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Abstract

A unified numerical framework is presented for the modelling of multiphasic viscoelastic
and elastic flows. The rheologies considered range from incompressible Newtonian or
Oldroyd-B viscoelastic fluids to Neo-Hookean elastic solids. The model is formulated
in Eulerian coordinates. The unknowns are the volume fraction of each phase (liquid,
viscoelastic or solid), the velocity, pressure and the stress in each phase.

A time splitting strategy is applied in order to decouple the advection operators and the
diffusion operators. The numerical approximation in space consists of a two-grid method.
The advection equations are solved with a method of characteristics on a structured grid
of small cells and the diffusion step uses an unstructured coarser finite element mesh.
An implicit time scheme is suggested for the time discretisation of the diffusion step.
Estimates for the time and space discretisation of a simplified model are presented, which
proves unconditional stability.

Several numerical experiments are presented, first for the simulation of one phase flows
with free surfaces. The implicit time scheme is shown to be more efficient than the
explicit one. Then, the model for the deformation of an elastic material is validated for
several test cases. Finally, Signorini boundary conditions are implemented and presented
for the simulation of the bouncing of an elastic ball.

The multiphase model is validated through different test cases. Collisions between
Neo-Hookean elastic solids are explored. Simulations of multiple viscoelastic flows are
presented: an immersed viscoelastic droplet and a Newtonian fluid in a constricted cavity.
The fall of an immersed Neo-Hookean elastic solid into an incompressible Newtonian or
viscoelastic fluid is also presented.

Finally, the one phase model is extended to compressible flows. The method of charac-
teristics is updated in order to solve the advection equations, when the velocity is not
divergence-free. A numerical scheme is proposed and a numerical experiment is presented.

Keywords: computational fluid dynamics, continuum mechanics, Eulerian framework,
free-surface flows, multiphase flows, time-splitting, two-grids, method of characteristics,
finite elements, fluid-structure interactions, weakly compressible flows.
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Résumé

Un modèle numérique unifié est présenté afin de modéliser l’écoulement multiphasique de
fluides viscoélastiques et de solides élastiques avec une surface libre. Les différents types de
rhéologies comprennent les fluides incompressibles Newtoniens, les fluides viscoélastiques
avec un modèle de type Oldroyd-B incompressible et les solides élastiques avec un modèle
de type Neo-Hookéen incompressible. Une formulation Eulerienne est utilisée pour la
modélisation du problème, où les inconnues sont les fractions de volumes de chaque
phase (liquide ou solide), ainsi que la vitesse, la pression et le tenseur de contraintes pour
chaque phase.

Les termes de transport et de diffusion sont découplés à l’aide d’une méthode à pas
fractionnaires (splitting). L’approximation numérique du système d’équations utilise deux
maillages. Une méthode des caractéristiques est utilisée pour résoudre les équations de
transport sur une grille structurée de petites cellules, tandis que les termes de diffusion
sont résolus sur un maillage éléments finis non-structuré plus grossier. Un schéma impli-
cite en temps est proposé pour la discrétisation en temps de l’opérateur de diffusion. Des
résultats de stabilité pour la discrétisation en temps puis en espace sont présentés pour
un modèle simplifié.

Le modèle est validé par différents cas-tests, dans un premier temps en considérant une
unique phase. Nous montrons que notre schéma implicite est plus précis que le schéma
explicite. Ensuite, le modèle de déformation élastique est validé pour différents cas-tests.
Finalement, les conditions de bord de Signorini sont implémentées afin de reproduire le
rebond d’une balle élastique.

Le modèle multiphase est validé à travers différents cas-tests. La simulation de la collision
de deux sphères solides est abordée. L’interaction entre plusieurs fluides viscoélatiques est
étudiée pour une simulation d’écoulement d’une goutte de fluide viscoélastique immergée
dans un fluide newtonien. La simulation de déformation d’un solide Neo-Hookean immergé
dans un fluide incompressible Newtonien ou viscoélastique est aussi présentée.

Finalement, le modèle numérique unifié est étendu aux écoulement faiblement compres-
sibles. La méthode des caractéristiques est adaptée afin de résoudre les équations de
transport, lorsque la divergence de la vitesse ne vaut plus zéro. Une expérience numérique
est présentée.
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Résumé

Mots-clés : mécanique des fluides, mécanique des milieux continus, coordonnées Eule-
riennes, surfaces libres, écoulements multiphase, pas de temps fractionnaire, méthode à
deux grilles, méthodes des caractéristiques, éléments finis, interaction fluide-structure,
écoulement faiblement compressible.
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Introduction

The goal of this thesis is to present a unified model for the simulation of the inter-
actions between fluids and structures with free surfaces. A multiphase formulation is
proposed to model three different types of interactions: fluid-fluid, fluid-structure or
structure-structure. The rheology of the fluids considered are Newtonian and viscoelastic
liquids. Their interaction with multiple elastic solids is formulated in Eulerian coordinates.

This introduction contains four parts. A state-of-the-art of viscoelastic fluids is first
discussed. A quick introduction to continuum mechanics is then presented, emphasizing
the difference between Lagrangian and Eulerian formulations. Multiphase and free
surfaces flows problem are then discussed. Finally, an overview of the present thesis is
described.

Fluid mechanics: viscoelastic fluids

Rheology pertains to the study of material flows and deformations under mechanical
forces. This concerns gas, liquids or solids. However, complex fluids [OP02] exhibit
a different behaviour than the three phases of matter [BAH87, Lar99, CGR16]. As
mentioned in [Lar99], "Specification of a viscosity or an elastic modulus does not even
begin to describe the mechanical properties of such a substance." Examples of such
materials range from different foods like mayonnaise, chocolate but also ice cream, blood
or even computer screens, containing liquid crystals.

Newtonian fluids exhibit a linear relation between the stress and the gradient of the flow
velocity. A fluid is called non-Newtonian when this relation is nonlinear. These relations
can involve high or very low temperature as in glassy liquids or electrorheological fluids,
which can become very viscous under electrical currents. This relation between stress and
strain in the flow implies a change in the viscosity of the fluid. For example, the viscosity
of shear-thinning and thickening fluids respectively decreases or increases under large
velocity gradients. The class of viscoelastic fluids exhibit a non-Newtonian behaviour
in the sense that their relaxation time - the time for the stress to return to zero under
constant-strain condition - is strictly positive. For instance, polymeric fluids, made of
polymer chains, are exhibiting elastic properties.
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Introduction

The mathematical modelling of viscoelastic flows at the macroscopic level uses Navier-
Stokes equation coupled with a constitutive equation for the extra-stress tensor [LL89,
OP02]. This last equation models the elastic behaviour of the material. The Navier-
Stokes equations are based on the principles of the mass and momentum equations, which
read

∂ρ

∂t
+∇ · (ρu) = 0,

ρ

(
∂u

∂t
+ (u · ∇) · u

)
−∇ · T = Fe,

where ρ denotes the density of the fluid, u the velocity of the fluid, T is the tensor of
internal body forces and Fe the external forces. A fluid is said to be incompressible if
its density is constant in time and space. In this case, the velocity of the flow satisfies
∇ · u = 0 [TELB06]. However, this is a mathematical simplification, since all fluids
exhibit compressible behaviour at a certain scale. In this case, the relation between the
density and the pressure in the fluid is defined by an equation of state. Compressible
flows are discussed in chapter 5.

In the case of an incompressible Newtonian fluid, the stress contains the pressure of the
fluid p and is linear with respect to the strain tensor εεε(u) = 1

2(∇u+∇uT ):

T = −pI + 2ηsεεε(u),

where ηs is called the solvent viscosity. For viscoelastic fluids, the following definition of
the stress tensor T is considered

T = −pI + 2ηsεεε(u) + σσσ,

where σσσ is an extra-stress tensor due to the viscoelastic effect. At the microscopic level,
considering polymeric fluids, mathematical models arising from kinetic theories can be
considered [BCP06, LOP11]. In the dumbbells model, polymer chains are modelled as
beads linked by an elastic string. They are not interacting with each other. At the
macroscopic level, this kinetic theory coincides with the so-called Oldroyd-B constitutive
equation

σσσ + λ

(
∂σσσ

∂t
+ (u · ∇)σσσ −∇uσσσ − σσσ∇uT

)
= 2ηpεεε(u),

where ηp, λ > 0 respectively denotes the polymer viscosity and the relaxation time
of the viscoelastic fluid [CGR16]. More realistic is the so-called Finitely Extensible
Nonlinear Elastic (FENE) microscopic model, in which dumbells have finite extensions

2



Introduction

[Lar99, OP02]. At the macroscopic level, the Oldroyd-B model can be generalised:

f(σσσ)σσσ + λ

(
∂σσσ

∂t
+ (u · ∇)σσσ −∇uσσσ − σσσ∇uT

)
= 2ηpεεε(u),

where f can be a function of σσσ and yields more complex models, such as the Giesekus or
Phan-Thien-Tanner (PTT) models [BAH87, Lar99, BCP11], which allow shear-thinning
behaviour.

