunately� the theory of singularly perturbed systems permits one to obtain

a controlled Markov chain approximating the limit control problem �see ���� and
������ The linear program associated with this controlled Markov chain has a pri�
mal bloc�diagonal structure permitting a decomposition approach and� moreover�
the ill�conditioning encountered before has disappeared�

The main contribution of this work is the implementation of a decomposi�
tion approach coupling a linear programming method with a policy improvement
algorithm� This coupling permits one to exploit optimally both the primal block�
diagonal structure and the special structure of each sub�block which can be iden�
ti�ed as Markov Decision Problem �MDP�� Another valuable contribution is the
implementation of a parallel version of the decomposition method�

This presentation is organized as follows� In Chapter �� we expose a two�
time�scale hybrid stochastic control problem� In Chapter ��� following ����� we
derive an approximation for the control problem� Then� following ���� we derive
an approximation for the limit control problem� when � tends to zero� In Chap�
ter �
� following ���� and ����� we derive a decomposition approach for the limit�
control problem which exploits the bloc�diagonal structure� We then explain how
this decomposition can be implemented using the Analytic Center Cutting Plane
Method �ACCPM�� Finally� in Chapter ��� we apply the decomposition method
to an example of a production plant with two types of human resources and four
di�erent market states� We then compare the performance of the decomposition
approach with the performance of a frontal method� We also show the speed�up
resulting from a parallel implementation of the decomposition method�



Chapter �


Two�time�scale hybrid stochastic

systems

In this chapter we expose the hybrid stochastic system that will be used in this
presentation� It has two time scales� where a continuous state variable x � R

K

is �moving fast according to a jump and di�usion process while a discrete state
variable � is �moving slowly according to a continuous time stochastic jump
process�

���� The fast dynamics

Let x � �x�� x�� � � � � xK� be a controlled random variable� whose state equation is
indexed over a �nite set �i � E� which describes the di�erent possible values taken
by the discrete state variable �� More precisely� we assume that the dynamics of
the continuous state variable is represented by a controlled jump and di�usion
process

dx�t� � f i�x�t�� u�t��dt� �dz�t� � dS

x��� � x�

u�t� � U i � R
K �

where U i is a compact set� f i�x� u� satis�es the usual smoothness conditions for
optimal control problems �C� in x and continuous in u� and fz�t� � t � �g is a
K�dimensional Wiener process� The jump process S��� is given by

S�t� �

Z t

�

Z
�

r�x�s��� ��N�dsd���

and N��� is a Poisson measure of intensity �dt���d��� where ���� has compact
support �� For simplicity� we consider the case where the volatility � is a RK�RK

diagonal matrix with diagonal elements given by � � ���� � � � � �K��

��
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If the continuous state variable is restricted to a given subset of RK � one has
to impose re�ecting boundary conditions �see ���� for a detailed description��

���� The slow dynamics

We assume that the discrete state variable is described by a controlled jump
process ���� taking values in the set E� The ��process transition rates� which
depend on the state x and the control u� are de�ned by

�qij�x� u�dt � P 
��t� dt� � jj��t� � i� x�t� � x� u�t� � u� � o�dt� i� j � E

where

lim
dt��

o�dt�

dt
� �

uniformly in x� u� The parameter � is the time�scale ratio that will� eventually�
be considered as very small�

���� Admissible policies and performance crite	

rion

One looks for an optimal control� that is an �x���� ������adapted process u��� such
that the expected average reward per unit of time

J
�u���� � lim inf
T��

�

T
Eu���

�Z T

�

��x�t�� ��t�� u�t�� dt

�
������

is maximized subject to the fast dynamics of the x����process and the slow dy�
namics of the �����process�
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Numerical approximation scheme

In the �rst section of this chapter� following ����� we derive an approximation
for the control problem for the case where the fast dynamics is a pure di�usion
process� In the second section� following ���� we derive an approximation for the
limit control problem� when � tends to zero� for the case where the fast dynamics
is a pure di�usion process� The case where the fast dynamic is a jump and
di�usion process is discussed in the third section�

���� The control problem

In this section we assume that the fast dynamics is a pure di�usion process�
The ergodic cost stochastic control problem identi�ed in the previous section is
an instance of the class of controlled switching di�usion studied by Arapostatis�
Gosh and Markus in �	��� The dynamic programming equations� established in
the previous reference as a necessary optimality condition take the form

J � max
u
�

f��x� i� u� � �
X
j ��i

qij�x� u�
V �x� j�� V �x� i��

�
�

�x
V �x� i�f i�x� u� �

��




��

�x�
V �x� i�g� i � E ������

where V �x� �� is C� in x for each i in E and represents a potential value function
and J is the maximal expected reward growth rate�

This system of Hamilton�Jacobi�Bellman �HJB� equations cannot� in general�
be solved analytically� However a numerical approximation technique can be
implemented following a scheme proposed by Kushner and Dupuis ����� The
space of the continuous state is discretized with mesh h� That means that the
variable xk belongs to the grid Xk � fxmin

k � xmin
k �h� xmin

k �
h� � � � � xmax
k g� Denote

ek the unit vector on the xk axis and X � X� �X� � � � � � XK � We approximate
the �rst partial derivatives by �nite di�erences� taken �in the direction of the

��
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�ow � as follows�

�

�xk
V �x�


�
V �x	exh��V �x�

h
if �xk � �

V �x��V �x�exh�
h

if �xk � ��
����
�

The second partial derivatives are approximated by

��

�x�k
V �x�
 V �x� ekh� � V �x� ekh�� 
V �x�

h�
� ������

We de�ne the interpolation interval as

�th �
h�

�Qh

�

where

Qh�x� i� u� � �qi�x� u�h� �
KX
k��

f��k � hjf ik�x� u�jg� qi�x� u� �
X
j ��i

qij�x� u�

and

�Qh � max
x�i�u

Qh�x� i� u��

We de�ne transitions probabilities to neighboring grid points as follows

ph
�x� i�� �x� ekh� � i�ju� �
��k
�
� hf i�x� u��

�Qh

� ����	�

ph
�x� i�� �x� j�ju� � �h�
qij�x� u�

�Qh

i �� j� ������

ph
�x� i�� �x� i�ju� � �� Q�x� i� u�
�Qh

� ������

The other transitions probabilities are equal to zero� For the case where the fast
dynamics is a pure di�usion process� the possible transitions are represented in
Figure ����� for an example with card�E�)� and K � 
�

If we substitute in the HJB�equations ������ the �nite di�erences ����
� and
������ to the partial derivatives� after regrouping terms and using the transition
probabilities ����	�� ������ and ������� we can formulate the following associated
discrete state MDP dynamic programming equation�

gh�th �W �x� i� � max
u
�

f
X
x�

ph
�x� i�� �x
�� i�ju�W �x�� i� � ������

X
j ��i

ph
�x� i�� �x� j�ju�W �x� j� � �th��x� i� u�g�

x � X � i � E�
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i=1 i=2 i=3

Figure ����� Transitions in the grid set�

In this discrete state MDP� the term g approximates the maximal expected re�
ward growth rate J and the functions W �x� j� approximate� in the sense of weak
convergence� the potential value functions V �x� j�� Solving this MDP gives thus
a numerical approximation to the solution of the HJB�equation �������

If we discretize the space of the control with mesh hu �uk � Uk � fumin
k � umin

k �
hu� u

min
k �
hu� � � � � u

max
k g�� we obtain an MDP with �nite state and action spaces�

The optimal control law of this MDP can be obtained through the solution of the
following linear program �see �
�� and �

���

max
X
i

X
x

X
u

��x� i� u�Zi�x� u� ������

s�t� X
i

X
x

X
u

G

h
�x� i�� �x

�� j�ju�Zi�x� u� � � x� � X � j � E ����
�

X
i

X
x

X
u

Zi�x� u� � � �������

Zi�x� u� � �� �������

where G

h
�x� i�� �x

�� j�ju� denotes the generator of the MDP� de�ned as follows�

G

h
�x� i�� �x

�� j�ju� �
�
ph
�x� i�� �x� i�ju�� � if �x� i� � �x�� j�

ph
�x� i�� �x
�� j�ju� otherwise�

Then the steady state probabilities will be de�ned as

P 
x� i� �
X
u

Zi�x� u�

and the conditional steady�state probabilities� given a mode i are

P 
xji� �
P

u Z
i�x� u�P

x

P
uZ

i�x� u�
�

One should notice that the linear program ������������ will tend to be ill�conditioned
when � tends to be small since coe!cient with di�erence of an order of magnitude
appear in the same constraints�
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���� The limit control problem

The generator of the MDP can be written �see Appendix B�

G

h
�x� i�� �x

�� j�ju� � Bh
�x� i�� �x
�� j�ju� � �Dh
�x� i�� �x

�� j�ju� � o����

where Bh
�x� i�� �x
�� j�ju� is the generator of a completely decomposable MDP�

with card�E� subprocesses which don�t communicate one with the other� and
�Dh
�x� i�� �x

�� j�ju� is a perturbation that links together these card�E� sub�blocks�
We are interested in the case where the fast dynamics is much faster than the

slow dynamics� in other words we want to study the limit control problem when �
tends to zero� For singularly perturbed systems� the optimal solution of the limit
control problem is� in general� di�erent from the optimal solution of the initial
problem where � has been replaced by zero� However� the theory developed by
Abbad� Filar and Bielecki in ��� and ��� o�ers tools to handle the limit of singularly
perturbed MDP� Concretely� when � tends to zero the optimal control law of the
MDP ������ can be obtained through the solution of the following linear program
�see �����

max
X
i

X
x

X
u

��x� i� u�Zi�x� u� �����
�

s�t� X
x

X
u

Bh
�x� i�� �x
�� i�ju�Zi�x� u� � � x� � X � i � E �������

X
i

X
x�

X
x

X
u

Dh
�x� i�� �x
�� j�ju�Zi�x� u� � � j � E �����	�

X
i

X
x

X
u

Zi�x� u� � � �������

Zi�x� u� � � �������

Indeed this linear program exhibits a typical bloc�diagonal structure in the con�
straints �������� The constraints �����	������� are the so�called coupling con�
straints� In Chapter �
 we will apply a decomposition technique to exploit this
structure� It should be noticed that the ill�conditioning has vanished since the
variable � doesn�t appear in the linear program�

�If i �� j Bh
�x� i�� �x
�� j�ju� � � �x� x��



����� Fast dynamics
 jump and diffusion process ��

���� Fast dynamics
 jump and di�usion process

An approximation for the model where the fast dynamics follows a jump and
di�usion process can be found following the method described in ���� �p� �
��
����� This method proceeds in two steps� Firstly we consider an auxiliary system
where the fast dynamics is a pure di�usion process� This auxiliary system has the
same properties as the initial system except that the jump term is suppressed�
As the fast dynamics of this auxiliary system is a pure di�usion process� one
can compute the transition probabilities for its associated MDP as in equations
����	������� Secondly� the jump term is added to these transition probabilities�
The transitions probabilities of the associated MDP for the system with jump
and di�usion are given by

Ph
�x� i�� �y� i�ju� � 
�� ��th�x� u��ph
�x� i�� �y� i�ju� �������

�
��th�x� u���f� � r�x� �� � y � xg�

This can be interpreted as follows�

� with probability �� ��th�x� u� the fast dynamics follows a pure di�usion
process "

� with probability ��th�x� u� the fast dynamics makes a jump with intensity
r�x� ��� where � has the distribution �����

Using the transition probabilities ������� in place of transition probabilities ����	�
������ we obtain� for the model where the fast dynamics is a jump and di�usion
process� the same decomposition principle as in section ���
�
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Chapter ��

