
Chapter 1 
From Deep Neural Language Models 
to LLMs 

Andrei Kucharavy 

Abstract Large Language Models (LLMs) are scaled-up instances of Deep Neural 
Language Models—a type of Natural Language Processing (NLP) tools trained 
with Machine Learning (ML). To best understand how LLMs work, we must dive 
into what technologies they build on top of and what makes them different. To 
achieve this, an overview of the history of LLMs development, starting from the 
1990s, is provided before covering the counterintuitive purely probabilistic nature of 
the Deep Neural Language Models, continuous token embedding spaces, recurrent 
neural networks-based models, what self-attention brought to the table, and finally, 
why scaling Deep Neural Language Models led to a qualitative change, warranting 
a new name for the technology. 

1.1 What LLMs Are and What LLMs Are Not 

Generative Machine Learning—often referred to as Generative AI—has seemingly 
taken the world by storm in late 2022–2023, with modern Large Language Models 
(LLMs) demonstrating human-like performances across a range of tasks, leading to 
heated debates as to whether it needed to be included into every product and process. 

However, the concept of generative language models is significantly older. What 
made 2022–2023 LLMs so attractive is their compliance with the expectations of 
the general public as to how an AI assistant could behave, made possible with 
instructional fine-tuning, followed by a polish with the Reinforcement Learning from 
Human Feed-back (RLHF) (Chap. 4). However, already before that—in 2022— 
trials were run with conversationally fine-tuned models perfectly impersonating 
internet forum users. In 2020, base LLMs could already write journals and blogs 
in the hands of competent users. Before the Transformer model allowed the model 
size and datasets to out-scale most hardware and most internet, Recurrent Neural 
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Network (RNN)—based LLMs such as ELMo could perform text analysis and text 
generation. Before that, smaller RNN generative models could do specialized tasks 
such as autocompletion of news articles. Before Deep Neural Language Models, 
there were Hidden Markov Model-based models. Before that—rule-based text 
generation bots, . . . ,  all  the  way  back to 1966’s ELIZA that could fool its users 
into believing they were speaking to a sentient being using only pattern matching 
and substitution rules, all while running with 18 kB of RAM and less processing 
power than today’s USB chargers. 

Because of that, there is a general disconnect in the vocabulary used by today’s 
general public who discovered the progress of last decades in Generative ML-
based NLP and the practitioners and scientists who developed and implemented 
technologies that made ChatGPT, Copilots, and other LLaMAs possible. 

To keep the vocabulary consistent with prior research, I will follow the historical 
conventions of the ML-NLP community before 2022 in this book. Specifically, I 
use the term LLMs to designate post-ELMo models (Chap. 3). Here, I designate as 
LLMs Deep Neural Language Models that: 

1. Perform a probabilistic token regression based on training data and user input 
2. Have over 100 million parameters 
3. Were trained on over 1 billion tokens 
4. Or are smaller members of the families whose larger models satisfy the condi-

tions above 

This definition directly follows the first papers that introduced the concept of 
“Large Language Models”: [1, 2], and is representative of the smooth scaling of 
capabilities for LLMs as they increase in size from 100M to 1000B parameters 
[3, 4]. 

This definition means that while the original Transformer is not an LLM, 
RNN-based ELMo is. Similarly, the BERT model that is generally used for text 
classification rather than generation is an LLM, just like the translation-tuned T5. 
Including smaller models within LLM families allows us also to include models 
historically considered as LLMs, such as DistilBERT with 66M parameters or even 
CODEX models with 12M parameters. Similarly, this means I am not differentiating 
LLMs generating text from the ones generating code, binary, pass requests to search 
engines, or accepting images as inputs. 

1.2 Principles of LLMs 

1.2.1 Deep Neural Language Models 

LLMs are direct descendants of Deep Neural Language Models (DNLMs), differing 
only in model and training dataset size. Understanding Deep Neural Language
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Models requires several important departures from an intuitive natural language 
understanding. 

First, from the point of view of DNLMs, letters, words, or even sentences do 
not exist (as intuitively defined by humans). Instead, they operate in a continuous 
embedding space, where segments of characters of a fixed length are interpreted as 
vectors based on how close their meanings are. Elements of such embedding space 
are often referred to as tokens.1 

Second, from the perspective of DNLMs, a suite of such tokens is nothing more 
than a trajectory—a line—in that continuous embedding space. It does not select 
words deterministically and, depending on the model type, might not even look 
further ahead to ensure that what it is generating can have a continuation that would 
make sense. 