In viscoelastic flows, the nonlinear terms ∇uσσσ + σσσ∇uT in the Oldroyd-B equation gives
rise to unstabilities in various cases. The most famous one is of contraction 4 : 1, where
a viscoelastic fluid flows into a contracted domain [TCM05, HFK05, KKK+05]. The
non-dimensional Weissenberg number We = λV/L, where V is a characteristic velocity
and L a characteristic length, plays a major role, as instabilities arise when this number
is high. Different methods have been proposed to deal with this problem [BCP11], but
this is not addressed in this thesis. A complete review of the instability problem arising
from the Oldroyd-B model can be found in [SJK+22].

When ηs = 0, even in the absence of the non linear terms ∇uσσσ + σσσ∇uT , stability
issues may be encountered depending on the finite element spaces used for velocity and
extra-stress [FGP97, BPS01]. A remedy is to use the Elastic Viscous Split Stress (EVSS),
which adds an extra-component D = εεε(u) [FGP00, BPS01, PR01, BPL06].

Continuum mechanics

The analysis of a structure has a major role in engineering. Balance principles are the
state of the art from principles of physics, as they allow the mathematical formulation of
continuum mechanics problems [BL19, BC09, Hol02]. In these balance principles, the
relation between the stress and the relative deformation of the material, called strain, is
derived from Newton’s second law of motion and already gives important tools for the
modelling. As examples of different problems, a beam buckles if the applied force reaches
a certain threshold, see Figure 1. For material testing like tensile test, where the material
is loaded until failure, a nonlinear relation between these two quantities can be observed
as a viscoplastic behaviour arises at a strain threshold. Indeed, past a certain strain,
the tensile specimen will not recover its original form as predicted by Hooke’s law and
thus nonlinearity appears. Finally, necking (shrinking of the material under tension) and
failure behaviours are dependent of the material, which could be either ductile (undergo
large strain rates before failing) or brittle (fails quickly at viscoplastic point).

The motion of any given object can be described in Lagrangian and Eulerian coordinates
[Hol02]. Consider Ω0 being the initial configuration of a given material and X ∈ Ω0,
the Lagrangian formulation of displacement is D(X, t) = x(X, t)−X for x being the

3



Introduction

Figure 1 – Buckling of a beam. Left: sketch of beam buckling. Right: Numerical
experiment.

deformation of X at time t. Here a particle in position X ∈ Ω0 is monitored through
time and space. The Cauchy’s first equation of motion in Lagrangian formulation is
described by:

∂

∂t
U −∇ · C̃ = b, where ∂

∂t
D = U ,

where D is the deformation, U is the velocity, C̃ is the Cauchy stress tensor and b is a
vector of external forces. Different models of constitutive laws allow to determine the
material response [Hol02, Ogd97]. The hyperelastic materials are derived from a so-called
Helmholtz free-energy function Ψ of the deformation gradient tensor F̃ [RBJ97]. Indeed,
the stress C̃ is then given as a function of the deformation gradient tensor F̃ , defined as

F̃ (X, t) = ∂x

∂X
(X, t),

so that
∂F̃

∂t
(X, t) = ∇XU(X, t).

One of the most basic constitutive equation shows a linear relation between stress and
strain, similarly as in Hooke’s law, and is called Neo-Hookean model:

C̃ = −pI + µ(F̃ F̃ T − I),

where µ is the Lamé parameter of the material. For small deformations, the compressible
version of the Neo-Hookean model reduces to the linear elasticity equation C̃ = 2µεεε(D) +
λ(∇·D)I, where λ is called the first Lamé parameter. A widely applied constitutive model
for compressible materials is the Saint-Venant Kirchhoff model [Hol02, DR06, Ric13] and
reads

C̃ = J−1F̃ (λtr(Ẽ)I + 2µẼ)F̃ T ,

where J = det(F̃ ) and the tensor Ẽ = 1
2(F̃ T F̃ − I) is called the Green-Lagrange strain

4
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tensor. This model is often used for the simulation of metal deformation [Hol02].

In the Eulerian formulation, the corresponding Eulerian fields are defined as

u(x(X, t), t) = U(X, t)
C(x(X, t), t) = C̃(X, t)
d(x(X, t), t) = D(X, t),
F (x(X, t), t) = F̃ (X, t),

so that the Cauchy’s first equation of motion reads for the Eulerian formulation:

∂

∂t
u+ (u · ∇)u−∇ ·C = b.

Similarly as in fluid dynamics, for incompressible deformation, the velocity u satisfies
∇ · u = 0. The constitutive equations previously introduced for the Lagrangian coordi-
nates can be equally formulated in Eulerian coordinates [DR06, Pic16]. This is further
described in chapter 1.

The Eulerian formulation of continuum mechanics has interests for large deformations of
the structure and when changes of topology of the structure are expected [DD05, Ric13,
TBMG20]. The use of a finite element (FE) method allows to solve the mathematical
problem in complex geometries and high-order FE methods allows to obtain accurate
results [DD05]. It has been widely applied to classical engineering numerical simulations,
such as buckling [TK17, TOG16] and deforming beam [NLCH21]. The use of isogeometric
analysis has also gain in popularity for its ability to reproduce exactly complex geometries
in computational mechanics [TBMG20]. In order to use Lagrangian coordinates for large
deformations, an alternative method has been found by [GM77] to apply fully Lagrangian
formulation using the Smooth Particle Hydrodynamics (SPH) for astrophysics simulation.
It has recently gained popularity for fluid flows or computational mechanics [ZL18, IGP22],
but the enforcement of boundary conditions is difficult and has a large computational
cost.

Multiphase and free-surface flows

The interaction of multiple bodies is ubiquitous in nature, whether they correspond to
fluids and/or solids. The interactions between fluids and structures are of great interest
in different applications. A classical example is the blood flow through veins or the air
flowing into elastic media [DDFQ06, DGN04]. On a larger level we can mention the lifting
effect of air pressure on planes wings or the water effect on immersed part of a sailing
boat, and the wind flow along the sail [PQ05]. Concerning the interactions between
fluids, the behaviour of bubbles in liquids can greatly modify its flow and effects like
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capillarity and are also important to take into account. A difference of densities between
immiscible fluids induces gravity currents and implies for instance the Kelvin-Helmholtz
effect [TCM11]. It happens in a wide range of events in nature, such as meteorology,
wave in oceans, or avalanches. Free-surface flows involve an interface between the fluid
and its surrounding medium, which can be modelled as void and thus implies no force
on the interface. It proves useful when the impact of surrounding air is small enough to
be neglected, as in dam-break simulations [Mar00, ABD08, CBM11]

The numerical simulation of free surface flows allows to model fluid flow and elastic
deformation with reduced computational time. Thus it is nowadays used in a large range of
domains but especially in fluid flows and structure deformations. The numerical simulation
of free surfaces flows is difficult because tracking the interface comes with issues, such as
numerical diffusion, mass conservation or topology changes. Lagrangian coordinates of
the interface or the so-called front-tracking method can be used [TBE+01]. The use of
SPH method has also increased in popularity for free surface flows [FPRA09, XOJL12].
Hybrid method between Lagrangian and Eulerian coordinates like the marker and cell
method allows to obtain advantages of both approaches [MTF+08]. Using Eulerian
coordinates, two methods are mainly used to model free-surface flows. The Volume of
Fluid (VOF) method has been introduced in [HN81]. Here, the fluid is described by a
volume fraction of liquid ϕ, which is the characteristic function of the fluid, and is thus
discontinuous across the interface. The function is transported by the fluid and hence
solves the following equation in the sense of distributions:

∂ϕ

∂t
+ u · ∇ϕ = 0.

