Résumé

Building renovation is currently urgent in order to decrease the energy consumption of a building stock. In order to achieve robust renovation scenarios, uncertainty quantification is needed. Climate change scenarios are important factors and need to be included in the analysis. In this paper, three climate change scenarios are applied probabilistically for a renovation scenario using dimensionality reduction techniques and further uncertainty propagation. The results show that RCP2.6 provides more robust results and saves on average 2. 105 CHF and 2. 105kgCO2eq. in a building life cycle comparing to RCP 8.5. The analysis under climate change is also compared to the probabilistic calculations under current climate and the results show the underestimation of both costs and environmental impacts when climate change is not included. It can also be clearly seen that even under the best case of RCP 2.6, building renovation is urgently needed to decrease the environmental impacts and costs.

Détails

Actions

PDF