Third, such trajectories are not deterministic but rather probabilistic distributions, 
indicating how frequently trajectories combining a suite of similar tokens in similar 
order have been encountered in the training data. 

While this representation is highly counterintuitive, it is not exactly new. Suc-
ceeding to the probabilistic view of Natural Language texts introduced by Claude 
Shannon in 1948 [5], it was introduced in the early 1990s by [6] and [7]. Shortly 
after that, it was popularized by [8] and shown to outperform existing state-of-the-
art methods in tasks such as machine translation [9], as long as it was provided 
sufficient training data, which at the time was made possible by Google Web crawls 
and digitization of existing translations, such as EU Council parallel texts. However, 
this model was not only suited for translation. Many NLP tasks could be represented 
as sequence-to-sequence translation [10], including text generation. 

However, this approach had a major problem—learning and representing the 
trajectories in the “embedding space.” Whereas rule-based chatbots could have 
a combination of pattern matching and response “else-if” rules, LLMs learned 
by themselves from massive amounts of data and in high dimensions. A first 
breakthrough was achieved by using RNNs [11], and a proper text generation in 
a simple entailment context2 has been shown to be possible by [12], after the 
introduction of an improved algorithm to train RNNs. 

Despite their great initial performance, RNN-based architectures suffered from 
two major drawbacks. First, their training was inherently sequential. The principle 
of RNNs consists of reusing a processing cell (neuron) output as its own input. This 
makes these neural networks recurrent, but it also means that processing cells cannot 
start processing the next item in a sequence before it is done with the previous one. 
Second, the length of sequences RNNs is practically limited due to the information

1 The optimal way to convert a text to tokens and back is still an active research subject. Current 
LLMs seem to favor varying length tokens, using roots for words and common suffixes/prefixes 
in English, single characters for digits and abbreviations, and a combination of the two for more 
rare words and other languages. I will not be reviewing the subject here and use tokens and words 
interchangeably. 
2 An  example  would  be  “Complete  the  suite:  “Dog,  cat,  cow,  . . . ”  with  “goat,”  “sheep,”  or  other  
domestic animal being an acceptable answer. 
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about the previously seen sequence contents being passed as a recurrent output that 
eventually vanishes, as well as the fact that every single token they have seen had 
to be accounted for in the learning and generation process. Not only did it make 
them unable to pick up any additional context outside that length window, but in 
the generative mode, it meant they would often generate a distribution of tokens 
they never saw in their training data and, in the absence of learned trajectories 
distribution that would continue such a sequence, fail to generate any meaningful 
continuation [13]. 

This latter problem was addressed by the self-attention mechanism, introduced 
by [14]. The idea was to leverage the fact that for longer token lengths, the space 
of trajectories effectively encountered in the linear space is sparse, meaning that 
instead of having to take into account all of the preceding tokens to perform 
inference, RNN models could be trained only on a smaller set of “important” tokens, 
that would be selected by a separate “attention” neural network. Widely successful, 
this mechanism was rapidly adopted for the Google Translate engine [15] and is still 
in use there to the best of our knowledge. The interesting property of that “attention” 
neural network is that it was not recurrent. Computing an attention vector for one 
sequence was unnecessary before computing it on the other, meaning it could be 
efficiently parallelized. 

The now-seminal “Attention is all you need” by [16] demonstrated that by 
increasing the overall size of the model and adopting a multi-layer, multi-head pure 
self-attention architecture with normalization between layers (i.e., the Transformer 
itself), RNN processing units could be removed from the architecture entirely. 
Without recurrent elements, the network did not need to wait anymore to process 
prior tokens to obtain the recurrent input for the next token but instead could be 
trained synchronously. While it might not seem as much, it is hard to understate 
how transformative it was. Model training can now be fully parallelized across 
as many computation nodes as available, leading to an arms race in model size, 
training dataset size, and the amount of computational power invested into training 
them. The resulting model size exponential growth, represented in Fig. 1.1, is still 
ongoing, and was halted by some recent models only by a transition to smaller, more 
practical, compute-optimal models.3 

One of the interesting features of the Transformer is that due to its intended 
use as a neural translation engine, it contains two mostly independent parts. First, 
the encoder, whose role is to parse the input text and produce an encoding space 
representation of it. Second, the decoder receiving that representation will generate 
the corresponding translation one word at a time while looking at previously 
generated words to make sure the next one is still coherent with them (Fig. 1.2). 