Since the characteristic function is tracked in the whole fluid domain, the VOF method
induces a conservation of the mass of the fluid. However, the lack of regularity of ϕ is
the main drawback of the method and hence the level set method was introduced by
[Set96]. The interface corresponds to the zero level set of a smooth level-set function.
Mass conservation is the main challenge of the method. The VOF approach is used
here because of its ability to limit fluid mass loss and thus is of particular interest for
mould filling, glacier flow or jet buckling experiments [Mar00, MPR03, BPL06, Jou10],
as illustrated in Figure 2. In these articles, the SLIC algorithm [NW76] together with a
two grid approach were used to lower the numerical diffusion of the method. Alternative
interface reconstruction methods have been proposed in literature in order to have more
accuracy, see for instance [SZ99, PZ99].

The VOF and level set methods can also be applied to interactions between multiple
fluids. The VOF method remains popular with its ability to conserve mass and with
the relative ease to avoid numerical diffusion [JBCP14, IZN18]. The level set method
can also be applied for multiphase formulations as in [VdPSVW05, MBY22] or coupled
with VOF method [SLSO08]. Multiple Newtonian and viscoelastic phases flows allow
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Figure 2 – Jet-buckling experiment. A Newtonian (left) and a viscoelastic (right) fluid
are injected in a cavity and buckle when touching the bottom of the cavity. The elastic
effect due to extra-stress term yields a bouncing of the viscoelastic fluid.

the modelling of complex natural relations which are of particular interest in industries
but also to medical applications and the use of the VOF method conserving the total
mass of the fluids is the main argument [FOA+16, LHPCP19]. Numerical models for the
simulation of the interactions between Newtonian fluids are nowadays widely known and
used in multiple applications. Incorporating viscoelastic fluids is less frequent, but has
already been seen in literature [SLSO08, FOA+16, XAX19, LHPCP19, VG20].

Fluid-structure interactions

Fluid-structure interactions (FSI) have also been widely studied [STD+96, CGN05,
NGA+19, OR21] using different numerical methods. The Arbitrary Lagrangian Eulerian
method (ALE) is used for its ability to enlighten the advantages of both Lagrangian and
Eulerian framework [DDFQ06] [HLZ81, AÖ10]. The mesh is moved as particles with the
fluid velocity in Lagrangian coordinates, while it is fixed in Eulerian coordinates. In
ALE method, the mesh is moving arbitrarily with a different speed than the flow velocity.
Using this method, the interface between the fluid and the structure follows the mesh
velocity, which enhances the precision at the interface [DGN04].

The immersed boundary method allows to model large deformations of thin structure
as flags or filaments [RHC15, LHS15, MWY+20], which is a major drawback of fully
Eulerian formulation for multiphase model. The simulation of more than two phases is of
greater complexity and hence is rarely seen in literature. Some examples can be found in
[dNKM07, JBCP14]. The interaction between viscoelastic fluids and elastic solids (VFSI)
also has been studied [MWY+20, He21]. The Eulerian formulation of the problem is less
frequent but is efficiently simulating large deformations of the structures [DR06, Ric13].
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Interactions between structures

Simulation for the contact between elastic bodies in order to capture, e.g., friction,
lubrication, fretting fatigue and wear is of high importance and is referred to tribology.
An overview can be found in [HPMR04, VYS+18] and, for example, FE simulations of
tight elastic knots [BJS+21, JGB+21]. The traditional way to deal with FE simulations
in tribology is to use Lagrangian coordinates and the elastic structure theory. Micro-
scopically, big disparities at the surface between the bodies appear in friction problems.
The discretisation of these disparities using Eulerian finite element methods can lead to
large errors and require a huge accuracy. Thus this family of numerical methods is of
proper usage when applied to large deformations and under the hypothesis of relatively
flat surfaces.

Overview of the thesis

In this thesis, we further analyse the unified model suggested in [Pic16], where we can
consider incompressible Newtonian and viscoelastic flows, or the deformation of incom-
pressible Neo-Hookean material. The numerical scheme developed in [MPR03, BPL06]
is advocated. It consists in a time-splitting algorithm for the time discretisation and a
two-grid approach for the space discretisation. A novel time discretisation is proposed,
taking advantage of the unified model. The model is validated for different test-cases.

The model of [JBCP14] for the simulation of multiple immiscible incompressible Newto-
nian phases is then extended in order to model phases which can be either an incom-
pressible Newtonian or viscoelastic fluids, or an incompressible Neo-Hookean elastic solid.
The model is then applied to different numerical experiments. The thesis is structured in
the following manner.

In chapter 1, the unified mathematical model of [Pic16] is presented and the numerical
framework is explained. The numerical scheme is based on a splitting strategy for the
system of equations [Glo03] and a two-grid approach, as in [MPR03, Bon06]. An original
time discretisation is suggested in order to increase the accuracy and obtain the uncondi-
tional stability of the scheme. A stability analysis is performed on a simplified model in
order to compare the original EVSS scheme used in [BPL06] with the proposed alternative.

In chapter 2, both time discretisations described earlier are compared for viscoelastic
flows and in different engineering validation test cases. The validation of the elastic
model for incompressible Neo-Hookean material is presented through different test cases.
The use and implementation of the Signorini boundary conditions is detailed.

In chapter 3, a multiple phase model for multiple viscoelastic fluids flows and elastic solid
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deformations with free surfaces is presented. The approach presented in [JBCP14] is
adapted to the unified model, where multiple different phases interact with each other. A
VOF method with several volume fraction of liquids is adopted, with adapted numerical
algorithms to reduce numerical diffusion.

In chapter 4, various numerical simulations obtained using our multiphase model are
presented. Convergence of our numerical scheme is presented for different type of inter-
actions, being either fluid-fluid, fluid-structure or structure-structure interactions.

Finally in chapter 5, the unified model is extended in order to model weakly compress-
ible free surfaces flows for viscoelastic fluids and including compressible Neo-Hookean
materials.
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1 Numerical modelling of incom-
pressible viscoelastic free-surface
flows: from Newtonian fluids to
elastic solids
In [BPL06], a model for the simulation of incompressible viscoelastic free surface flows has
been presented. In [Pic16], the model is extended to include the flow of an incompressible
Neo-Hookean elastic solid in Eulerian coordinates. In this chapter, this unified model is
presented and its numerical approximation is studied. The order one splitting algorithm
and the space discretisation using the two-grid approach studied in [BPL06] is applied.
An original implicit time discretisation of the diffusion operator is presented as well as
the numerical analysis of a simplified problem.

1.1 The mathematical model

Let Λ be a cavity of R3 in which a fluid is contained and let T > 0 be the final time
of the simulation. Let ϕ : Λ × [0, T ] → {0, 1} be the volume fraction of fluid, i.e. ϕ
equals 1 in the fluid and 0 in what is modelled as the surrounding vacuum. Thus the
function ϕ(·, t) denotes the characteristic function of the liquid region, which is defined
by Ω(t) = {x ∈ Λ;ϕ(x, t) = 1} for 0 ≤ t ≤ T . Finally let QT be the space-time domain
containing the fluid

QT = {(x, t) ∈ Λ× (0, T ); x ∈ Ω(t)}.

The function ϕ is transported with the fluid velocity u and is solution of the following
equation in the weak sense [Mar00]:

∂ϕ

∂t
+ u · ∇ϕ = 0, in Λ× [0, T ]. (1.1a)

In the fluid region, the velocity field u : QT → R3, the pressure field p : QT → R and
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the extra-stress tensor field σσσ : QT → R3×3 satisfy:

ρ

(
∂u

∂t
+ (u · ∇)u

)
− 2ηs∇ · εεε(u) +∇p−∇ · σσσ = ρg, in QT , (1.1b)

∇ · u = 0, in QT , (1.1c)

ασσσ + λ

(
∂σσσ

∂t
+ (u · ∇)σσσ −∇uσσσ − σσσ∇uT

)
= 2ηpεεε(u), in QT . (1.1d)

Here ρ is the density, g is the gravity, ηs ≥ 0 is the solvent viscosity, ηp > 0 and λ are
respectively the polymer viscosity and the relaxation time, and εεε(u) = 1

2(∇u+∇uT ).
The additional parameter α ∈ {0, 1} allows the system of equations (1.1) to model
different problems:

1. Setting α = 1 and λ = 0, the system of equations reduces to a system of Navier-
Stokes equations for incompressible Newtonian flow with viscosity ηs + ηp.

2. Setting α = 1 and λ > 0, the equation (1.1d) is the standard Oldroyd-B equation
modelling the extra-stress of a viscoelastic fluid.

3. When α = 0, λ > 0 and ηs = 0, the equation (1.1d) allows to model an elastic
incompressible solid in Eulerian coordinates.