A decomposition approach for the

limit�control problem

In this chapter� following ���� and ����� we derive for the limit�control problem
�����
������� a decomposition approach which exploits the bloc�diagonal struc�
ture� We then explain how this decomposition can be implemented using AC�
CPM�

���� The decomposition

The dual problem of the limit�control problem �����
������� writes

min
�� ���

� ��
���

s�t�

� � ��x� i� u��
X
x�

Bh
�x� i�� �x
�� i�ju���x�� i�

�
X
j

X
x�

Dh
�x� i�� �x
�� j�ju���j� ��
�
�

i � E� x � X � u � U �

In this formulation we recognize the second approach proposed in ���� under the
name Aggregation�Disaggregation� Indeed� if we de�ne the modi�ed costs

���� x� i� u� � ��x� i� u��
X
j

X
x�

Dh
�x� i�� �x
�� j�ju���j� ��
���

�
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then the expression ��
�
� corresponds to a set of card�E� decoupled MDPs� More
precisely� the dual problem can be rewritten as

min
�� ���

� ��
�	�

s�t�

� � ���� x� i� u��
X
x�

Bh
�x� i�� �x
�� i�ju���x�� i�

i � E� x � X � u � U ��
���

Now� for each i � E� ��
��� de�nes a decoupled MDP with modi�ed transition
cost ��
����

���� ACCPM

The problem ��
�	��
��� can be solved using ACCPM� which is an interior point
cutting plane algorithm for convex optimization problems� It is beyond the scope
of this work to give a detailed description of ACCPM� So� readers interested in
the details of the theory and the implementation of ACCPM should refer� for
example� to Sarkissian�s thesis ������

The solution of the problem ��
�	��
��� is identical to the solution of the
convex optimization problem

min
��Rcard�E�

���� ��
���

where ���� is a convex function de�ned as the maximum of the value functions
of the card�E� di�erent MDPs de�ned by ��
���� i�e�

���� � max
i�E

�i��� ��
���

and

�i��� � min
���

� ��
���

s�t�

� � ���� x� i� u��
X
x�

Bh
�x� i�� �x
�� i�ju���x�� i� x � X � u � U ��
�
�

Since the problem is convex� the epigraph of � can be approximated by inter�
sections of half�spaces� The procedure called oracle� given �� in Rcard�E�� generates
a subgradient X� ��� � �� at �� with the property

���� � �� ��� � hX� ���� � � ��i ��
����



����� ACCPM ��

This inequality de�nes a supporting hyperplane for the function to be optimized"
we call it an optimality cut��

Suppose the oracle has been called at a given sequence of points f�lg� l � L�
The oracle has therefore generated a set of optimality cuts de�ning a piecewise
linear approximation � � Rcard�E� 
 R to the convex function �

���� � max
l�L

f���l� � hX��l�� � � �lig� ��
����

This permits us to write the following linear program

min �

s� t� � � ���l� � hX��l�� � � �li� 	l � L�

the solution of which gives a lower bound �l for the convex problem ��
���� Ob�
serve also that the best feasible solution in the generated sequence provides an
upper bound �u for the convex problem ��
���� i�e�

�u � min
l�L

f���l�g� ��
��
�

For a given upper bound �� we call localization set the following polyhedral
approximation

L��� � f��� �� � � � �� � � ���l� � hX��l�� � � �li� 	l � Lg� ��
����

It is the best �outer� approximation of the optimal set in ��
����
We can now summarize the ACCPM algorithm for our special case�

�� Compute the analytical center� ��� �� of the localization set L��u� and an
associated lower bound ��


� Call the oracle at ��� ��� The oracle returns one or several cuts and an
upper bound ����

�� Update the bounds�

�a� �u � minf����� �ug
�b� �l � maxf�� �lg

	� Update the upper bound � in the de�nition of the localization set ��
����
and add the new cuts�

�We must emphasize that in the general theory of ACCPM the oracle can generate two
types of cuts� optimality cuts and feasibility cuts� However� for our special model we encounter
only optimality cuts and therefore leave the interested reader to consult e�g� Ref� ���� for the
description of a feasibility cut�

�It is beyond the scope of this thesis to give the de�nition of an analytical center� However�
the interested readers can refer to the paper ����� for a detailed description�
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These steps are repeated until a point is found such that �u � �l falls below a
prescribed optimality tolerance�

In our case� as the function � is the maximum of card�E� functions� i�e�

���� � max
i�E

�i���� ��
��	�

the oracle may generate multiple cuts� one for each i in E� The single cut ��
����
is replaced with the following card�E� cuts�

���� � �i� ��� � hXi� ���� � � ��i� ��
����

where Xi� ��� is a subgradient of the function �i at ��� This multiple cut approach is
more e!cient than a single cut approach since the computation time to introduce
a cut is negligible and the work of the oracle is the same in both cases� Indeed�
in both cases the oracle has to compute� at each iteration� �i��� and Xi� ��� for
all subproblems i in E� In the single cut approach one selects the cut touching
the epigraph of � and one doesn�t use the other cuts� contrarily to the multiple
cut approach where all cuts are used�

At this point we must emphasize that the oracle can bene�t from a paral�
lel implementation� since the card�E� MDPs de�ned by ��
����
�
� are totally
decoupled and� therefore� can be solved on di�erent computers�



Chapter ��

Numerical experiments

In this chapter we apply the decomposition method presented in the previous
chapters to an example of a production plant with two types of human resources
and four di�erent market states� We then compare the performance of this de�
composition approach with the performance of a frontal method� We also show
that a good speed�up can be obtained with a parallel implementation of the
decomposition method�

���� The model

We propose to study an example of a plant producing one good with the help of
two production factors and subject to random changes of the market price� This
example is a special instance of the class of the two�time�scale hybrid stochastic
systems we presented in Chapter ��� The discrete variable � describes the state
of the market� which in�uences the pro�t derived from the produced good� We
suppose that we have four di�erent market states� so the ��process takes value
in the set E � f�� 
� �� �g� The continuous variable x � �R	�� describes the
state of the 
 di�erent factors of production� More precisely� x� corresponds to
the number of skilled employees while x� corresponds to the number of unskilled
employees�

The output is determined by a CES production function�

Y �x�� x�� �
�
�
x��

�� � ��� ��
x��
��
�� �

� �

where �� � � � 
 is the substitution parameter �� �� �� and � � � � � is the
distribution parameter� The pro�t rate structure is described by the function

��x��t�� x��t�� ��t�� u��t�� u��t�� � c���t��Y �x��t�� x��t��

�a�x��t�� a�x��t�� A�x
�
��t�� A�x

�
��t�

�b�u��t�� b�u��t��B�u
�
��t�� B�u

�
��t��

�See� for example� ���� Section ���

��
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where c�i� is the selling price� given the market is in state i � E� akxk�t� �
Akx

�
k�t� is a cost function� related to the holding of a stock xk�t� of employees

and bkuk�t� �Bku
�
k�t� is a cost function related to the enrollment e�ort� uk�t�� of

new employees�
We assume that the the price is in�uenced by the level of production of the

�rm� We rank the 	 market states by increasing selling price and we suppose that
only jumps to neighboring market states can occur� More precisely� the ��process
transition rates are de�ned by

�qi�i	���x�� x�� � � �Ei � eiY �x�� x���

�qi�i����x�� x�� � � �Di � diY �x�� x��� �

The parameter � is the time�scale ratio that will� eventually� be considered as
very small� The positive terms ei� Ei� di and Di are parameters which depend on
the market state i � E� We see that the transition rate toward a highest market
price is negatively correlated to the production level� whereas the transition rate
toward a lowest market price is positively correlated to the production level�

The state x�� which corresponds to the skilled employees� is described by a
jump and di�usion process whereas the state x�� which corresponds to the un�
skilled employees� is described by a pure di�usion process� The jumps correspond
to massive departures of skilled employees �e�g� for launching a start�up com�
pany�� When a jump occurs� given we are in state �x� i�� the distribution of
the jump is uniform in the interval 
�� x�� and zero outside� In other words� the
amount of the leaving employees is between zero and the total number of skilled
employees� Let � be the jump�s intensity� The dynamics of the employees is
described by

dx��t� � 
u��t�� ��x��t��dt � ��d
��t��

dx��t� � 
u��t�� ��x��t��dt� ��d
��t� � dS�

where

S�t� �

Z t

�

Z
�����

r�x��s
��� ��N�dsd���

N��� is a Poisson measure of intensity �dt���d��� ���� has a uniform distribution
concentrated on the segment 
�� �� and r�x�� �� � �x���

���� Implementation

We implemented two methods for the resolution of the limit model� the decom�
position method presented in Chapter �
 and the frontal method which consists
to solve the linear program �����
������� directly�
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For the decomposition method� we use ACCPM �see �	
�� ����� ���� and �����
with a policy improvement �PI� algorithm� for the oracle� The oracle is writ�
ten in C and uses the sparse linear equation solver developed by Kunder and
Sangiovanni�Vincentelli ��
�� In addition� a parallel implementation of the de�
composition method has been realized using MPI� a library of C�callable routine
�see MPI�s reference book ���
��� The reader can �nd in Appendix C technical
details of the implementation�

For the frontal method� the modeling was done with the software AMPL �see
AMPL�s reference book ������ We solved the model with the commercial software
CPLEX�

���� Numerical results

We consider the model described in the previous section with the set of parameter
values given in Table ����� We solved the limit model� when � tends to zero� with
the decomposition method described in Chapter �
�

� � ��� c��� � ��� �� � �� � ����
� � ��� c�
� � ��� �� � �� � ���
� � ��� c��� � ��� xmax

� � xmax
� � ���

� � ���� c��� � 
�
 xmin
� � xmin

� � �
a� � a� � ��� ei � ����
 	i � E h � �
A� � A� � ����� Ei � ��� 	i � E umax

� � umax
� � ��

b� � b� � � di � ����� 	i � E umin
� � umin

� � �
B� � B� � ���� Di � ���� 	i � E hu � 


Table ����� List of parameter values for the numerical experiments�

The steady state probabilities are shown in Figure ����� The possibility of
jumps in the x� axis are the cause of the tail in the probability distributions�
As expected� the higher the selling price the higher is the production level� For
comparison� we considered also the model associated with a �xed ��process� that
is� the model where the selling price stays the same forever� For the �xed ��
process� the steady state probabilities are shown in Figure ���
� Given a market
state� the production level is higher for the model associated with the �xed ��
process than for the limit model� This comes from the fact that� when the price
can change� the probability that it will increase� resp� decrease� is negatively� resp�
positively� correlated with the production level� The e�ect of the production level
on the price can be seen in Figure ����� In this Figure� we displayed� for the limit

�See ����� for a description of the policy improvement algorithm�
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Figure ����� Steady state probabilities for the limit control problem� given the
market state i�

model� the steady state probabilities as a function of the state for two policies�
namely the optimal policy and the optimal policy of the model with �xed ��
process�� We see distinctly that the price tends to be higher in the �rst case
�where the production level is lower� than in the second case�

The maximal expected reward growth rate J equals 
���
� The value function
is shown in Figure ���	� for the case when the market is in the state i � 
� For
the other states� the value functions are similar and therefore not displayed�

The optimal policy for the enrollment of new employees is shown in Fig�
ure ����� when the market is in state i � 
� For the other states� the optimal
policies are similar and therefore not displayed�

���� Computational performance

In this section we compare the computational performance of the frontal method
with the decomposition method presented in the previous chapters� It is beyond
the scope of this presentation to study in details the performance of both method
on a large range of di�erent models" this has been done in Ref� ��
�� However�
on the same example as in the previous section� we show the advantages of the
decomposition method compared with the direct method� namely