As such, models that are not translation-specific can use only the decoder part if 
they are generating text based on only the previous token and only the encoder part 
if they do not necessarily seek to generate text but rather understand the structure of

3 Due to entirely different scaling rules, I have not included pure Mixture-of-Experts models in this 
Figure. 
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Fig. 1.1 Evolution of size, type, and availability of common LLMs with published architecture. 
For that reason, ChatGPT, GPT-4, and several common LLMs were omitted
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Fig. 1.2 Encoder-decoder transformer architecture based on [16]
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the text. Because of that, purely generative text models tend to use only the decoder 
part. In contrast, models destined for a more general text understanding tend to use 
the encoder, which offers some major advantages in exchange for drawbacks that 
have remained until recently limited. 

1.2.2 Generative Deep Neural Language Models 

From the point of view of a Transformer-based LLM, generating new text is 
equivalent to generating a translation, except that there is not necessarily an 
embedding space representation. Instead, it is the continuation of an initial word 
sequence, where the word to be generated can be located either at the end of the 
original sentence or in the middle of it. These two cases correspond to the two main 
approaches to training Generative Deep Neural Language Models. 

Autoregressive models are trained by a random sampling suite of words in the 
source dataset (“utterances”), masking a word and training the model to predict 
the masked word accurately [17]. Autoregressive models are best thought of as 
autocomplete—they are trained to complete sentences in a way that is representative 
of their training dataset. 

Autoencoding models are trained similarly, except that the masked word can 
be located anywhere in the randomly sampled suite of words [18]. Autoencoding 
models are best thought of as search or autocorrect suggestions—they are trained to 
rewrite whole sentences in a way that is representative of their training dataset. Just 
as Google search suggestions, they can suggest words at the end of a query to refine 
it, but they can also add one at the beginning or even rewrite a word (for instance, 
to correct a typo). While Autoencoding models can be used to generate text based 
on utterances, their strength is rather in applications that require understanding the 
utterance as a whole. 

While the autoencoding models are generally considered more powerful than 
autoregressive ones, their generative capabilities are not necessarily optimal for 
the model’s size, training dataset, or the computational resources spent training 
the model. After all, the training mode relevant to the generation represents only 
a fraction of the training time of autoregressive models. 

There are several paradigms of how generative models can be trained. However, 
only one is currently dominant and is referred to either as “generative pre-training” 
or “teacher forcing.” Specifically, the model is provided with a large set of utterances 
with the last word masked and is asked to predict that last token. Based on 
the proximity of predicted tokens to the tokens in the training dataset, a loss is 
calculated, and the model is trained through backpropagation.4 Each set of such

4 Backpropagation is an algorithm used to train artificial neural networks. The goal of backpropa-
gation is to adjust the weights of the neurons in the network, with the final purpose of minimizing 
the error between the predicted and actual outputs. 
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utterances is commonly called a “batch.” In some cases, a refinement process is 
possible late in the training process when the model is allowed to predict more and 
more tokens to stabilize the generation of longer texts [13]. 

1.2.3 Generating Text 

Once trained, LLMs can then be used to generate new text. For that, they need a 
starting text called “prompt,” for which they will look for the word that would most 
likely continue that prompt in their training dataset. However, as I explained above, 
models do not learn specific words but rather the probabilities of related tokens. 
Hence, when they are used to generate texts for every word, they can only provide 
the probabilities of all words in their vocabulary. Hence, to generate a single next 
word, they need a “sampling strategy” to choose that single word. 

Four sampling strategies are most used: maximum likelihood, beaming, top-K, 
and top-p/nucleus. The latter is considered to be State-of-the-Art (SotA) and has 
been introduced by [19], which also reviews other sampling strategies. 

Maximum Likelihood—also known as temp 0 sampling always picks the most 
probable next word. While it can be a good idea for short texts with long prompts, 
the model is likely to end up in a state where the chosen chain of words has no 
continuation it would know of, and it would start generating nonsense. This is known 
as “output degeneration” [13, 19]. Beaming allows us to mitigate some of those 
issues by looking at the cumulative probability of the next X tokens and choosing 
the word that maximizes the probability of having a high probability branch. 