In order to justify point 3., let us introduce the Cauchy stress tensor of an elastic solid.
Consider Ω0 = Ω(0) being the initial configuration of a given material and X ∈ Ω0. First,
the Lagrangian formulation of displacement is

x(X, t)−X =
∫ t

0
u(x(X, s), s) ds (1.2)

where x is the deformation of X at time t and u(x, t) the velocity at position x and
time t. From equations (1.1a) and (1.2), the characteristic function ϕ satisfies

ϕ(x(X, t), t) = ϕ(X, 0), (1.3)

forX ∈ Ω0. The deformation gradient tensor in Lagrangian coordinates F̃ : Ω0× [0, T ]→
R3×3 is defined for all X ∈ Ω0 by

F̃ij(X, t) = ∂xi
∂Xj

(X, t), i, j = 1, 2, 3.

By deriving in space and time the displacement equation (1.2), it yields

∂F̃

∂t
(X, t) = ∇u(x(X, t), t)F̃ (X, t). (1.4)

We now define F : QT → R3×3 to be the deformation gradient tensor in Eulerian

12



1.1. The mathematical model

coordinates as F (x(X, t), t) = F̃ (X, t), so that (1.4) becomes

∂F

∂t
+ u · ∇F = ∇uF . (1.5a)

Now let σσσ be the Neo-Hookean elastic stress tensor, as defined in [DR06]:

σσσ = ηp
λ

(FF T − I), (1.5b)

where I is the identity tensor. The modified Oldroyd-B equation (1.1d) for α = 0, λ > 0
then arises from (1.5a) and (1.5b). Indeed, taking the convected derivative

(
∂
∂t + u · ∇

)
of (1.5b) we find

∂σσσ

∂t
+ (u · ∇)σσσ = ηp

λ

((
∂F

∂t
+ (u · ∇)F

)
F T + F

(
∂F T

∂t
+ (u · ∇)F T

))

so that using (1.5a), we obtain

∂σσσ

∂t
+ (u · ∇)σσσ −∇uσσσ − σσσ∇uT = 2ηp

λ
εεε(u). (1.6)

Hence, when the parameter α = 0, the tensor σσσ models the Cauchy stress tensor of an
incompressible Neo-Hookean elastic solid. Notice that the ratio ηp/λ denotes here the
Lamé parameter for an incompressible solid.

The initial and boundary conditions added to (1.1) are the following. At initial time,
both the velocity u0 = u(·, 0) and extra-stress σσσ0 = σσσ(·, 0) are prescribed in Ω0. For
0 ≤ t ≤ T , the free surface at time t is defined as ∂Ω(t)\∂Λ. It is assumed that no force
apply at the free surface: (−pI + 2ηsεεε(u)) + σσσ)n = 0, where n is the unit outer normal
of ∂Ω(t)\∂Λ. On ∂Λ either zero tangent force (free slip), zero normal force or no slip
boundary conditions can be prescribed. The free slip condition writes on ∂Λ:

((−pI + 2ηsεεε(u) + σσσ)n) · t = 0,
u · n = 0,

where t denotes any vector tangent to ∂Λ. Signorini boundary conditions can also be
applied on ∂Λ, see section 2.3.1. Finally in the case of inflow boundary conditions the
velocity and extra stress must be prescribed at the inflow boundary: u = uin and σσσ = σσσin
on Γin = {x ∈ ∂Λ; (u · n)(x, t) < 0}. A sketch of the main features of the mathematical
model is shown in Figure 1.1.

13



Chapter 1. Numerical modelling of incompressible viscoelastic free-surface
flows: from Newtonian fluids to elastic solids

Λ

ϕ(x, t) = 1

ϕ(x, t) = 0

Ω(t)

u(x, t), p(x, t),
σσσ(x, t)

n(x)
t(x)

free-surface ∂Ω(t)\∂Λ

Figure 1.1 – Sketch of the mathematical model at time t. The characteristic function
ϕ determines the position Ω(t) of the material. The free-surface corresponds to the set
where the function ϕ exhibits a discontinuity. The smooth variables u, p and σσσ take
values in the material domain Ω(t).

1.2 An a priori estimate

Consider the momentum equation (1.1b). Since u is not defined on the whole domain Λ,
we define in a formal way the product of (1.1b) with ϕu, integrated on Λ, as:∫

Λ
ϕρu ·

(
∂u

∂t
+ (u · ∇)u

)
dx =

∫
Ω(t)

uρ ·
(
∂u

∂t
+ (u · ∇)u

)
dx.

From Reynold’s transport Theorem A.0.1 in Appendix A, since the normal component
of the velocity of the interface equals that of the fluid [Mar00], we find:

d
dt

∫
Λ
ϕρ|u|2 dx = d

dt

∫
Ω(t)

ρ|u|2 dx =
∫

Ω(t)
2ρ∂u
∂t
· u dx+

∫
∂Ω(t)

ρ|u|2(u · n) dS

=
∫

Ω(t)
2ρ∂u
∂t
· u dx+

∫
Ω(t)
∇ · (ρ|u|2u) dx (1.7)

=
∫

Ω(t)

(
2ρu ·

(
∂u

∂t
+ (u · ∇)u

)
+ ρ|u|2(∇ · u)

)
dx.

Similarly:

−
∫

Λ
ϕ (2ηs∇ · εεε(u)−∇p+∇ · σσσ) · u dx = −

∫
Ω(t)

(2ηs∇ · εεε(u)−∇p+∇ · σσσ) · u dx

=
∫

Ω(t)
(2ηsεεε(u)− pI + σσσ) : εεε(u) dx

−
∫
∂Ω(t)

u · (2ηsεεε(u)− pI + σσσ)n dS (1.8)

=
∫

Ω(t)
2ηs|εεε(u)|2 − p(∇ · u) + σσσ : εεε(u) dx

=
∫

Λ

(
2ηs|εεε(u)|2 + σσσ : εεε(u)

)
ϕ dx,
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since u = 0 on ∂Λ and free-surfaces interface condition (2ηsεεε(u) + σσσ)n − pn = 0 on
∂Ω(t)\∂Λ. Finally from (1.1c), we obtain with formal computations:

d
dt

∫
Λ
ϕ
ρ

2 |u|
2 dx+

∫
Λ

(
2ηs|εεε(u)|2 + σσσ : εεε(u)

)
ϕ dx =

∫
Λ
ϕρg · u dx. (1.9)

Consider now the equation (1.1d). Using the same formal computation we find∫
Λ
αϕ|σσσ|2 dx+

∫
Λ
λϕ

(
∂σσσ

∂t
+ (u · ∇)σσσ

)
: σσσ dx−

∫
Λ

2ηpϕεεε(u) : σσσ dx− λS(u,σσσ, ϕ)

=
∫

Ω(t)
α|σσσ|2 dx+

∫
Ω(t)

λ

(
∂σσσ

∂t
+ (u · ∇)σσσ

)
: σσσ dx−

∫
Ω(t)

2ηpεεε(u) : σσσ dx− λS(u,σσσ, ϕ)

with S(u,σσσ, ϕ) =
∫

Λ
ϕ
(
∇uσσσ + σσσ∇uT

)
: σσσ dx. Hence, using the same computations

than for (1.7) and using (1.1c), it yields:

d
dt

∫
Λ
ϕ|σσσ|2 dx =

∫
Λ

2ϕσσσ :
(
∂σσσ

∂t
+ (u · ∇)σσσ

)
dx.

And we obtain:∫
Λ

α

2ηp
ϕ|σσσ|2 dx+ d

dt

∫
Λ

λ

4ηp
ϕ|σσσ|2 dx−

∫
Λ
ϕεεε(u) : σσσ dx = λ

2ηp
S(u,σσσ, ϕ). (1.10)

Summing (1.7) and (1.10), it yields:

d
dt

∫
Λ

(
ρ|u|2 + λ

2ηp
|σσσ|2

)
ϕ dx+

∫
Λ

(
α

ηp
|σσσ|2 + 4ηs|εεε(u)|2

)
ϕ dx

=
∫

Λ
2ρϕg · u dx+ λ

ηp
S(u,σσσ, ϕ) (1.11)

The nonlinear terms expressed by S(u,σσσ, ϕ) do not allow the energy of the system to
be conserved [BPL06]. The term S(u,σσσ, ϕ) disappear when applied to co-rotational
Oldroyd-B model [LM00]. Finally, results on energy estimates for the Oldroyd-B model
can be found in [LO03].