�Note that this second policy is� in general� not optimal for the limit model�
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Figure ���
� Steady state probabilities for the �xed ��process� given ��t� �
i 	t � ��
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Figure ����� Speed�up as a function of the number of processors�

� reduction of the execution time�

� accuracy of the solution concerning the policies�

� reduction of the RAM memory utilized�

To illustrate the reduction in execution time� we considered the same model as
in the previous section� The corresponding linear program has 
��
 rows 
	��	
columns and ������� non�zero elements� To solve this problem� the direct method
needs �	��� seconds� whereas the decomposition method needs 	
� seconds� In
addition� if we run on four processors the parallel version of the decomposition
method� the execution time drops to ��� seconds� In Figure ���� we display�
for the parallel implementation of the decomposition method� the speed�up as a
function of the number of processors�

Before showing the inaccuracy of the optimal controls computed with the
direct approach� let us show that the steady state probability obtained with this
method are exact� Figure ���� shows the steady state probabilities� when the
market is in state i � �� for both methods� We see distinctly that both methods
give the same �correct� result� In addition� the maximal expected reward growth
rate J equals 
���
� for both methods� Although the linear programming direct
approach gives an accurate solution concerning the steady state probabilities and
the maximal expected reward growth rate� this method gives� in most cases�
a wrong solution concerning the controls and the value function� Figure ����
shows the value function and Figure ���
 shows the optimal policy� when the
market is in state i � �� for both methods� We see that the direct approach

�CPLEX o�ers three methods� namely the simplex� the dual simplex and an interior point
method� The solver took ���� seconds with the dual simplex� ���� seconds with the primal
simplex� The interior point method of CPLEX stopped after ��� seconds and proposed an
infeasible solution with an objective value close to the optimal value� Running the crossover to
obtain a feasible solution took ���� seconds more�
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�

gives an accurate result in the middle of the grid but a wrong result near the
boundaries� This can be explained as follows� The direct method consists in
solving the linear program �����
�������� where the objective function �����
�
is a sum weighted with the steady states probabilities� But� as we can see in
Figure ����� near the boundaries� the steady state probabilities are very close
to zero� Therefore� near the boundaries� an imprecision in the optimal control
has negligible e�ects on the objective function �����
�� We can see distinctly
that this problem is not present for the decomposition method with an oracle
using a policy improvement algorithm� Notice that this problem is inherent to
a linear programming approach� A decomposition method using an oracle based
on a linear programming method instead of a policy improvement �PI� algorithm
would meet the same problem�

Finally� to compare the RAM memory utilized by the two methods we run the
largest possible model for both methods� Again� we considered the same model
as in the previous section� but� in order to allow modi�cations of the model�s size�
we took di�erent values for the continuous state discretization mesh h� The re�
sults are signi�cant� the size of the largest model is about ��* higher when using
the decomposition approach rather than the direct approach� Indeed� the largest
model solved with the decomposition approach has a mesh value of 
��� which
corresponds to a grid of �� � ��" whereas for the frontal approach� the largest
model solved has a mesh value of 
��� which corresponds to a grid of �� � ���
The sizes of the corresponding linear programs are given in the following table�

Mesh value grid size rows columns nonzeros

�� 	��	� ��

 
	
��	 ���
�	�

�� ����� ��	�	 ��	�		 ���������





 ��� Numerical experiments



Chapter ��

Concluding remarks for Part II

In this part of the thesis we have implemented a decomposition method for the
resolution of hybrid stochastic models with two time scales� This method� which
was proposed by Filar and Haurie in ���� and ����� reformulates the initial problem
as an approximating singularly perturbed MDP that can be solved as a structured
linear programming problem� The originality of this work was the coupling of
ACCPM with a policy improvement algorithm to achieve a decomposition in
order to exploit the special bloc�diagonal structure� We showed the impact of
such an implementation compared with a frontal method� on the reduction of the
RAM memory utilized� the reduction of the execution time and the accuracy of
the solution concerning the policies� We also showed that a good speed�up could
be obtained with a parallel implementation of the method�


�
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Appendix B

Decomposition of the generator of

the Markov decision problem

The value of Bh
�x� i�� �x
�� j�ju� and �Dh
�x� i�� �x

�� j�ju� can be calculated as fol�
lows� De�ne

Rh�x� i� u� �
KX
k��

f��k � hjf ik�x� u�jg

and

�Rh � max
x�i�u

Rh�x� i� u��

Recall that we have already de�ned

�Qh � �q

i��x� �u�h� �

KX
k��

f��k � hjf ik��x� �u�jg

with ��x��i� �u� � argmax�x�i�u�Qh�x� i� u�� As� for �xed h and su!cient small � we
have

�Rh �
KX
k��

f��k � hjf ik��x� �u�jg � �Qh � �q

i��x� �u�h��

we can apply the following approximation

�
�Qh

�
�

�Rh
� �

q
�i�
x�
u�h�


Rh
�
�

�
�Rh

� �q

i��x� �u�h�

�R�
h

� o���

to obtain

Bh
�x� i�� �x� ekh� i�ju� �
��k
�
� hf ik�x� u�

�

�Rh

�


�




� B� Decomposition of the generator of the MDP

Bh
�x� i�� �x� i�ju� � �
KX
k��

fBh
�x� i�� �x� ekh� i�ju� �Bh
�x� i�� �x� ekh� i�ju�g�

Dh
�x� i�� �x� ekh� i�ju� � �q

i��x� �u�h�

�Rh

Bh
�x� i�� �x� ekh� i�ju��

Dh
�x� i�� �x� j�ju� � h�
qij�x� u�

�Rh

i �� j�

and

Dh
�x� i�� �x� i�ju� � �
KX
k��

fDh
�x� i�� �x� ekh� i�ju� � �B���

Dh
�x� i�� �x� ekh� i�ju�g

�
X
j ��i

Dh
�x� i�� �x� j�ju��



Appendix C

Implementation

In this appendix we present the main points relative to the implementation of
the decomposition method� In the �rst section� we show how the dimension of
the space of the optimization problem ��
��� has to be reduced from card�E� to
card�E� � �� In the second section we show how to compute the subgradients
needed to characterize the cuts� Finally in the third section we give the pseudo�
code of the parallel implementation�

C�� Reduction of the dimension of the optimiza	

tion problem

Recall that for a �xed i in E� �i��� is the value function of the MDP de�ned by
��
����
�
�� The dual problem of ��
����
�
� writes

�i��� � max
X
x

X
u

�
��x� i� u��

X
j

X
x�

Dh
�x� i�� �x
�� j�ju���j�

�
Zi�x� u�

�C���

s�t� X
x

X
u

Bh
�x� i�� �x
�� i�ju�Zi�x� u� � � x� � X

X
x

X
u

Zi�x� u� � �

Zi�x� u� � ��


�




� C� Implementation

Using property �B��� we can rewrite the modi�ed cost function �C��� as

�i��� �
X
x

X
u

�
��x� i� u� �

X
j ��i

Dh
�x� i�� �x� j�ju����i�� ��j��

�
Zi�x� u��

In this expression only the di�erence ��i� � ��j� is relevant and one can� with�
out loss of generality� �x one variable� say ��card�E��� to an arbitrary value
�zero for example�� The card�E� functions ���� � � � � �card�E�� are therefore totally
characterized by the card�E�� � variables ������ � � � � ��card�E�� ����

In the model presented in Chapter ��� an other issue is possible� For this
model� the ��process can only jump to neighboring states �i�e� transitions from i
to i� ��� Therefore we can rewrite the modi�ed cost function �C��� as follows�X

x

X
u

f��x� i� u� �Dh
�x� i�� �x� i � ��ju�
��i�� ��i� ���

�Dh
�x� i�� �x� i� ��ju�
��i�� ��i� ���gZi�x� u��

In this expression only the di�erence ��i������i� is relevant and we can� without
lost of generality� use� in place of the card�E� variables ��i�� the card�E� � �
variables ���i� de�ned as follows�

���i� � ��i�� ��i � �� i � f�� � � � � card�E�� �g�
The modi�ed cost function �C��� can be rewritten

�i���� �
X
x

X
u

f��x� i� u� �Dh
�x� i�� �x� i� ��ju����i�

�Dh
�x� i�� �x� i� ��ju����i� ��gZi�x� u��

The convex optimization problem ��
��� writes� for the model presented in Chap�
ter ��

min
���Rcard�E���

������

We must emphasize that if one uses the card�E� variables ��i�� ACCPM can
encounter problems of convergence� Therefore� the uses of card�E�� � variables
�for example �� for the model presented in Chapter ��� is highly recommended�

C�� Computation of the subgradients

Remind that at each query point� the oracle has to return for all i in E the
value of �i and a subgradient of �i� For the general case� a subgradient of �i����
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denoted Xi �
�
X�

i � � � � � X
card�E�
i

�
� can be computed as follow

Xj
i �

�P
x

P
u

P
j ��iDh
�x� i�� �x� j�ju� �Zi�x� u� if i � j

�Px

P
uDh
�x� i�� �x� j�ju� �Zi�x� u� otherwise�

where �Zi�x� u� are the optimal values of Zi�x� u��
For the model presented in Chapter ��� we showed in the previous section

that one can use the variables ���i�� For this case� a subgradient of �i�����

denoted Xi �
�
X�

i � � � � � X
card�E���
i

�
can be computed as follow

Xj
i �

�
�

�
P

x

P
uDh
�x� i�� �x� i� ��ju� �Zi�x� u� if j � i

�Px

P
uDh
�x� i�� �x� i� ��ju� �Zi�x� u� if j � i� �

� otherwise�

C�� Parallel implementation

Below� we give the pseudo�code for the parallel implementation� The names of
the communication routines of the MPI library are written in bold type��

�The routine broadcast is utilized for both sending and receiving communication� To avoid
confusion we write 	broadcast
 when the communication is sent and 	receive broadcasted

when the communication is received�



��� C� Implementation

Initialize MPI�
Compute E�p� � E� the set of subproblems distributed to the current processor p�

IF the current processor is the master processor
THEN

Initialize ACCPM�
Initialize the value of ��
Set continue)true�
Broadcast to all processors the current value of � and S�
WHILE continue

DO
Compute the value of �i��� and Xi��� for i � E�p��

where p is the current processor�
Receive from all other processors p� the value of �i��� and Xi���

for all i � E�p���
Add the card�E� cuts�
Compute the new analytic center�
Update the bounds�
IF the optimality tolerance is achieved

THEN Set S � stop�
Broadcast to all processors the current value of � and S�
DONE

IF the current processor is not the master processor
THEN

Receive from the master processor the broadcasted value of � and S�
WHILE continue

DO
Compute the value of �i��� and Xi��� for i � E�p��

where p is the current processor�
Send to the master processor the value of �i��� and Xi���

for all i � E�p��
Receive from the master processor the broadcasted

value of � and S�
DONE

IF the current processor is the master processor
THEN

Print the results
Free ACCPM�

Free MPI�
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Chapter ��

Introduction to Part III

The aim of this third part of the presentation is to propose a numerical technique
for the approximation of a class of equilibria in a stochastic game of oligopoly�
These equilibria� called S�adapted in ���� correspond to an information structure
where the players adapt their actions to an observation of the realization of the
random disturbances a�ecting the game dynamics� These disturbances are sup�
posed to take the form of an uncontrolled jump process� Recently this class of
problems has received a renewed attention from researchers in Mathematical Pro�
gramming circles �see e�g� ���� and ��	�� who extended the numerical experiments
reported in ����� The present dissertation complements these previous works in
the following way�

�� The oligopoly model is formulated in continuous time as in ����"


� the S�adapted information structure is compared with the Piecewise Open
Loop �POL� information structure used in ����"