However, in both cases, the same prompt will generate a similar, if not the same, 
response, which is usually not what is wanted. For instance, getting always told the 
same tale in response to a “Tell a tale starting with Once upon a time” would be  
boring, especially since the model can do better. That is specifically the problem 
that the top-K sampling is meant to solve. Rather than sampling deterministically, 
it randomly samples one of the top K most probable tokens. While it solves the 
repetitiveness problem, it creates a new one—in a setting where a unique suite of 
words is the only answer, it is susceptible to pick one of the other K continuation 
words. 

Finally, top-p, or temperature-based sampling, tries to combine the best of the top 
worlds by sampling randomly out of the tokens with the highest probability, such 
that their cumulative probability stays above p. In this case, a token that almost 
surely needs to be generated will be alone in the random sampling pool. In contrast, 
in the cases where many different continuations are acceptable, one will be chosen 
randomly.
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Once the next token has been generated with one of the sampling strategies, it 
is added to the original prompt, and that combined text becomes a prompt for the 
generation of the next token. 

1.2.4 Memorization vs Generalization 

LLMs learn the distribution of token sequences in the model embedding space 
based on the data present in the training set and generate utterances based on a 
sampling strategy and a prompt. This means they are consistently on edge between 
citing the elements of the training dataset they have memorized if the prompt is 
sufficiently precise and unique and composing a new, never-seen continuation to 
the prompts. The former is referred to as the “memorization” ability of the model, 
whereas the latter is “generalization.” Historically, “memorization” of the models 
has been thought of as overfitting the training data and easily avoided by exposing 
the model to the same training as little as possible. 

However, results that followed shortly after the first GPT (Generative Pre-trained 
Transformer) models release—notably [20] have shown that LLMs can memorize 
things they have seen in the dataset only once, even if a specifically designed prompt 
needs to be found to trigger the full recall. In this way, authors of [20] could retrieve 
valid SSIDs, telephone numbers, and emails from the training dataset of the GPT-2 
model. Perhaps even more impressively, the GPT-2 model authors used could recite 
834 digits of Pi, which it has encountered in the source dataset only once. 

However, today, no known rules or approaches exist to improve or discourage 
memorization of the models. The research into strategies to understand what private 
information the model has memorized and how it can be retrieved is an active 
field. It has historically been referred to as “Model Red Teaming” [21], although 
today the term is used for general work of characterization of model failure modes. 
Conversely, active research is ongoing to understand why the model generalizes 
when memorization is desired—notably for counterfactual statements, commonly 
called “hallucinations.”5 

With this research still ongoing, as a rule of thumb, currently, no data used to 
train an LLM can be considered safe, and no text generated by an LLM can be 
assumed to be factually correct or as not containing memorized information. 

1.2.5 Effect of the Model and Training Dataset Size 

The dramatic growth in the models’ size between 2019 and 2022, illustrated in 
Fig. 1.1, has been driven by almost perfect predictability of the generative models’

5 Although several researchers prefer the term “confabulation” as closer to the mechanism. 
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performance increase. As long as it is provided with a sufficient amount of data 
and computational resources to train on that data, a larger model is going to keep 
improving its ability to predict the next word in a text—across a variety of contexts 
represented in the training dataset [3, 4, 22]. Correspondingly, that translates to a 
better ability of a pre-trained LLM to understand a variety of contexts, generate 
higher quality, more nuanced, and longer texts, and remember more context present 
in the prior text it is encountering. 

While the predictive base model performance is an interesting ability, after 
exceeding a certain size, even general models start “unlocking” new capabilities. 
For instance, between 10 and 100B parameters, LLMs not trained for the task 
start being able—to some degree—to generate, compile, and run computer code, 
translate between languages, or emit predictions of human behavior. While they 
are less data, compute, and parameter-efficient than specialized models, they have 
been claimed to outperform them, making LLMs particularly interesting as general-
purpose models that, with few-shot transfer learning, can make specialized models 
redundant [4]. Such abilities are commonly referred to as emerging capabilities. 
While metrics of performance on many such specialized tasks improve linearly with 
the model’s size and the training dataset, they are often not noticeable on smaller 
models, meaning that the capabilities of still larger models remain to be seen. 