1.3 An order one splitting scheme for the time discretisa-
tion

The splitting scheme considered in [Glo03, MPR03, BPL06] is used. Let ∆t be the time
step, N be the number of time steps, ∆t = T/N and tn = n∆t, n = 0, 1, . . . , N . Let n ≥ 1
and assume that at time tn−1, the approximated volume fraction ϕn−1 : Λ→ R is known.
The approximated material domain is then defined by Ωn−1 = {x ∈ Λ;ϕn−1(x) = 1}.
Let un−1 : Ωn−1 → R3 and σσσn−1 : Ωn−1 → R3×3 respectively be the approximations of
the velocity u(tn−1) and extra-stress tensor σσσ(tn−1). During the prediction step, the set
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of advection equations from tn−1 to tn is solved:

∂v

∂t
+ (v · ∇)v = 0, (1.12a)

∂τττ

∂t
+ (v · ∇)τττ = 0, (1.12b)

∂ψ

∂t
+ (v · ∇)ψ = 0, (1.12c)

with initial conditions

v(tn−1) = un−1, τττ(tn−1) = σσσn−1, ψ(tn−1) = ϕn−1.

Dirichlet boundary conditions for the system of equations (1.12) are only prescribed if
inflow boundary conditions apply on Γin. The system of equations (1.12) can be solved
exactly using the method of characteristics. Indeed, for x : Ωn−1 × [tn−1, tn] → Λ, we
have ∂

∂t
x(X, t) = v(x(X, t), t) (similar as in (1.2)) and from (1.12a), v is constant along

the characteristic line:

d
dtv(x(X, t), t) = ∂

∂t
v(x(X, t), t) +

(
∂

∂t
x(X, t) · ∇

)
v(x(X, t), t) = 0.

This yields v(x(X, t), t) = v(X, tn−1) = un−1(X, tn−1), tn−1 ≤ t ≤ tn. But from
equation (1.2), we find

x(X, t) = X +
∫ t

tn−1
v(x(X, s), s) ds = X + (t− tn−1)un−1(X, tn−1).

Thus v(X+(t−tn−1)un−1(X, tn−1), t) = un−1(X, tn−1). Let us denote by un−
1
2 ,σσσn−

1
2 , ϕn

the solutions at time tn of (1.12). We thus have for all X ∈ Ωn−1:

un−
1
2 (X + ∆tun−1(X)) = un−1(X), (1.13a)

σσσn−
1
2 (X + ∆tun−1(X)) = σσσn−1(X), (1.13b)

ϕn(X + ∆tun−1(X)) = ϕn−1(X). (1.13c)

The computational domain is then updated, Ωn = {x ∈ Λ;ϕn(x) = 1} and the correction
step consists in finding v : Ωn × [tn−1, tn] → R3, q : Ωn × [tn−1, tn] → R and τ :
Ωn × [tn−1, tn]→ R3×3 which satisfy

ρ
∂v

∂t
− 2ηs∇ · εεε(v) +∇q −∇ · τ = ρg, (1.14a)

∇ · v = 0, (1.14b)

ατ + λ

(
∂τ

∂t
−∇vτ − τ∇vT

)
= 2ηpεεε(v), (1.14c)
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with initial conditions v(tn−1) = un−
1
2 and τ (tn−1) = σσσn−

1
2 . On the interface ∂Ωn, the

boundary conditions are similar to those discussed at the end of section 1.1 (no-slip,
zero normal force, zero tangential force). The approximation of velocity, pressure and
extra-stress at time tn are then updated by un = v(tn), pn = q(tn) and σσσn = τ (tn). A
sketch of both steps of the splitting algorithm is shown in Figure 1.2.

un−1

ϕn−1

σσσn−1

Prediction
step

un−
1
2

ϕn

σσσn−
1
2

Correction
step

un

ϕn

σσσn

Figure 1.2 – Sketch of the main steps of splitting algorithm. In the prediction step, the
fluid domain is updated with (1.13c) for the characteristic function ϕn. The velocity and
extra-stress tensor are first transported with (1.13a) and (1.13b), then updated to un
and σσσn during the correction step, by solving (1.14).

1.4 Space discretisation: two-grid approach and algorithms

The systems (1.12) and (1.14) are of very different nature, hyperbolic and parabolic
respectively. A two-grid approach is used to solve them with different methods. The
method of characteristics used to solve (1.12) is implemented on a structured grid of
small cubic cells of size h, whereas (1.14) is solved on a tetrahedral unstructured mesh
using finite elements of larger size H, see Figure 1.3.

The choice h small and H large is motivated as follows. First, a high accuracy is needed
to track the interface, since ϕ is discontinuous (1 in the liquid, 0 in the vaccum). A grid
of small size h allows to reduce the numerical diffusion on ϕ and have enough precision
on the free-surface. Finally, the method of characteristics is easily implemented on a
structured grid, without having to solve a linear system. Since the velocity and stress are
smooth inside the material domain, the use of finite elements with a coarser grid of size
H allows to save computational time. Moreover, cavities with complex topologies can
be considered and the boundary conditions can be easily enforced. In [MPR03, BPL06],
numerical experiments have shown that the ratio between H and h should be between 3
and 5.
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Prediction step Correction step

Figure 1.3 – Two-grid approach. The two grids are the same for all time steps. Left:
fine structured grid of small cells to solve the prediction step (1.12). Right: coarse
unstructured finite element mesh to solve the correction step (1.14).

1.4.1 Prediction step: structured grid

Consider a grid of cubic cells Cijk with center xijk. Let ϕn−1
ijk ∈ [0, 1] be the approximated

value of the characteristic function ϕ ∈ {0, 1} at time tn−1 in each cell Cijk, for all indices
i, j, k. Also, we define un−1

ijk and σσσn−1
ijk to be the approximation of respectively the velocity

u and the extra-stress tensor σσσ. The prediction step consists now in implementing (1.13)
on the grid. For (1.13c), the value ϕn−1

ijk of the cells is shifted by the distance ∆tun−1
ijk

and its content is redistributed between the intersected cells. The Figure 1.4 illustrates
an example in two space dimensions. The values of ϕn−1

ijk u
n−1
ijk and ϕn−1

ijk σσσ
n−1
ijk are also

advected according to (1.13a) and (1.13b).

∆tun−1
ij

ϕn−1
ij

16

3ϕn−1
ij

16

3ϕn−1
ij

16

9ϕn−1
ij

16

ϕn−1
ij = 1

Figure 1.4 – Advection of characteristic function. The value in ϕn−1
ij is redistributed with

respect to the intersecting cells.

In order to reduce the numerical diffusion at the interface, a SLIC (Simple Linear Interface
Calculator) procedure is applied. Introduced by [NW76], the algorithm is applied before
the advection of the characteristic function ϕn−1

ijk . For each cell where 0 < ϕnijk < 1,
its initial volume h3 is reduced in a smaller parallelepiped of volume ϕn−1

ijk h
3, which

dimensions depend on the value of ϕn−1 in the surrounding neighbour cells [MPR03].
It is then pushed on the boundary of the cell which is common to another fully filled
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cell, see an example in Figure 1.6 and 1.5. Thus the volume does not spread during the
advection and numerical diffusion is lowered [MPR03], see Figure 1.6 for a 2D illustration.

a

b

Figure 1.5 – In this example, the cell in the middle has a value 0 < ϕn−1
ij < 1. We have

0 < ϕn−1
i+1,j , ϕ

n−1
i,j+1 < 1 and ϕn−1

i−1,j , ϕ
n−1
i,j−1 = 0. In this case, the interface in the cell Cij is

defined as a rectangle a× b, with a

b
=
ϕn−1
i+1,j

ϕn−1
i,j+1

and ab = h2ϕn−1
ij , see [MPR03] for details.

∆tun−1
ij

ϕn−1
ij = 0.5

∆tun−1
ij

ϕn−1
ij = 1

Figure 1.6 – Left: Illustration of numerical diffusion during the prediction step. Right: A
sketch of SLIC algorithm to reduce numerical diffusion. Rather than advecting a cell
half filled, half of the cell is completely filled, then the half cell is advected.

It may occur that ϕnijk > 1, although the flow is divergence-free. Furthermore, the predic-
tion step can send liquid cells outside the cavity Λ and hence those must be redistributed
into the cavity. The decompression algorithm proposed in [MPR03, BPL06] is applied.
The procedure is the following: for all cells such that ϕnijk > 1 or which are advected out
of the domain, the leftovers are stored in a buffer. This buffer is used to fill the cells
which are not completely filled after advection and the SLIC procedure (0 < ϕnijk < 1).
If the buffer is not empty, the remaining value is stored until the next time step.