�� an approximation to the S�adapted equilibrium is obtained through the
solution of a sequence of variational inequality problems de�ned via a dis�
cretization over time of the game dynamics and perturbing jump process"

	� the approximating S�adapted equilibrium is proved to be unique under
strict diagonal concavity of the total reward function"

�� convergence results are proved for the approximating S�adapted equilib�
rium"

�� a numerical example� consistent with the one given in ���� is fully detailed
and shows the proximity of the equilibria under S�adapted and piecewise
open�loop information structure�

This part of the dissertation is organized as follows� In Chapter �� we recall
the concepts of Nash equilibrium and variational inequality and show the link

���
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between them� In Chapter �� we formulate a di�erential game of oligopoly with
an open�loop information structure and we show that the Nash�equilibrium can
be approximated via a variational inequality solution using mathematical pro�
gramming techniques� This provides another e!cient way to approximate an
open�loop equilibrium in a di�erential game of oligopoly� In Chapter �� a piece�
wise deterministic game version of the same oligopoly model is proposed and the
concept of S�adapted information structure is discussed� S�adapted equilibria are
compared with POL equilibria and one conjectures that these equilibria could co�
incide in many cases� An approximation of the S�adapted equilibria through a
sequence of variational inequality solutions is proposed� In Chapter �
 some nu�
merical experiments are reported and a comparison with the POL information
structure is made on the basis of the numerical solutions obtained� which tends
to con�rm the conjecture�



Chapter ��

Nash equilibrium and variational

inequality

The study of oligopoly is closely linked to the concept of Nash�Cournot equi�
librium� Oligopoly theory dates back to Cournot �see �
	��� who investigated
competition between two producers in a noncooperative behavior� In his book�
the decisions made by the producers are said to be in equilibrium if no one can
increase his income by unilateral action� given that that the other producer does
not alter his decision� Nash �
�� 
�� subsequently generalized the Cournot equilib�
rium concept to a noncooperative game� and proved existence of mixed�strategy
equilibria for N �player matrix games�

In this chapter we recall the concept of Nash�Cournot equilibrium and the
possible characterization of an equilibrium in a continuous game through varia�
tional inequalities� A complete theory on the subject can be found in Nagurney�s
book �
	��

�
�� Nash equilibrium

Let us �rst introduce some notations that will be used throughout the rest of the
dissertation� Let J be the set of indices f�� 
� � � � � Jg representing the players�
We denote uj the control of player j� u the J�dimensional vector formed with the
control of each players and �v�u�j�� the J�dimensional vector formed with the
components of u� where the j�th component has been replaced with v� Denote
Vj�u� the payo� for player j assuming each player j � has chosen the control uj��
Finally� let U � �U�� � � � � UJ�� where Uj denote the set of the admissible controls
for player j� Each player tries to maximize his own payo��

The controls u� are said to be in Nash equilibrium if

Vj�u
�� � Vj�vj�u

�
�j� 	j � J 	vj � Uj�

In other words� we have a Nash equilibrium when each player has no incentive to
change unilaterally his control�

���



��� ��� Nash equilibrium and variational inequality

�
�� Variational inequality

Recall �rst the de�nition of a variational inequality problem� Let u and u� be�
as in the previous section� J� dimensional real vectors� We say that u� � U is
solution of the variational inequality associated with the function F � Rn 
 Rn

and the convex set U � Rn if it satis�es the following inequality

hF �u���u� � ui � � 	u � U�

The variational inequality problem is a general formulation that encompasses
a plethora of mathematical problem� including� among others� nonlinear equa�
tions� optimization problems� complementary problems� �xed point problems and
equilibrium problems�

It has been shown �see ���� and �	��� that� under enough regularity conditions�
Nash equilibria satisfy variational inequalities� In the present context� under
the assumption that the payo� function Vj��� of each player j is continuously
di�erentiable on U and concave with respect to uj� u� is a Nash equilibrium
if and only if u� is a solution of the variational inequality associated with the
function

F �u� �

�
BBBBB�

ru�V��u�
���

rujVj�u�
���

ruJVJ�u�

�
CCCCCA

and the set U � �U�� � � � � UJ��
This can be shown as follows� For a �xed player j� the �rst order necessary

and su!cient optimality conditions �see e�g� ����� state that no feasible ascent
direction exist at the optimum� i�e��

rujVj�u
���u�j � uj� � � 	uj � Uj� ������

Aggregating ������ for all players yields the desired result�
This link between Nash equilibria and variational inequalities will be used

intensively throughout the rest of the dissertation�
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The deterministic dynamic

oligopoly

In this chapter we consider a deterministic di�erential game model of oligopoly�
propose an approximating discrete time model� show that the open�loop equilib�
rium in the discrete time model can be computed via the solution of a variational
inequality and prove that the equilibrium of this approximating game converges
to the equilibrium of the initial game as the dicretizations step tends to zero�

���� The formulation of the oligopoly

The model is similar to those studied in ����� ���� and ����� There are J competing
�rms �also called players� supplying a market for an homogeneous good� Let
J � f�� 
� � � � � Jg be the set of all players� The control variables are such that
uj � 
umin

j � umax
j �� j � J " they represent the investment in production capacity

by each �rm� The state variables are xj � IR	� j � J " they represent the
accumulated production capacity of each �rm�

The state equation for player j is given by

�xj�t� � uj�t�� �jxj�t� j � J � ������

xj��� � x�j � ����
�

With uj��� a measurable function over 
�� T �� bounded above by umax
j and below by

umin
j � such that the generated trajectory xj�t� is not negative� �j is the capacity

depreciation rate for �rm j� Given the initial state xj��� � x�j � the solution xj���
of ������ can be expressed as a function of the control uj����

xj�t� � e��j tx�j �

Z t

�

e��j�t�s�uj�s� ds� ������

���
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The information structure is open�loop" hence each player j knows the initial
states �x��� � � � � x

�
J� � x� and chooses a control function uj��� � 
�� T �
 
umin

j � umax
j �

which generates a positive trajectory� Let Uj be the set of admissible control
functions and Xj the set of trajectories xj��� generated by admissible controls
uj��� in Uj�

The pro�t functions are thus de�ned by

Vj�x
�� u����� � � � � uJ���� �

Z T

�

e��j tLj�x�t�� uj�t�� dt� ����	�

where �j is the discount rate for player j� x�t� � �x��t�� � � � � xJ�t�� and Lj�x� uj�
is a pro�t rate function which is assumed to be C� in x and in uj�

De�nition �� Let � � �� The J�tuple �u������ � � � � u�J���� is an ��Nash open�loop
equilibrium if we have for all j in J and for all uj��� in Uj

Vj�x
�� u������ � � � � uj���� � � � � u�J���� � Vj�x

�� u������ � � � � u�J���� � ��

If � � � we obtain a Nash equilibrium�

���� An equilibrium principle

The Hamiltonian of player j is de�ned as usual by

Hj�t� x� uj� pj� � Lj�x� uj� � pj�uj � �jxj��

The optimized Hamiltonian is

Hj�t� x� pj� � max
uj��umin

j �umax
j �

Hj�t� x� uj� pj��

In order for �xj���� uj����j�J to be an open�loop equilibrium it is necessary that
there exist absolutely continuous costate trajectories �pj����j�J such that

�pj�t� � ��Hj�t� x�t�� pj�t��

�xj
�

�xj�t� �
�Hj�t� x�t�� pj�t��

�pj
�

and

uj�t� � arg max
uj��umin

j �umax
j �

Hj�t� x�t�� uj� pj�t���

With the transversality condition pj�T � � ��
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De�nition �� The combined Hamiltonian
P

jHj�t� x� p� is strictly diagonally
concave in x� convex in p if for all t� x� �x� p and �pX

j

�pj � �pj��rpjHj�t� x�� � � � � xJ � pj��rpjHj�t� �x�� � � � � �xJ � �pj��

� �xj � �xj��rxjHj�t� x�� � � � � xJ � pj��rxjHj�t� �x�� � � � � �xJ � �pj�� � ��

De�nition �� The total reward function
P

j Lj�x�� � � � � xJ � uj� is strictly diago�
nally concave in �x� u� if for all x� �x� p and �pX

j

�uj � �uj��rujLj�x�� � � � � xJ � uj��rujLj��x�� � � � � �xJ � �uj��

� �xj � �xj��rxjLj�x�� � � � � xJ � uj��rxjLj��x�� � � � � �xJ � �uj�� � ��

The strict diagonal concavity in x� convexity in p of the combined Hamiltonian
can be veri�ed by applying the following Lemma which we borrow from �
���

Lemma �� Assume Lj�x� uj� is concave in �x� uj� and assume that the total re�
ward function

P
j Lj�x� uj� is strictly diagonally concave in �x� u� then the com�

bined Hamiltonian
P

jHj�t� x� p� is strictly diagonally concave in x� convex in
p�

The following uniqueness result can then be proved as in �
���

Theorem ��� If the combined Hamiltonian is strictly diagonally concave in x�
convex in p� then the open�loop equilibrium is unique�

���� A discrete time approximation

We shall now explore a method for approximating the open�loop equilibrium of
the duopoly game that uses a sequence of solutions of variational inequalities to
get an ��equilibrium of the continuous time game�

We use a discrete time approximation of the dynamic oligopoly model� The
approximating game of order K is de�ned as follows� Let tk � 	k with k �
�� � � � � K and 	 � T�K� The discrete time state and control variables are xKj �
�xKj �k��

K
k�� and uKj � �uKj �k��

K
k�� respectively� Using a slight abuse of notation

we call xKj �k� the discrete time state at time tk and similarly for uKj �k�� The
state equations are the di�erence equations�

xKj �k� � uKj �k�
�� e��j ��

�j
� e��j ��xKj �k � �� ������

� x�je
��j tk �

�� e��j ��

�j

kX
l��

uKj �l�e
��j�tk�tl� ������
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and the pro�t functions are given by

V K
j �x��uK� � � � � �u

K
J � �

KX
k��

e��j tkLj�x
K
� �k�� � � � � x

K
J �k�� u

K
j �k��	� ������

Where �xK� �k�� � � � � x
K
J �k��k�������K is the trajectory J�tuple emanating from x� and

generated by the controls as shown in�������
An admissible open�loop strategy for player j in the approximating game of

order K is a vector uKj � 
umin
j � umax

j �K such that the generated trajectory xKj re�
mains positive� Let UK

j be the set of strategies and XK
j the set of the correspond�

ing trajectories for player j� We have thus de�ned a game where the strategies
are elements of an Euclidean space� The equilibrium uK� � �uK�� � � � � �uK�J � is a
solution of the following variational inequality�

hF �uK���uK� � uKi � � 	uK � UK
� � � � � � UK

J � UK � ������

where h�� �i denotes the scalar product and

uK �

�
B�

uK�
���
uKJ

�
CA �

F �uK� �

�
B�
r
u
K
�
V K
� �x��uK� � � � � �u

K
J �

���
r
u
K
J
V K
J �x��uK� � � � � �u

K
J �

�
CA � ����
�

The gradients of the reduced pro�t functions can easily be obtained from Eq�������
once one expresses

�xKj �k�

�uKj �l�
�

�
��e��j ��

�j
e��j �tk�tl� if k � l

� if k � l�

Let us �rst recall the de�nition of monotony�

De�nition 	� G��� � UK 
 �
IRK

�J
is a monotone operator in UK if it satis�es

hG�uK��G��uK��uK � �uKi � � 	uK � �uK � UK

Theorem ��� Assume the total reward function
P

j Lj�x�� � � � � xJ � uj� is strictly
diagonally concave in �x� u� then the operator �F ��� de�ned in Eq� �����	 is
monotone�

Proof� By straightforward veri�cation�
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Theorem ��� Under the assumptions of Theorem ��� there exists a unique equi�
librium for the approximating game of order K�

Proof� This theorem is a special case of Theorem ��� to be proved later on for
the stochastic case�

Assumption 	� We suppose the following

� There is state and control separation in the pro�t rate functions� i�e��

Lj�x�� � � � � xJ � uj� � Lj�x�� � � � � xJ� �Mj�uj�

where Lj and Mj are Lipschitz continuous functions�

� Pj Lj�x� is strictly diagonally concave in x and Mj�uj� is strictly concave
in uj�

We now address the question of approximating the solution of the continuous time
game through the solution of approximating games� Our approach is inspired
from ����� and ���� To establish a correspondence between the continuous time
game and its approximation of order K let us de�ne the mappings �Kj � UK

j 
 Uj

and �Kj � Uj 
 UK
j as follows�

�Kj �u
K
j ��t� � uKj �k� where k is such that tk � min

s
ftsjts � tg

�Kj �uj��k� �
�

�� e���

Z tk

tk��

uj�s�e
���tk�s� ds�

With each control for the discrete time game of order K� the mapping �Kj as�
sociates a piecewise constant control for the continuous time game� With each
control for the continuous time game� the mapping �Kj associates a control for
the discrete time game of order K� One can verify that these mappings satisfy
the following property �Kj � �Kj � ��� Furthermore the mappings preserve the
property of non�negativity of the generated trajectory�

The convergence of the discrete time equilibrium toward the continuous time
equilibrium is stated in the two following theorems�

Theorem ��� Suppose assumption 
 holds� Let u��� � � � � u
�
J be the equilibrium

controls of the continuous time oligopoly� Then for all positive � there exists K�

such that for all K � K� the control vector ��K� �u���� � � � � �
K
J �u

�
J�� is an ��Nash

equilibrium for the discrete time oligopoly of order K�

Theorem �	� Suppose assumption 
 holds� Let uK�� � � � � �uK�J be the equilibrium
controls of the discrete time oligopoly of order K� Then for all positive � there
exists K� such that for all K � K� the controls vector ��

K
� �u

K�
� �� � � � � �KJ �u

K�
J �� is

an ��Nash equilibrium for the continuous time oligopoly�

Proof� The proofs of these two theorems can be found in Appendix D�
�
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Chapter ��

The stochastic dynamic oligopoly

A stochastic oligopoly model has been proposed� in a discrete time setting� by
Haurie� Smeers� Zaccour and Legrand in ���� and ����� In the proposed model
the random disturbances were uncontrolled� The information structure used in
these papers has been called S�adapted� for �sample path adapted � and the
equilibrium has been computed via the solution of a variational inequality� These
papers extended� in some sense� the stochastic programming technique to the case
of Nash�Cournot equilibria� Recently� this discrete time stochastic equilibrium
framework has been further studied in �����

In ����� Haurie and Roche have studied a stochastic oligopoly model� in a
continuous time setting and with uncontrolled random jump disturbances� These
authors used the information structure called Piecewise Open�Loop �POL�� The
POL�equilibrium was characterized and approximated through the solution of a
discrete event dynamic programming equation�

In this chapter we revisit the stochastic oligopoly model presented in ����
but with the S�adapted information structure� We compare the S�adapted equi�
librium with the POL equilibrium and we conjecture that� in many instances�
these equilibrium solutions will coincide� We propose an approximation via a
discrete time model� show that the S�adapted equilibrium in the discrete time
model can be computed via the solution of a variational inequality� We prove
that under strict diagonal concavity of the total reward function� there exists
a unique S�adapted equilibrium for the approximating game� Finally we show
that the equilibria of the approximating games converge to an equilibrium of the
continuous time game�

���� A system with jump Markov disturbances

The state equations are still given by

�xj�t� � uj�t�� �jxj�t� j � J

���
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With umin
j � uj�t� � umax

j and xj��� � x�j � Let f���� � 
�� T � 
 Ig be a
continuous�time discrete�state Markov chain taking values in the �nite set I �
f�� � � � � Ig which describes random changes in the market condition� The dynam�
ics of ��t� is de�ned by the transition rate matrix Q � 
qih� i� h � I� The pro�t
rate functions Li

j�x� uj� now also depend on the market condition i � I�

���� The S	adapted information structure

Let ���B� P � be the probability space for the ���� process� We call ��
� �� �

�� T � 
 I� 
 � �� a sample path of the ��process and ���
� �� � 
�� �� 
 I
its history up to time �� We assume that the players know the initial state
x� � �x��� � � � � x

�
J� and� at each instant t� the ��process history up to time t� i�e�

�t�
� ��� The game is played as follows�

� Let �� � �� ��� �� � � � �� �� 
� � � � be the successive jump times of the
��process and �� � ����� �� � ������ �� � ����� the visited states"

� Call h� � f��� ��� ��� ��� � � � � ��� ��g the jump process history up to jump �"

� at any jump time �� � each player j � J � knowing x� and h� chooses an
open�loop control u�j ��� � 
��� T � 
 
umin

j � umax
j � that will be used until the

next jump ��	� occurs"

� This information is called S�adapted as the control of each player is pro�
gressively adapted to the sample path �t�
� ���

Denote by �j the set of the S�adapted strategies for player j� Let �j��t���� t� �
t � 
�� T � be the control used at time t by player j according to the S�adapted
strategy �j� The strategic J�tuple is denoted � � �� The pro�t functions are
then de�ned by

Vj�x
�� ��� � � � � �J� � E�

�Z T

�

e��j tL

�t�
j �x��t�� � � � � xJ�t�� uj�t�� dt

�
� ������

where uj�t� � �j��t���� t� and xj�t� is the resulting state�trajectory�

���� Comparison between S	adapted and POL in	

formation structures

In the POL information structure studied and used e�g� in ��
� and ���� the players
observe� at each jump time �� � the discrete state �� and the continuous state
x� � �x������ � � � � xJ����� and then choose open�loop controls to be implemented
until the next jump occurs� Therefore� in the POL information structure� the
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players are confronted with a sequential game where decisions are made at each
jump time with full state information�

In the S�adapted information structure the players cannot observe the cur�
rent continuous state x�t�� even at jump time� We can immediately notice the
following

Remark �� In the POL information structure� with perfect recall� one could as
well assume that the players know� at any jump time ��� the whole ������ x�����
history H� � f��� ��� x�� ��� ��� x� � � � � ��� ��� x�g� Therefore� clearly� the S�adapted
information structure corresponds to a coarser information structure than POL
with perfect recall�

It appears that the S�adapted information structure is close to the open�loop
information structure whereas the POL one is closer to the feedback information
structure� It is appropriate to recall here the de�nition of the concepts of time
consistency and subgame perfectness at jump times�

De�nition 
� An equilibrium is time consistent� if� at any time �� given that
the equilibrium has been played up to that time and given the state s���� �
������ x����� that has been reached� the same strategies would remain an equi�
librium if one restarts the game at that time � with initial state s��

De�nition �� An equilibrium is subgame perfect at jump times� if� at any jump
time ��� whatever has been played up to that time� given the state s� � ���� x

��
reached� the same strategies would remain an equilibrium if one restarts the game
at that time ��� with initial state s��

Now the di�erence between the two information structures can be seen in the
following remarks�

Remark �� A Markov strategy in the POL information structure uses only the
information available at �� to update the control on the next random time interval

�� � ��	��� An equilibrium based on Markov strategy will indeed be time consistent
and subgame perfect at jump times�

The time consistency and subgame perfectness at jump times is a direct con�
sequence of the characterization of the equilibrium via a discrete event dynamic
programming equation �see ���� and ��
���

Remark �� In an open�loop information structure� for a deterministic game�
each player knows the initial state x� and chooses a control uj��� � 
�� T � 


umin

j � umax
j �� Given a J�tuple u��� � �uj����j�J � the players know at each instant

of time the state x�t� that has been reached� In an open�loop equilibrium u���� �
�u�j����j�J � the trajectory generated x���� is therefore known to each player� Time
consistency is observed along x�����
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Remark �� In the S�adapted information structure each player knows x� and
chooses a control adapted to the history of the ���� process� Given a J�tuple of �����
adapted controls and the history h�� where �� � supf�l � �l � tg� each player is
able to �nd out what is the current state x�t�� In an S�adapted equilibrium� there
is a set of possible trajectories� indexed over the sample space � of the �����process�
Call x����� the equilibrium trajectory associated with the sample value 
 � ��
For any 
 � �� t � 
�� T �� the S�adapted equilibrium strategy will still be an
equilibrium for the game starting at time t� with initial state s���t� � ����t�� x

�
��t���

let us call X�
��t� � fx���t� � 
 � �g the reachable set at time t� associated with

the S�adapted equilibrium strategy J�tuple and the set of all possible sample paths
of the ��process� Hence we propose as conjecture that the S�adapted equilibrium
is subgame perfect at any jump time �� for any x� contained in the set X�

������

The time consistency and subgame perfectness at jump time on the reachable
set of S�adapted equilibria is a consequence of the dynamic optimality conditions�

It would be interesting to compare the set X�
��t� with the reachable set �X�

��t�
associated at time t with a POL equilibrium� We conjecture that they may
coincide for many games� in particular the oligopoly game considered in the
present dissertation� If these sets coincide and if they are locally convex then the
POL and the S�adapted information structure will yield the same equilibrium
values� A more precise study of this conjecture should be the object of further
investigation�

���� A discrete time stochastic game approxima	

tion

We shall again proceed to an approximation of the S�adapted equilibrium of
the continuous time game through a sequence of variational inequality solutions�
Each variational inequality corresponds to the equilibrium of an associated ap�
proximating game of order K� We proceed as follows�

� We discretize time� Let tk � 	 � k with k � � � � �K and 	 � T�K�

� We consider the discrete�time discrete�state Markov chain ��K�k� with state
set I and transitions probabilities�

P 
��K�k � �� � hj��K�k� � i� �

�
eqii� if i � h

��� eqii���qih
qii

otherwise �

� We represent the set of all sample paths of the Markov chain ��K�k� as an
event tree� Let N � f�� 
� � � � � Ng be the set of the nodes of this tree and
N �k� the set of nodes associated with period k� In this representation�
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each node nk at period k corresponds to a whole history of the Markov
chain from period � to period k� A complete path along the event tree is
also often called a scenario� Let A�nk� denote the unique predecessor of nk
along the unique path going from n� to nk" let S�nk� denote the set of nodes
nk	� � N �k � �� that can be successors of nk along a sample path" denote
also U�nk� the set of all the upstream nodes w�r�t� nk �including nk� and
D�nk� the set of downstream nodes w�r�t� nk �including nk�� respectively�
The number of nodes in the event tree is given by N � IK��

I��
�

� We index the state and control variables over the set of nodes of the event
tree�

xKj � �xKj �nk��nk�N �

uKj � �uKj �nk��nk�N �

and we introduce the state equations

xKj �nk� � uKj �nk�
�� e��j ��

�j
� e��j ��xKj �A�nk�� ����
�

� x�je
��j tk �

�� e��j ��

�j

kX
l��

uKj �Ak�l�nk��e
��j�tk�tl�� ������

whereAk�l meansA to the power k�l� i�e� the k�l step predecessor� In the
S�adapted information structure a strategy for player j in the approximat�
ing game of order K is a vector uKj � 
umin

j � umax
j �N such that the generated

trajectory xKj remains positive� Let UK
j be the set of such strategies and

XK
j the set of the corresponding trajectories�

Associated with a strategy J�tuple we have the payo� functions�

V K
j �x��uK� � � � � �u

K
J � �

KX
k��

X
nk�N �k�

Lnk
j �xK�nk�� u

K
j �nk��p�nk�e

��j tk � ����	�

where p�nk� denotes the probability of the node n�k� and is given by

p�nk� �

�
� if k � �

p�A�nk��Prob���K�nk�j��K�A�nk��� otherwise �

while xK�nk� is the state reached at period k� given the history summarized
by nk and the controls u�� � � � � uJ as indicated in �������

�We use the notation Lnk
j in place of the more correct notation L

i�nk�
j �
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We have thus de�ned a game in normal form with strategies in an Euclidean space�
An equilibrium uK� � �uK�� � � � � �uK�J � is a solution of the following variational
inequality

hF �uK���uK� � uKi � � 	uK � UK
� � � � � � UK

J � UK � ������

With

uK �

�
B�

uK�
���
uKJ

�
CA �

F �uK� �

�
B�
r
u
K
�
V K
� �x��uK� � � � � �u

K
J �

���
r
u
K
J
V K
J �x��uK� � � � � �u

K
J �

�
CA �

The partial derivatives of the reduced pro�t functions can be calculated from
����	� once one expresses

�xKj �nk�

�uKj �nl�
�

�
��e��j ��

�j
e��j�tk�tl� if nl � U�nk�

� otherwise �

Theorem �
� Assume the total reward function
P

j L
i
j�x�� � � � � xJ � uj� is strictly

diagonally concave in �x� u� for all i in I then the operator �F �uK� is monotone�

Proof� By direct veri�cation�

Theorem ��� Under the assumptions of Theorem ��� there exists a unique equi�
librium for the approximating game of order K�

Proof� As �F is monotone� we have that V K
j �uK� � � � � �u

K
J � is concave in uKj �

Moreover the set U � U� � � � � � UJ is convex� so the game is a concave game
and according to Theorem � in ���	� we know that there exists an equilibrium�
From the monotony of �F and Theorem 
 in ���	� we know that the equilibrium
is unique�

For the approximation results that we shall establish� it is convenient to have
a property of continuity of the strategies w�r�t� sample paths� This requires �rst
a de�nition of a distance on the space of sample paths of the ���� process� Let �
be the class of strictly increasing� continuous mapping of 
�� T � into itself�

De�nition �� Let ��
�� �� and ��
�� �� be two sample paths of the continuous time
Markov chain� De�ne the distance� d���
�� ��� ��
�� ��� as the in�mum of those
positive D for which there exists a � in � such that supt j��t� � tj � D and
supt j��
�� t�� ��
�� ��t��j � D�

�Also called Skorohod topology� see �����
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Assumption 
� We suppose the following

� state and control separation� Li
j�x� uj� � Li

j�x� �Mi
j�uj� with Li

j and Mi
j

Lipschitz continuous�

� monotony�
P

j Li
j�x� is strictly diagonally concave in x andMi

j�uj� strictly
concave in uj for all j in J and i in I�

� stability� the admissible strategies � verify� except perhaps on a null measure
set� the following property� for all � and for all realizations ��
�� �� and
��
�� �� there exists a � such that� d���
�� ��� ��
�� ��� � � � jj��
�� �� �
��
�� ��jj � � where the norm is the L��norm� jjvjj � R T

�
jv�t�j dt�

The last assumption says that the control must be continuous with respect
to the random disturbance trajectory" it insures a stability of the control with
respect to the random process�

In order to establish convergence results it is convenient to modify the repre�
sentation of the approximating game and of the continuous time game in order to
explicit the dependence on the sample paths� In the approximating game of or�
der K� the control� previously denoted uKj �n�k��� will now be written uKj ��


K� k��
where �
K indexes the sample paths for the discrete time Markov chain and k is
the current period� The same representation is used for the state variables�

Let ��
� �� be a sample path of the continuous�time Markov chain and ��K��
K� �� �
���K��
K� ��� � � � ��K��
K� K�� be a sample path of the discrete�time Markov chain�
We de�ne the projection �K � f��
� �� � 
�� T �
 Ig 
 IK as�

�K���
� ��� � ���
� t��� � � � � ��
� tK����� ������

We de�ne� as in the deterministic case� �Kj � UK
j 
 Uj and �Kj � Uj 
 UK

j by

�Kj �u
K
j ��
� t� � uKj ��


K� k�

where k is such that tk � min
s
ftsjts � tg and ��K��
K� �� � �K���
� ���

and

�Kj ��j���

K� k� �

�

�� e���

Z tk

tk��

�j�
� s�e
���tk�s� ds

where ��
� t� � ��K��
K� k� and k � argmin
s
ftsjts � tg � respectively�

Let xK
j��Kj ���

��
K� �� be the discrete time trajectory generated by �Kj �uj���

K� ��

and xj��Kj �uKj ��
� �� the continuous time trajectory generated by �Kj �u
K
j ��
� ��� One

can verify that we have again the property �Kj � �Kj � ��� The mappings pre�
serve the property of non�negativity of the generated trajectory and the non�
anticipativity with respect to the S�adapted information structure�

�We prefer the shorter notation ���� �� to the notation ���t��� ��� ���



�
� �
� The stochastic dynamic oligopoly

The convergence of the discrete time oligopoly toward the continuous time
oligopoly is shown in the two following theorems�

Theorem ��� Suppose assumption � holds� Let ��� � � � � � �
�
J be the equilibrium

strategies of the continuous time oligopoly� Then for all positive � there exists K�

such that for all K � K� the strategies vector ��K� ������ � � � � �
K
J ��

�
J�� is an ��Nash

equilibrium for the discrete time oligopoly of order K�

Theorem ��� Suppose assumption � holds� Let uK�� � � � � �uK�J be the equilibrium
controls of the discrete time oligopoly of order K� Then for all j in J � all �j in
�j and all positive �� there exists K���j� such that for all K � K���j� we have

Vj��
K
� �u

K�
� �� � � � � �j� � � � � �

K
J �u

K�
J �� � Vj��

K
� �u

K�
� �� � � � � �Kj �u

K�
j �� � � � � �KJ �u

K�
J �� � ��

Proof� The proofs of these two theorems can be found in the appendix D���



Chapter ��

Numerical experiments

In this chapter we recall the stochastic duopoly model presented in ���� and show
that the total reward function is strictly diagonally concave� We then propose to
use an algorithm due to Konnov ��
� to solve the variational inequalities� Finally
the numerical results are presented and discussed�

���� A stochastic duopoly model

We take the same duopoly model as in ����� The depreciation rates are �� � ����
and �� � ���� respectively� Assume that the �rms supply� according to their
production capacity� a market characterized by an inverse demand law depending
on the market condition i

Di�x��t� � x��t�� �
ai

x��t� � x��t� � bi
� ci�

Here Di is the market clearing price� given the total supply x��t� � x��t�� The
continuous�time Markov chain� describing the market condition� takes three dif�
ferent values� corresponding to three di�erent demand functions Di�x� � x���
i � I � f�� 
� �g� The coe!cient are� a� � �
�� a� � ���� a� � ��� bi � 
��
i � �� 
� �� c� � �� c� � 
��� c� � 
� The dynamics of the continuous�time Markov
chain is described by the following transition rate matrix�

Q �

�
� ���
 ��
 ���

���� ����� ����
��� ��� ����

�
A �

We also assume that each �rm has a quadratic maintenance and investment
cost� So the reward functions are given by

Li
j�x�� x�� uj� � Di�x� � x��xj � �xj�

� � �uj�
��

�
�



�

 ��� Numerical experiments

The discount rate is � � ����� for both �rms� The time horizon is T � ��� For
the time discretization we take the number of periods K � ��� So the number of
nodes is given by

N �
IK � �

I � �
� 
��
��

Applying Theorem � from ���	�� it can be checked that the total reward
function

P
j Lj�x�� x�� uj� is strictly diagonally concave in �x� u� for all i in I� So

according to Theorems �� and �� the function �F �uK� is monotone and there
exists a unique equilibrium for the approximating game�

���� Implementation

If �F �u� is a monotone function that is Lipschitz with constant L the solution
u� of the following variational inequality

hF �u���u� � ui � � 	u � U � R�N

can be obtained via the following algorithm given by Konnov ��
��

Step 
 �initialization�
Choose �� � � � � ������ � L��� � and u����
Set n � ��

Step � �computation of the next point and stopping criterion�
p�n� �� � projU�u�n� � �F �u�n���
v�n� �� � u�n� � ��p�n�� u�n��

IF F �v�n� ��� � � THEN STOP u� � v�n� ��

� � hF �v�n� ����v�n� ��� u�n�i�jjF �v�n� ���jj
u�n� �� � projU�u�n�� � �F �v�n� ���

Evaluate g�u�n� ��� � minu�UhF �u�n� ����u�n� ��� ui��
N�
IF g�u�n� ��� � �� THEN STOP u� � u�n� ��

ELSE Increment n
GO TO Step � �

We implemented this algorithm and computed the S�adapted open�loop equilib�
rium of the stochastic duopoly taking as stopping criterion � � ������

���� Numerical results

All the equilibrium trajectories illustrated in this report are for the state i �

� They are similar for the other states� Figure �
���a� shows the equilibrium
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dotted��

Figure �
��� Equilibrium trajectories in state i)
�

trajectories for the initial state x���� � � and x���� � �� As the model is nearly
symmetric �the only di�erence between player � and player 
 is the depreciation
rate� it is not surprising to have the equilibrium trajectories nearly similar for the
two players� Figures �
���b� and �
���c� show the equilibrium trajectories for the
initial state x���� � � and x���� � ���� We see that they are consistent with the
results in ����� Figure �
���d� compares the equilibrium trajectories for player �
when player 
 has two di�erent initial states �x���� � � and x���� � ����� We
see that the the turnpikes� are identical and� as expected� the �rst trajectory lies
above the second one�

In Table �
�� we recall the value of the turnpikes computed under the POL
information structure and the corresponding turnpike values obtained with the

�See ���� for the de�nition�
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	 ��� Numerical experiments

Information �x�� �x�� �x�� �x�� �x�� �x��
POL ������� ������� ���
��
 ���
��� ������� �������
S�adapted �������� �������� ���
���� ���
�
�� �������� ����
���

Table �
��� Turnpikes
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b� Player �

Figure �
�
� Equilibrium trajectories for a given realization of the random pro�
cess�

S�adapted information structure� We can observe that these values are very close�

As in ���� we consider the following realization of the random process� the
sequence of the modal change is 
�����
�����
���
�� and the jump times are ��� �����

���� �
��� ����� ���
� ���
� ����� ����� For this realization of the random process
the equilibrium trajectories are displayed in Figure �
�
� One sees that after each
jump the equilibrium trajectories are attracted by the turnpikes associated with
the current state i and remain close to them until the next jump occurs�

The value functions in state i � 
 for di�erent initial states xi��� are pictured
in Figure �
���

We can see that the results for S�adapted information structure are really
close to the ones for the POL information structure�
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Figure �
��� Value functions in state i � 
 for di�erent initial states xi���
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Concluding remarks for Part III

In this part of the thesis we have proposed to use a numerical technique based
on the solution of an approximating variational inequality to compute a contin�
uous time Nash�Cournot ��equilibrium� We have considered �rst the open�loop
information structure for a deterministic di�erential game model and then the
S�adapted information structure when the dynamic system is subject to jump
Markov random disturbances� We have compared the S�adapted information
structure with the POL information structure introduced in ��
������ and con�
jectured that� when the jump Markov process is uncontrolled� the two types of
equilibria are likely to yield similar outcomes� We have veri�ed this conjecture
on the model already considered in ����� with the POL information structure�
Finally we have proved the proximity existing between the equilibrium strategies
of the approximating game and those of the continuous time game�

In all these developments we have used the dynamic oligopoly formalism of
������
�� and ����� Future extensions of this work should deal with a more general
class of di�erential games and explore in greater detail the proximity of equilibria
under POL and S�adapted information structures�

�
�
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Appendix D

Convergence of the stochastic

programming approach

D�� Convergence results for the stochastic case

D���� Proof outline

To simplify the notations the proofs are done for a duopoly" they can be easily
extended to the case of an oligopoly� We shall state a list of Propositions to be
proved in chapter D���
�

Proposition �� For any � � �� there exists K� such that� for any approximating
game of order K � K� the following holds

	�uK� �uK� � � UK
� � UK

� jV K
j �uK� �u

K
� �� Vj��

K
� �u

K
� �� �

K
� �u

K
� ��j � ��

Proposition �� Given �� and ��� for any � � �� there exists K� such that� for
any approximating game of order K � K� the following holds

jV K
j ��K� ����� �

K
� ������ Vj���� ���j � ��

Proposition �� Given ��� for any � � �� there exists K� such that� for any
approximating game of order K � K� the following holds

	uK� � UK
� jV K

� �uK� � �
K
� ������ V���

K
� �u

K
� �� ���j � �

�
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Proposition 	� Given ��� for any � � �� there exists K� such that� for any
approximating game of order K � K� the following holds

	uK� � UK
� jV K

� ��K� �����u
K
� �� V����� �

K
� �u

K
� ��j � �

Proof of Theorem ��� For a game of order K� consider V K
� �uK� � �

K
� ������ for any

admissible uK� � If K is large enough �K � K�
� �� according to Proposition 	 one

has

V K
� �uK� � �

K
� ������ � V���

K
� �u

K
� �� �

�
�� �

�




and by the equilibrium property of ��

V���
K
� �u

K
� �� �

�
�� � V���

�
� � �

�
���

Finally� according to Proposition �� we have

V���
�
� � �

�
�� � V K

� ��K� ������ �
K
� ������ �

�




if K is large enough �K � K�
� �� Therefore if K � K� � supfK�

� � K
�
� g one has

V K
� �uK� � �

K
� ������ � V K

� ��K� ������ �
K
� ������ � ��

The same property holds for Player 
� The proof is complete� �

Proof of Theorem ��� Let �uK�� �uK�� � be an S�adapted equilibrium of the ap�
proximating game of order K� Consider� for any admissible policy �� of the
continuous time game� the payo� V����� �

K
� �u

K�
� ��� According to Proposition ��

if K is large enough �K � K�
� �� one has

V����� �
K
� �u

K�
� �� � V K

� ��K� �����u
K�
� � �

�



�

Since �uK�� �uK�� � is an S�adapted equilibrium pair for the approximating game of
order K� one has also

V K
� ��K� �����u

K�
� � � V K

� �uK�� �uK�� ��

Finally� according to Proposition 
 one has

V K
� �uK�� �uK�� � � V ��K� �u

K�
� �� �K� �u

K�
� �� �

�




if K is large enough �K � K�
� �� Therefore if K � K� � supfK�

� � K
�
� g one has

V����� �
K
� �u

K�
� �� � V ��K� �u

K�
� �� �K� �u

K�
� �� � ��

The same property holds for the other player� �
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D���
 Proof of the Propositions

We will �rst prove the following lemmas which will be used later on�

Lemma �� Suppose assumption � holds� Then 	t � 
�� T �� 	x� y � X��� � ��XJ �
	uj� vj � Uj and 	i� l � I� we have

jLi
j�x�t�� uj�t��� Ll

j�y�t�� vj�t��j � C

Proof� This comes from the Lipschitz property Li
j and the boundness of the

controls and state trajectories�

Let ���B� P � be the probability space associated with the continuous time
stochastic process and ���K � �PK� the probability space associated with the discrete
time stochastic process of order K� Let ���K ���K��
K� ��� � f��
� �� � �K���
� ��� �
���K��
K� ��� � � � � ��K��
K� K��g with �K de�ned as in Eq�������� Notice that the
two Markov chain ��K��� and �K������ associated with the projection �K have the
same sample path set� The convergence of the �rst Markov chain to the second
one is stated in the following Lemma�

Lemma �� �PK���
K��
K� ���tends to P ����K ���K��
K� ����� uniformly in �
K� as K

tends to in�nity�

Proof� As before let 	 � T�K� Denote by SK the transition probability matrix

Prob���t � 	� � hj��t� � i�� i� h � I and by �SK the transition probability
matrix 
Prob���K�k � �� � hj��K�k� � i�� i� h � I� The only thing to prove is
that �SK� the generator of the Markov chain ��K���� tends to SK � the generator of
the Markov chain �K������� as K tends to in�nity�

De�ne jjM jj the norm of an I � I matrix as follows�

jjM jj � sup
i

X
l

jmilj�

Applying the Taylor expansion we have�

�SK � ��Q	 � �R

With j�rilj � 	�jqiijqil�
 which implies

jj �Rjj � jjQjj�	�



�

From ��
� p��	
� we have the following�

SK � eQ� � ��Q	 �R�
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With

jjRjj � jjQjj�	�



�

So we have

j�sKij �	�� sKij �	�j � jjQjj�	��

To prove Proposition 
 we will need the following Lemma�

Lemma 	� For any �
K � ��K and any 
 � � such that �K���
� ��� � ��K��
K� ��
we have

j
KX
k��

L


K�
�K �k�
j �xK� ��


K� k�� xK� ��

K� k�� uKj ��


K� k��e���k	

�
KX
k��

Z tk

tk��

L


K�
�K �k�
j �x���K� �uK� ��
� t�� x���K� �uK� ��
� t�� �

K
j �u

K
j ��
� t��e

��t dtj

tends uniformly in uKj to zero as K tends to in�nity� Recall that xj��Kj �uKj ��
� ��
is the continuous time trajectory generated by �Kj �u

K
j ��
� �� as introduced in Sec�

tion ���

Proof� Let �
K � ��K and 
 � � such that �K���
� �� � ��K��
K� ��� Let us �rst
check that the term in Mi

j has a uniform convergence in uKj �

j
KX
k��

M

K�
�K �k�
j �uKj ��


K� k��e���k	 �
KX
k��

Z tk

tk��

M

K�
�K �k�
j ��Kj �u

K
j ��
� t��e

��t dtj

�j
KX
k��

M

K�
�K �k�
j �uKj ��


K� k��e���k	
�� e�� � �

�	
�j

�T � C � 
�� e�� � �

�	
� � T �C � 
�� e�

T
K � �

� T
K

��

This tends to zero �independently of uKj � as K tends to in�nity�
The convergence of the term in Li

j comes from the properties of the x�
trajectories� We de�ned in ������ the dynamics of the system in such a way that
for k � � � � �K xK

j��Kj ���
�
� tk� equals xKj ��


K� k�� As the controls are bounded� the

trajectories are Lipschitz and so the convergence is uniform in uKj �
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Proof of Proposition ��

jV K
j �uK� �u

K
� �� Vj��

K
� �u

K
� �� �

K
� �u

K
� ��j

�j
X

�K

�PK���
K��
K� ���

KX
k��

L


K�
�K �k�
j �xK� ��


K� k�� xK� ��

K� k�� uKj ��


K� k��e���k	

� E



Z T

�

L

�t�
j �x���K� �uK� ��
� t�� x���K� �uK� ��
� t�� �

K
j �u

K
j ��
� t���e

��t dt�j�
�D���

Let Fl be the set of all realizations ��
� �� that have more than l jumps over 
�� T ��
We set l � bpKc� the largest integer smaller than the squared root of K� The
second term can be rewritten as�

E
j
������Fl

KX
k��

Z tk

tk��

fL
�tk���
j �x���K� �uK� ��
� t�� x���K� �uK� ��
� t�� �

K
j �u

K
j ��
� t���

L

�t�
j �x���K� �uK� ��
� t�� x���K� �uK� ��
� t�� �

K
j �u

K
j ��
� t��ge��t dt� �

E
j
����� ��Fl

KX
k��

Z tk

tk��

fL
�tk���
j �x���K� �uK� ��
� t�� x���K� �uK� ��
� t�� �

K
j �u

K
j ��
� t���

L

�t�
j �x���K� �uK� ��
� t�� x���K� �uK� ��
� t�� �

K
j �u

K
j ��
� t��ge��t dt� �

E


KX
k��

Z tk

tk��

L

�tk���
j �x���K� �uK� ��
� t�� x���K� �uK� ��
� t�� �

K
j �u

K
j ��
� t��e

��t dt��

According to Lemma � and as P �Fl� tends to zero as l tends to in�nity� the norm
of the �rst term is smaller than � for K big enough� For the second term we
know that the realizations have less than l jumps� If in the interval 
tk��� tk
 we
have no jumps� the two terms under the integral are identical� If there is one
or more jump in the interval 
tk��� tk
� the integral over the interval is� according
Lemma �� less than C�K� As we have less than l � p

K jumps� the norm of
the second term is smaller than C�

p
K and so smaller than � for K big enough�

For the third term we can see that for two realizations 
� and 
� such that
�K���
�� ��� � �K���
�� ���� the integral is the same� With any �
K in �K we
associate ���
K� in � such that ��
� t� � ��K��
K� k� and k � argminsftsjts � tg�
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The third term can thus be rewritten as�

X

�K

P ����K ���K��
K� ���
KX
k��

Z tk

tk��

L


K�
�K �k�
j �x���K� �uK� �����


K�� t�� x���K� �uK� �����

K�� t��

�Kj �u
K
j �����


K�� t��e��t dt�

To summarize� for K big enough� Eq� �D��� becomes�

jV K
j �uK� �u

K
� �� Vj��

K
� �u

K
� �� �

K
� �u

K
� ��j � �� � �

j
X

�K

�PK���
K��
K� ���

KX
k��

L


K�
�K �k�
j �x����

K��
K� ��� k�� x����K��
K� ��� k��

uj���
K��
K� ��� k��e���k	 �

X

�K

P ����K ���K��
K� ���
KX
k��

Z tk

tk��

L


K�
�K �k�
j �x���K� �uK� �����


K�� t�� x���K� �uK� �����

K�� t��

�Kj �u
K
j �����


K�� t��e��t dtj�

For K big enough� Lemmas ��	 and � asserts that the term in absolute value
tends to zero as K tends ton in�nity� Thus we have proved that for all � � �
there exist a K� �uniform in uK� and uK� � such that for all K greater than K� we
have the following

jV K
j �uK� �u

K
� �� Vj��

K
� �u

K
� �� �

K
� �u

K
� ��j � ���

�

To prove Proposition � we will need the following Lemma�

Lemma 
� For any admissible strategy �j the norm jj�Kj � �Kj ��j� � �jjj tends
almost surely to zero as K tends to in�nity�

Proof� We have to prove that for any 
 in � and any admissible strategy �j�
jj�Kj ��Kj ��j��
� ����j�
� ��jj tends to zero as K tends to in�nity� except perhaps
on a set of probability ��

With any 
 in � we associate ��
�K� in � as follows� ����
�K�� t� � ��
� tk�
where tk � minsfts � ts � tg� We thus obtain an approximation of the sam�
ple path ��
� �� through a step function with jumps at times tk only� Sup�
pose that ��
� t� has �nitely many jumps� then for all � positive there exists
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K� such that K � K� implies d�
� ��
�K�� � �� If assumption � holds this
implies the following� for all � positive there exists K� such that K � K� implies
jj�j���
�K�� ����j�
� ��jj � �� That means that the control for any realization 
�
except perhaps the ones with in�nitely many jump �which is a null set�� can be
approximated as closely as desired by the control for a realization where the jump
times are multiples of T�K�� This means that for �xed 
 the proof is complete if
one prove that for all �j we have jj�Kj ��Kj ��j����
�K�� ����j���
�K�� ��jj tends
to zero as K tends to in�nity� To simplify the notation we denote by w��� the
control �j���
�K�� �� associated with the realization ��
�K��

jj�Kj � �Kj �wj����� wj���jj �
KX
k��

Z tk

tk��



�Kj �wj��k�� wj�t�


 dt�

We know that for all � there exists a step function g�j with umin
j � g�j � umax

j such
that jjg�j � wjjj� � �

KX
k��

Z tk

tk��



�Kj �wj��k�� wj�t�


 dt

�
KX
k��

Z tk

tk��



�Kj �wj��k�� g�j�t�


 dt� KX

k��

Z tk

tk��



g�j�t�� wj�t�


 dt

�
KX
k��

Z tk

tk��



�Kj �wj��k�� g�j�t�


 dt� ��

De�ne um � maxj�J fmax�umin
j � umax

j �g� Let � be the number of jumps of g�j�
Then we choose K greater than �Tum��� So the total length of the intervals
where we have a jump is �	 � �T�K which is less than ��um� For an interval
were we have no jump we have the following�Z tk

tk��



�Kj �wj��k�� g�j�t�


 dt �



�Kj �wj��k�� g�j�tk���


 	

�






 �

�� e���

Z tk

tk��

w�s�e���tk�s� ds� g�j�tk���






 	
�






 �

�� e���

Z tk

tk��


w�s�� g�j�tk����e
���tk�s� ds






 	
�

�	

�� e���







Z tk

tk��


w�s�� g�j�s��e
���tk�s� ds







� �	

�� e���

Z tk

tk��



w�s�� g�j�s�


 e���tk�s� ds

� �	

�� e���

Z tk

tk��



w�s�� g�j�s�


 ds�
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Therefore the following holds true

KX
k��

Z tk

tk��



�Kj �wj��k�� g�j�t�


 dt � �	

�� e���

Z T

�



w�t�� g�j�t�


 dt� �

� �	

�� e���
�� �

� �T

�� e��T
�� ��

For the �rst inequality� the term � is the majoration for the intervals where we
have a jump� The last inequality is valid as the fraction is an increasing function
for 	 positive and that 	 � T � So the proof is complete�

Proof of Proposition 
�

jV K
j ��K� �u��� �

K
� �u���� Vj�u�� u��j �D�
�

� jV K
j ��K� �u��� �

K
� �u���� Vj��

K
� � �K� �u��� �

K
� � �K� �u���j�

jVj��K� � �K� �u��� �
K
� � �K� �u���� Vj�u�� u��j� �D���

The �rst term in �D��� tends to zero according to Proposition 
� The pro�t
functions can be rewritten as

Vj���� ��� � E�

�Z T

�

e��jtL

�t�
j �x��t�� � � � � xJ�t�� uj�t�� dt

�
� E

W

�����
j �����

As Li
j are Lipschitz continuous functions and as the strategies satisfy the sta�

bility requirement of assumption �� Lemma � implies that the random variable

W �����
j ��� converges almost surely to the random variable W �K� ��

K
� ������K� ��

K
� ����

j ����
This implies that the second term in �D��� tends to zero� �

Proof of Proposition ��

jV K
� �uK� � �

K
� �u���� V���

K
� �u

K
� �� u��j �D�	�

� jV K
� �uK� � �

K
� �u���� V���

K
� �u

K
� �� �

K
� � �K� �u���j�

jV���K� �uK� �� �K� � �K� �u���� V���
K
� �u

K
� �� u��j� �D���

The �rst term in �D��� tends to zero according to Proposition 
� The same ar�
gumentation as in the previous proof shows that the second term in �D��� tends
to zero� The uniformity in fuK� g�K�� is guaranteed by the Lipschitz property of
the functions Li

j� �

The proof of Proposition � is similar to the last proof�
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D�� Convergence results for the deterministic case

As the deterministic oligopoly is a special case of the stochastic one� all the the�
orems and lemmas in the appendix D�� are valid for the deterministic oligopoly�
In particular Theorem �	 is a special case of Theorem �� which has been proved
in appendix D��� However� we have to prove Theorem �� since it is stronger than
Theorem �
 when it is applied to the deterministic oligopoly�

We will endow the control and state spaces with norms de�ned as follows
jjujjj �

R T
�
juj�t�j dt� a norm on Uj� jjuKj jj �

P
k juK�k�j	� a norm on UK

j � jjxjjj �
maxt����T � jxKj �t�j� a norm on Xj and jjxKj jj � maxk jx�k�j� a norm on XK

j � Before
proving Theorem �� we will state and prove the following Lemma�

Lemma �� Assume that� for all j� Lj�x� uj� is Lipschitz continuous in x and uj�
Then V K

j �uK� �u
K
� � is uniformly continuous in uKj � UK

j �

Proof� First we show that two controls uKj and vKj which are close to each other
generate two trajectories xKj and yKj which are close to each other�

jxKj �k�� yKj �k�j �







kX
l��

kX
l��


uKj �l�� vKj �l�� � e��j�tk�tl� �� e��j ��

�j







�





e��j�tk�tl��� e��j ��

�j	






kX
l��



uKj �l�� vKj �l�


 	

� �K

kX
l��



uKj �l�� vKj �l�


 	

� �KjjuKj � vKj jj�

So we have

jjxKj � yKj jj � max
k
jxKj �k�� yKj �k�j � �KjjuKj � vKj jj�

We now prove the continuity of V K
� �uK� �u

K
� � in uK� � The proof of the conti�
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nuity in uK� is similar� We have

jV K
� �uK� �u

K
� �� V K

� �vK� �u
K
� �j

� j
KX
k��

e��j tk 
L��x
K
� �k�� x

K
� �k�� u

K
� �k��� L��y

K
� �k�� x

K
� �k�� v

K
� �k��� 	j

�
KX
k��

jL��x
K
� �k�� x

K
� �k�� u

K
� �k��� L��y

K
� �k�� xK� �k�� v

K
� �k��j 	

�
KX
k��

jL��x
K
� �k�� x

K
� �k�� u

K
� �k��� L��y

K
� �k�� xK� �k�� u

K
� �k��j 	 �

KX
k��

jL��y
K
� �k�� xK� �k�� u

K
� �k��� L��y

K
� �k�� xK� �k�� v

K
� �k��j 	

�
KX
k��

CjxK� �k�� yK� �k�j	 �
KX
k��

CjuK� �k�� vK� �k�j	

� CT jjxK� � yK� jj� CjjuK� � vK� jj
� C�T�K � ��jjuK� � vK� jj�

Proof of Theorem �
� The set Xj of the trajectories with the norm jjxjjj �
max jxj�t�j is compact� Let Mj�uj� �

R T
�
Mj�uj�t�� dt and Nj � fMj�uj� � uj �

Ujg� As Mj is Lipschitz and Uj is compact Nj is compact� Therefore we can ex�
tract from the sequence ��K� �x

K�
� �� �K� �x

K�
� ��M���

K
� �u

K�
� ���M���

K
� �u

K�
� ��� a con�

verging subsequence ��Kp

� �x
Kp�
� �� �

Kp

� �x
Kp�
� ��M���

Kp

� �u
Kp�
� ���M���

Kp

� �u
Kp�
� ���� De�

note by ��x�� �x�� �m�� �m�� the limit of this subsequence� Denote by ��u�� �u�� a control
which generates the trajectory ��x�� �x��� Here we must emphasize that we could
have Mj��ui� �� �mi�

We �rst show that the case where Mj��ui� � �mi is impossible� Suppose
Mj��ui� � �mi� We rewrite the function V��u�� u�� as �V��x�� x��M��u��� to em�
phasize that it is a sum of two terms� one depending on �x�� x�� and the other
depending on M��u��� Thus we have �V���x�� x�� �m�� � �V���x�� x��M��u���� So there
exist � � � such that

�V���x�� x�� �m�� � �V���x�� x��M��u������ �D���

For Kp su!ciently big we have the following�

V
Kp

� �u
Kp�
� �u

Kp�
� � � V���

Kp

� �u
Kp�
� �� �

Kp

� �u
Kp�
� �� � �

� V���u�� �
Kp

� �u
Kp�
� �� � 
���

� V
Kp

� ��
Kp

� ��u��� �
Kp

� � �Kp

� �u
Kp�
� �� � ����

� V
Kp

� ��
Kp

� ��u���u
Kp�
� � � �����
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The �rst inequality is implied by Proposition 
� The second inequality is implied
by the convergence of �Kp

� �x
Kp�
� � to �x�� the continuity of �Kp

j � the continuity of V Kp

j

�Lemma �� and equation �D���� The third inequality comes from Proposition ��
The last inequality is valid as �Kj ��Kj � ��� As � can be chosen as small as desired
for Kp big enough and as � � � we conclude that

V
Kp

� �u
Kp�
� �u

Kp�
� � � V

Kp

� ��
Kp

� �u��u
Kp�
� �

which contradicts the fact that �uKp�
� �u

Kp�
� � is an equilibrium for the approximat�

ing game�
So we can assume that Mj��ui� � �mi� Then� for all u� in U� and Kp big

enough� the following holds�

V��u�� �u�� � V
Kp

� ��
Kp

� �u��� �
Kp

� ��u��� � �

� V
Kp

� ��
Kp

� �u���u
Kp�
� � � 
�

� V
Kp

� �u
Kp�
� �u

Kp�
� � � 
�

� V���
Kp

� �u
Kp�
� �� �

Kp

� �u
Kp�
� �� � ��

� V���u�� �u�� � ���

The �rst inequality is implied by Proposition �� The second inequality is implied
by the convergence� of �Kp

j �x
Kp�
j � to �xj� the continuity of �Kp

j � the continuity of

V
Kp

j �Lemma �� and the property �Kj � �Kj � ��� The third inequality is valid as

�u
Kp�
� �u

Kp�
� � is the equilibrium for the discrete time oligopoly of order Kp� The

fourth inequality is obtained applying Proposition 
� The last inequality is valid
as ��

Kp

� �x
Kp�
� �� �

Kp

� �x
Kp�
� �� converges to ��x�� �x��� when M���

Kp

� �u
Kp�
� �� converges

to something smaller than or equal toM���u�� and since Vj is a continuous function
in all is arguments� A similar property can be obtained for any other player j�
As � can be taken as small as desired� ��x�� �x�� is the equilibrium trajectory of
the continuous time oligopoly� As the equilibrium is unique� the whole sequence
��K� �x

K�
� �� �K� �x

K�
� �� converges to ��x�� �x�� � �x��� x

�
��� We will show now that we

can exclude the case Mj�u
�
i � � Mj��ui� � �mi� By the same argumentation as

before we can show that there exist � � � such that

�V��x
�
�� x

�
��Mj�u

�
��� � �V��x

�
�� x

�
�� �m�����

As ��Kp

� �x
Kp�
� ��M���

Kp

� �u
Kp�
� ��� converges to �x��� �m��� as �Kp

j is a continuous func�
tion� and as �V� is a continuous function in all is arguments� for all � there exists
Kp big enough such that

�V��x
�
�� x

�
�� �m�� � �V���

Kp

� �x
Kp�
� �� x���M���

Kp

� �u
Kp�
� ��� � ��

�Recall that V
Kp

� does not depend on Mj��
Kp

j �u
Kp�

j �� j �� ��
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Thus� from the last two statements� we obtain

V��u
�
�� u

�
�� � V���

Kp

� �u
Kp�
� �� u���

which is a contradiction hence Mj�u
�
i � � Mj��ui� � �mi� �
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