Overall, the emergent abilities are generally believed to be made possible— 
parameter-wise through a combination of a bigger attention span of the model, 
allowing it to take into account more context, a larger “hidden state,” allowing it 
to encode more different context-continuation matches, and finally, more parallel 
layers that allow learning more different ways to map texts to “hidden states.” 
Conversely, larger unstructured datasets are more likely to contain niche reasoning 
utterances relevant to the problem, such as explaining code or interest in chess 
moves in different contexts. 

However, the existence of the emerging capabilities and their usefulness is still a 
contested topic. Re-analysis of claimed emergent capabilities led some researchers 
to suggest that they are artifacts of the choice of performance metrics rather than 
representative or inherent model capabilities [23]. 

What is less of a contested topic is the ability of larger LLMs to unlock not only 
emerging capabilities but also emerging failure modes. Right around the scale of 
size and training data where LLMs learn to program and play chess games, they 
also acquire bias based on sex, gender, race, religion, and a propensity to insert 
unprompted slurs and toxic discourse into their output [4]. This is not entirely 
surprising. Large unstructured datasets of texts from the Internet might or might 
not contain better chess moves with rationale. However, they will surely contain 
more slurs, toxicity, and fringe extremist content banned from mainstream media 
and social networks. 

With both the expected output quality improvement and the emergent abilities 
requiring larger models, more data, and more compute, and the Transformer 
architecture allowing for efficient parallelization of the training, the race to the best



1 From Deep Neural Language Models to LLMs 13

model through data and compute accumulation kicked off (Chap. 3). However, given 
the amount of computing committed to the largest model, it made sense to check if 
there was an optimal ratio between the model size and the amount of training data 
fed to it. 

Such a trade-off is known as scaling laws—an optimal relationship between the 
model size, dataset size, and computational power investment required to achieve 
the best model performance while minimizing computational expenses. There are 
currently two schools of thought on what this scaling law is. 

Historically, as one of the first teams to venture into the 1B+ models domain, 
OpenAI came up with a scaling law that is approximately 1.7 token/model 
parameter, and computational power requirement multiplied by 4 with every model 
doubling [3]. OpenAI claims that GPT-3 and GPT-4 were both trained according to 
this scaling law. 

More recently, the Google DeepMind team found a more conservative scaling 
law of approximately 10 tokens/parameter with computational power requirement 
similarly multiplied by 4 with every model size doubling [22]. Google used this 
new scaling law to train Chinchilla—a 70B model that outperformed Gopher, a 
280B parameter model trained according to the classical scaling law. Given the 
computational price to train LLMs and infer on them, almost all LLMs released 
since have been trained according to this law—including LLaMA, Falcon, and 
others- are generally referred to as compute-optimal. 

While there is still debate as to which law is preferable, the size of compute-
optimal models track closely the human perception of their performance and 
performance on benchmarks [24]. When considering the training dataset size rather 
than the model size alone, a completely different picture emerges by trimming the 
declared model size to a compute-optimal one with the same size as the training 
dataset. Figure 1.3 shows the progress of the training dataset size for notable 
released models, suggesting an explanation as to why some smaller models are 
known to perform particularly well compared to the models of similar or even 
larger size (RoBERTa, T5, GPT-j, GPT-neo(X), GPT3). In Fig. 1.4, I attempted 
to renormalize notable models to the training dataset size if they were trained 
according to the optimal resource utilization rule. While this renormalization 
dismisses any considerations regarding the dataset’s quality, it allows for an intuitive 
model comparison. 

Unfortunately, there are few replication or ablation studies due to the extreme 
requirements of the computational resources needed to train LLMs. Our under-
standing of LLM performance scaling and emergent possibilities are still evolving 
and will likely change as more affordable hardware allows more researchers and 
practitioners to train and re-train LLMs.
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Fig. 1.3 Progression of the pre-training dataset size for common LLMs over time. The pre-training 
dataset size in tokens has been taken from the model announcement whenever available and 
otherwise estimated at 0.3 tokens/byte, based on the results presented by [25]
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Fig. 1.4 Progression of compute-optimal equivalent LLMs with published architecture and 
training dataset sizes. ChatGPT, GPT-4, and several other common LLMs are excluded for that 
reason
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