The CFL number at time tn is defined as

CFL =
max
i,j,k
|unijk| ·∆t

h
. (1.15)

The method of characteristics has the important property to remain stable, even for a
CFL number larger than 1. However, if the time step is too large, the splitting error
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increases. In practice, the CFL number is taken between 1 and 10.

In Figure 1.7, a sketch of the implementation of inflow boundary condition is displayed.
In order to let the material flow into the cavity, cells are created in a volume (a surface in
the 2D sketch of Figure 1.7) outside the cavity Λ of depth ∆tuin and of width and length
corresponding to the inflow surface. The values of the velocity uijk and the extra-stress
σσσijk in these inflow cells corresponds to the inflow values uin and σσσin respectively. They
are then transported using the method of characteristics during the prediction step, as
described previously.

∆tuin

ϕn−1
ij = 1 ϕn−1

ij = 0

Λ

Figure 1.7 – Implementation of inflow boundary conditions. A zone of fully filled cells
of length ∆tuin is created on the other side of the inflow surface. The cells are then
transported using the method of characteristics during the prediction step.

1.4.2 Interpolation between cells and FE mesh

Let H > 0 and TH be a mesh of the cavity Λ, with tetrahedron having maximum diameter
H. In order to compute the correction step, ϕnijk,u

n− 1
2

ijk ,σσσ
n− 1

2
ijk are then interpolated from

the grid to the FE mesh. The interpolation algorithm is based on inverse distance
weighted method introduced in [Fra82] and has already been used in, i.e., [LPS+18]. In
the latter, the distance is taken to be the squared distance, thus giving less weight to the
most distant cells. Thus the VOF value at node P of the mesh is computed as

ϕnH(P ) =

∑
K∈TH
P∈K

∑
xijk∈K

ϕn
ijk

‖P−xijk‖2

∑
K∈TH
P∈K

∑
xijk∈K

1
‖P−xijk‖2

. (1.16)

We can now define the set of active elements and the computational domain as:

Ωn
H = {K ∈ TH : there is a vertex of K such that ϕnH(P ) ≥ 0.5}. (1.17)
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The predicted velocity is then interpolated as

u
n− 1

2
H (P ) =

∑
K∈TH
P∈K

∑
xijk∈K

ϕn
ijku

n− 1
2

ijk

‖P−xijk‖2

∑
K∈TH
P∈K

∑
xijk∈K

ϕn
ijk

‖P−xijk‖2

. (1.18)

A similar formula as (1.18) is applied to interpolate the extra-stress.

Remark 1.4.1. In [Mar00], the characteristic function, the velocity and extra-stress
tensor are interpolated using an approximate L2 projection as follows:

ϕnH(P ) =

∑
K∈TH
P∈K

∑
xijk∈K

φP (xijk)ϕnijk∑
K∈TH
P∈K

∑
xijk∈K

φP (xijk)
, (1.19)

where φP is the finite element basis function corresponding to vertex P and

u
n− 1

2
H (P ) =

∑
K∈TH
P∈K

∑
xijk∈K

φP (xijk)ϕnijku
n− 1

2
ijk∑

K∈TH
P∈K

∑
xijk∈K

φP (xijk)ϕnijk
(1.20)

and similarly as (1.20) for the extra-stress. A numerical experiment in Appendix B shows
that both interpolation methods have the same convergence rate but the inverse distance
weighted method is more precise. Thus this method has been preferred over the classical
L2 projection (1.20). �

After the correction step (see section 1.4.3 hereafter), interpolation of the velocity and
extra-stress from the FE mesh to the grid is performed. Here, the inverse distance
weighted method yields:

unijk =

∑
P∈K

xijk∈K

un
H(P )

‖P−xijk‖2

∑
P∈K

xijk∈K

1
‖P−xijk‖2

(1.21)

and similarly as (1.21) for the extra-stress. The interpolation formula (1.21) is only
applied to the active cells, that is those such that ϕnijk > 0.

1.4.3 Correction step: finite elements

In order to save computational time, equations (1.14a) and (1.14b) are decoupled from
equation (1.14c). A possible order one scheme corresponding to (1.14) which enables
the decoupling between the velocity-pressure variables and the extra-stress consists in
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finding un : Ωn → R3 and pn : Ωn → R such that

ρ
un − un−

1
2

∆t − 2ηs∇ · εεε(un) +∇pn −∇ · σσσn−
1
2 = ρg, in Ωn, (1.22a)

∇ · un = 0, in Ωn, (1.22b)

and then σσσn : Ωn → R3×3 such that

ασσσn + λ

(
σσσn − σσσn−

1
2

∆t −∇unσσσn−
1
2 − σσσn−

1
2 (∇un)T

)
= 2ηpεεε(un), in Ωn. (1.22c)

This scheme is unfortunately unstable when ηs = 0. The EVSS scheme was introduced
for the stationary case in the context of Oldroyd-B system of equations (α = 1)[RAB90].
It has been widely studied [FGP00, BPS01, BPL06] and consists in adding

Dn− 1
2 = εεε(un−

1
2 ) (1.23)

to equation (1.22a) for stability purposes. It then leads to finding un : Ωn → R3 and
pn : Ωn → R such that

ρ
un − un−

1
2

∆t − 2(ηs + ηp)∇ · εεε(un) +∇pn −∇ ·
(
σσσn−

1
2 − 2ηpDn− 1

2
)

= ρg, (1.24a)

∇ · un = 0, (1.24b)

then finding σσσn : Ωn → R3×3 to solving (1.22c).

The tensor Dn− 1
2 requires to store 6 additional variables during computations. Further-

more, we can expect a conditional stability of the numerical scheme when the extra-stress
tensor is taken explicitely in (1.24a). An alternative scheme is presented here. We start
from the semi-implicit scheme

ρ
un − un−

1
2

∆t − 2ηs∇ · εεε(un) +∇pn −∇ · σσσn = ρg, in Ωn, (1.25a)

∇ · un = 0, in Ωn, (1.25b)

ασσσn + λ

(
σσσn − σσσn−

1
2

∆t −∇un−
1
2σσσn−

1
2 − σσσn−

1
2 (∇un−

1
2 )T

)
= 2ηpεεε(un), in Ωn. (1.25c)

A major drawback of (1.25) is that the equations for un, pn and σσσn are now coupled.
Fortunately, we can explicit σσσn from (1.25c) and substitute it in (1.25a) to decouple
the computation of un, pn from that of σσσn. Thus, we first find un : Ωn → R3 and
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pn : Ωn → R such that

ρ
un − un−

1
2

∆t − 2
(
ηs + ηp∆t

λ+ α∆t

)
∇ · εεε(un) +∇pn = λ

λ+ α∆t∇ · σ
σσn−

1
2

+ λ∆t
λ+ α∆t∇ · (∇u

n− 1
2σσσn−

1
2 + σσσn−

1
2 (∇un−

1
2 )T ) + ρg, in Ωn. (1.25d)

and then σσσn : Ωn → R3×3 satisfying (1.22c) instead of (1.25c), since the velocity has
been updated.

