Résumé
Aims : Drying and rewetting (DRW) often increases soil phosphorus (P) availability. Our aims were to elucidate underlying processes and assess potential plant uptake of released P.
Methods : Using a grassland soil with low available and high microbial P as a model, we studied the contributions of microbial and physicochemical processes to P release by determining DRW effects on i) C:P ratios of nutrient pulses in fresh and sterilized soils, ii) aggregate stability and iii) P forms released upon soil dispersion. Use of the P pulse by maize was examined in a bioassay and a split-root experiment.
Results : The strong P pulse after DRW was larger than that observed for C. Experiments with sterilized soil pointed to a non-microbial contribution to the pulse for P, but not for C. Aggregate disruption after DRW occurred due to slaking, and this released molybdate-reactive and -unreactive P. Maize benefitted from the P pulse only in the bioassay, i.e. when planted after the DRW cycle.
Conclusions : The majority of C and P released upon DRW originated from the microbial biomass, but for P release, physicochemical processes were also important. In the field, the released P would only be available to drought-resistant plants.