Consider now the finite element discretization of the systems of equations (1.24) and
(1.25) for a discretisation TH . The active domain Ωn

H is defined in (1.17). For the sake
of simplicity, the FE spaces are described when no-slip boundary conditions apply on
∂Λ ∩ ∂Ωn

H and when ∂Ωn 6= ∂Λ, so that the pressure is not defined up to a constant.
The piecewise linear finite element spaces read:

V n
H = {v ∈ (C0(Ωn

H))3;v K ∈ (P1(K))3,∀K ∈ TH ,K ⊂ Ωn
H ; v ∂Λ∩Ωn

H
= 0}, (1.26a)

QnH = {q ∈ C0(Ωn
H); q K ∈ P1(K), ∀K ∈ TH ,K ⊂ Ωn

H}, (1.26b)

T nH = {τττ ∈ (C0(Ωn
H))3×3;τττ K ∈ (P1(K))3×3, ∀K ∈ TH ,K ⊂ Ωn

H}. (1.26c)

We consider un−
1
2

H ∈ V n
H and σσσn−

1
2

H ∈ T nH computed by using the method of characteristics
after the prediction step, see 1.4.2. For the explicit EVSS time discretisation scheme
(1.24), we first compute the EVSS stabilization tensor by projection of the strain tensor
onto T nH :
Find Dn− 1

2
H ∈ T nH such that∫

Ωn
H

D
n− 1

2
H : τττH dx =

∫
Ωn

H

εεε(un−
1
2

H ) : τττH dx, ∀τH ∈ T nH . (1.27a)

Then we recover the velocity unH and the pressure pnH by solving the following system of
equations:
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Find unH ∈ V n
H , pnH ∈ QnH such that

∫
Ωn

H

ρ
unH − u

n− 1
2

H

∆t · vH dx+
∫

Ωn
H

2(ηs + ηp)εεε(unH) : εεε(vH) dx−
∫

Ωn
H

pnH∇ · vH dx

=
∫

Ωn
H

(2ηpD
n− 1

2
H − σσσn−

1
2

H ) : εεε(vH) dx+
∫

Ωn
H

ρg · vH dx, ∀vH ∈ V n
H , (1.27b)

∫
Ωn

H

(∇ · unH)qH dx (1.27c)

+
∑

K∈TH
K⊂Ωn

H

αK

∫
K

(
∇pnH −∇ · σσσ

n− 1
2

H − ρg
)
· ∇qH dx = 0, ∀qH ∈ QnH .

The local stabilization coefficients αk are defined by

αK =


|K|

2
3

12(ηs + ηp)
if ReK ≤ 3,

|K|
2
3

4ReK(ηs + ηp)
otherwise,

where the local Reynolds number ReK is defined by

ReK = ρ|K|
1
3 maxx∈K |u

n− 1
2

H (x)|
2(ηs + ηp)

.

This stabilization parameter has been studied in the context of stationary Stokes problems
with GLS stabilization, see, e.g., [FH93]. Alternative stabilisation methods could be used
for evolutionary problems [TS03]. Then the extra-stress tensor σσσnH ∈ T nH is computed by
solving:∫

Ωn
H

σσσnH : τττH dx =
∫

Ωn
H

λ

λ+ α∆tσ
σσ
n− 1

2
H : τττH dx

+
∫

Ωn
H

λ∆t
λ+ α∆t(∇u

n
Hσσσ

n− 1
2

H + σσσ
n− 1

2
H (∇unH)T ) : τττH dx (1.27d)

+
∫

Ωn
H

2ηp∆t
λ+ α∆tε

εε(unH) : τττH dx, ∀τH ∈ T nH .

Consider now the semi-implicit scheme (1.25). The decoupling strategy applied in (1.25d)
is now applied here to obtain an explicit formulation with respect to the extra-stress
tensor. So the implicit fully discrete formulation of the problem (1.25d) is the following:
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Find unH ∈ V n
H , pnH ∈ QnH such that

∫
Ωn

H

ρ
unH − u

n− 1
2

H

∆t · vH dx+
∫

Ωn
H

2
(
ηs + ηp∆t

λ+ α∆t

)
εεε(unH) : εεε(vH) dx

−
∫

Ωn
H

pnH∇ · vH dx =
∫

Ωn
H

ρg · vH dx−
∫

Ωn
H

λ

λ+ α∆tσ
σσ
n− 1

2
H : εεε(vH) dx (1.28a)

−
∫

Ωn
H

λ∆t
λ+ α∆t(∇u

n− 1
2

H σσσ
n− 1

2
H + σσσ

n− 1
2

H (∇un−
1
2

H )T ) : εεε(vH) dx, ∀vH ∈ V n
H ,

∫
Ωn

H

(∇ · unH)qH dx (1.28b)

+
∑

K∈TH
K⊂Ωn

H

αK

∫
K

(
∇pnH −

λ

λ+ α∆t∇ · σ
σσ
n− 1

2
H − ρg

)
· ∇qH dx = 0, ∀qH ∈ QnH .

The stabilisation terms in the equation (1.28b) do not fully correspond to the diffusion
terms in (1.25d), introducing a lack of consistency. However, numerical results show
empirically that these additional terms do not improve stability of the results, and
were thus removed. In the next step, we solve the weak formulation of the Oldroyd-B
equation (1.27d) to recover the extra-stress tensor σσσnH ∈ T nH . The coefficient αK in
(1.28b) becomes:

αK =



|K|
2
3

12
(
ηs + ηp

∆t
λ+α∆t

) if ReK ≤ 3

|K|
2
3

4ReK
(
ηs + ηp

∆t
λ+α∆t

) otherwise,

where the local Reynolds number ReK is defined by

ReK = ρ|K|
1
3 maxx∈K |u

n− 1
2

H (x)|
2
(
ηs + ηp

∆t
λ+α∆t

) .

Indeed, this definition for the coefficients αK is motivated by the modification of the
viscosity in (1.25d) and (1.28a), by the modified viscosity ηs + ηp

∆t
λ+α∆t . Numerical

experiments have shown that the system is better stabilized using this definition.

The linear systems corresponding to (1.27b), (1.27c) or (1.28a), (1.28b) are solved using a
Generalised minimal residual (GMRES) algorithm with an incomplete LU preconditioner.
The mass matrix is approximated using mass lumping, thus the linear systems (1.27a)
and (1.27d) are diagonal.
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1.5 Analysis of a simplified model for the time discretisa-
tion

Stability and convergence of the time discretisation schemes for a simplified system of
equations are now studied. The domain is considered entirely filled with liquid (ϕ = 1
in Λ and thus Λ = Ω(t) = Ω, for 0 ≤ t ≤ T ). The system (1.1) is considered, where all
convective and nonlinear terms are removed:

ρ
∂u

∂t
− 2ηs∇ · εεε(u) +∇p−∇ · σσσ = 0, in Ω× [0, T ], (1.29a)

∇ · u = 0, in Ω× [0, T ], (1.29b)

ασσσ + λ
∂σσσ

∂t
= 2ηpεεε(u), in Ω× [0, T ], (1.29c)

u = 0, on ∂Ω× [0, T ]. (1.29d)

Formal calculations are now used to prove a priori estimates for this model. Multiplying
(1.29a)-(1.29c) respectively by u, p, σσσ and integrating over space yields

d
dt

∫
Ω

(
ρ|u|2 + λ

2ηp
|σσσ|2

)
dx+

∫
Ω

(
4ηs|εεε(u)|2 + α

ηp
|σσσ|2

)
dx = 0. (1.30)

When ηs = 0, the εεε(u) term vanishes in the above equality; thus we need another estimate.
Let us take the time derivative of (1.29a):

ρ
∂2u

∂t2
− 2ηs∇ · εεε

(
∂u

∂t

)
+∇∂p

∂t
−∇ · ∂σ

σσ

∂t
= 0.

Then adding λ times the above equation to α times (1.29a) and eliminating σσσ using
(1.29c) yields

ρλ
∂2u

∂t2
+ ρα

∂u

∂t
− 2ηsλ∇ · εεε

(
∂u

∂t

)
+ λ∇∂p

∂t
+ α∇p− 2(αηs + ηp)∇ · εεε(u) = 0. (1.31)

Multiplying by ∂u

∂t
and integrating on Ω yields

1
2

d
dt

∫
Ω

(
ρλ

∣∣∣∣∂u∂t
∣∣∣∣2 + 2(αηs + ηp)|εεε(u)|2

)
dx

+
∫

Ω

(
ρα

∣∣∣∣∂u∂t
∣∣∣∣2 + 2ηsλ

∣∣∣∣εεε(∂u∂t
)∣∣∣∣2
)

dx = 0.
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Integrating from t = 0 to t = T yields

∫
Ω

(
ρλ

∣∣∣∣∂u∂t (T )
∣∣∣∣2 + 2(αηs + ηp)|εεε(u)(T )|2

)
dx

+
∫ T

0

∫
Ω

(
2ρα

∣∣∣∣∂u∂t
∣∣∣∣2 + 4ηsλ

∣∣∣∣εεε(∂u∂t
)∣∣∣∣2
)

dx dt (1.32)

=
∫

Ω

(
ρλ

∣∣∣∣∂u∂t (0)
∣∣∣∣2 + 2(αηs + ηp)|εεε(u)(0)|2

)
dx.

Hence we are able to bound the εεε(u) term even when α = ηs = 0. Such a stability
estimate is usually dedicated to wave equations, where the control is made on the time
derivative of u. This is not surprising, since the simplified unified model (1.29) is hy-
perbolic when α = ηs = 0 and describes wave propagation, whereas it is parabolic when
either α or ηs are not 0. Note that (1.31) corresponds to a modified fluid dynamics
equation, first derived in [CR81, CM72] for α = 1 and with the additional convective
terms. Some convergence results were proven in [RS12a, RS12b].

Let ∆t be the time step, N be the number of time steps such that ∆t = T/N and
tn = n∆t, n = 0, 1, . . . , N . The two different numerical schemes (1.24) and (1.25) for
the time discretisations are considered here for the reduced system (1.29), and stability
estimates analogous to (1.32) are obtained for each of them. The EVSS scheme consists
in finding un and pn in Ω such that

ρ
un − un−1

∆t − 2(ηs + ηp)∇ · εεε(un) +∇pn = ∇ · (σσσn−1 − 2ηpDn−1), (1.33a)

∇ · un = 0, (1.33b)

then σσσn and Dn such that

ασσσn + λ

(
σσσn − σσσn−1

∆t

)
= 2ηpεεε(un), (1.33c)

Dn = εεε(un) (1.33d)

Given u0 ∈ H1
0 (Ω)3 and σσσ0 ∈ L2(Ω)3×3, for n = 1, . . . , N , let un, pn and σσσn to be the

unique weak solution of (1.33) and further assume that un ∈ H1
0 (Ω)3, pn ∈ L2

0(Ω) and
σσσn ∈ L2(Ω)3×3. The following Proposition shows the conditional stability of the EVSS
scheme (1.33), which corresponds to the discrete counterpart of (1.30) and (1.32).

Proposition 1.5.1. Consider the EVSS scheme (1.33). For ηs, ηp > 0, if ∆t ≤ λ, we
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have ∫
Ω

(
ρ|uN |2 + λ

4ηp
|σσσN |2

)
dx (1.34)

≤
∫

Ω

(
ρ|u0|2 + λ

2ηp
|σσσ0|2

)
dx+ ∆t

∫
Ω

(
3ηp|εεε(u0)|2 + α+ 1

4ηp
|σσσ0|

)
dx.

Furthermore, if α = 1, we have for all ∆t > 0

∫
Ω

ρλ
2

∣∣∣∣∣uN − uN−1

∆t

∣∣∣∣∣
2

+ 2ηpλ∆t
∣∣∣∣∣εεε
(
uN − uN−1

∆t

)∣∣∣∣∣
2

+ 2(ηs + ηp)|εεε(uN )|2
 dx

+
N−1∑
n=1

∆t
∫

Ω

ρ ∣∣∣∣∣un − un−1

∆t

∣∣∣∣∣
2

+ 2ηsλ
∣∣∣∣∣εεε
(
un − un−1

∆t

)∣∣∣∣∣
2
 dx (1.35)

≤
∫

Ω

ρλ
2

∣∣∣∣∣u1 − u0

∆t

∣∣∣∣∣
2

+ 2ηpλ∆t
∣∣∣∣∣εεε
(
u1 − u0

∆t

)∣∣∣∣∣
2

+ 2(ηs + ηp)|εεε(u1)|2
 dx.

If α = 0 and ∆t ≤ λ(ηs + 2ηp)/ηp, we have

∫
Ω

ρλ ∣∣∣∣∣uN − uN−1

∆t

∣∣∣∣∣
2

+ ηp|εεε(uN )|2 + ηp|εεε(uN−1)|2
 dx (1.36)

≤
∫

Ω

ρλ ∣∣∣∣∣u1 − u0

∆t

∣∣∣∣∣
2

+ ηp|εεε(u1)|2 + ηp|εεε(u0)|2 + (2ηp + ηs)λ∆t
∣∣∣∣∣εεε
(
u1 − u0

∆t

)∣∣∣∣∣
2
 dx

Proof. The weak formulation of the system of equations (1.33) yields for n = 1, . . . , N :
Find un ∈ H1

0 (Ω)3, pn ∈ L2
0(Ω) and σσσn ∈ L2(Ω)3×3 such that:∫

Ω
ρ
un − un−1

∆t · v dx+ 2(ηs + ηp)
∫

Ω
εεε(un) : εεε(v) dx (1.37a)

−
∫

Ω
pn(∇ · v) dx+

∫
Ω

(σσσn−1 − 2ηpDn−1) : εεε(v) dx = 0, ∀v ∈ H1
0 (Ω)3,

∫
Ω

(∇ · un)q dx = 0, ∀q ∈ L2
0(Ω), (1.37b)

∫
Ω
ασσσn : τ dx+

∫
Ω
λ
σσσn − σσσn−1

∆t : τ dx (1.37c)

−
∫

Ω
2ηpεεε(un) : τ dx = 0, ∀τ ∈ L2(Ω)3×3

∫
Ω
Dn : τ dx−

∫
Ω
εεε(un) : τ dx = 0, ∀τ ∈ L2(Ω)3×3. (1.37d)
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By choosing v = un + un−1 in (1.37a) and τ = σσσn + σσσn−1 in (1.37c), we obtain:∫
Ω

ρ

∆t(|u
n|2 − |un−1|2) dx+ 2(ηs + ηp)

∫
Ω

(
|εεε(un)|2 + εεε(un) : εεε(un−1)

)
dx

−
∫

Ω
pn∇ · (un + un−1) dx+

∫
Ω
σσσn−1 : (εεε(un) + εεε(un−1)) dx

−
∫

Ω
2ηpεεε(un−1) : (εεε(un) + εεε(un−1)) dx = 0∫

Ω

α

2ηp
(|σσσn|2 + σσσn : σσσn−1) dx+

∫
Ω

λ

2ηp∆t
(|σσσn|2 − |σσσn−1|2) dx =

∫
Ω
εεε(un) : (σσσn + σσσn−1) dx,

where the EVSS tensor Dn−1 is eliminated using (1.33d). The pressure terms are
eliminated using (1.37b) for q = pn; and summing both equations yields

∫
Ω

(
ρ|un|2 + λ

2ηp
|σσσn|2

)
dx+ α∆t

2ηp

∫
Ω

(
|σσσn|2 + σσσn : σσσn−1

)
dx

+ ∆t
∫

Ω

(
2(ηs + ηp)|εεε(un)|2 + 2ηsεεε(un) : εεε(un−1) dx+ σσσn−1 : εεε(un−1)

)
dx

=
∫

Ω

(
ρ|un−1|2 + λ

2ηp
|σσσn−1|2

)
dx+ ∆t

∫
Ω

(
2ηp|εεε(un−1)|2 + σσσn : εεε(un)

)
dx.

Using Young’s inequality, we obtain∫
Ω

2(ηs + ηp)|εεε(un)|2 + 2ηsεεε(un) : εεε(un−1) dx ≥
∫

Ω
(ηs + 2ηp)|εεε(un)|2 − ηs|εεε(un−1)|2 dx

and
α

2ηp

∫
Ω
|σσσn|2 + σσσn : σσσn−1 dx ≥ α

4ηp

∫
Ω
|σσσn|2 − |σσσn−1|2 dx.

This yields

∫
Ω

(
ρ|un|2 + λ

2ηp
|σσσn|2

)
dx+ ∆t

∫
Ω

(
α

4ηp
|σσσn|2 + (ηs + 2ηp)|εεε(un)|2 − σσσn : εεε(un)

)
dx

≤
∫

Ω

(
ρ|un−1|2 + λ

2ηp
|σσσn−1|2

)
dx

+ ∆t
∫

Ω

(
α

4ηp
|σσσn−1|2 + (ηs + 2ηp)|εεε(un−1)|2 − σσσn−1 : εεε(un−1)

)
dx ≤ · · · ≤

∫
Ω

(
ρ|u0|2 + λ

2ηp
|σσσ0|2

)
dx+ ∆t

∫
Ω

(
α

4ηp
|σσσ0|2 + (ηs + 2ηp)|εεε(u0)|2 − σσσ0 : εεε(u0)

)
dx.

From
∆t
∫

Ω
σσσn : εεε(un) dx ≤ ∆t

4ηp
‖σσσn‖2L2(Ω)3×3 + ∆tηp ‖εεε(un)‖2L2(Ω)3×3 ,
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we find for n = N :∫
Ω

(
ρ|uN |2 + 2λ−∆t

4ηp
|σσσN |2

)
dx+ ∆t

∫
Ω

(
α

4ηp
|σσσN |2 + (ηs + ηp)|εεε(uN )|2

)
dx

≤
∫

Ω

(
ρ|u0|2 + λ

2ηp
|σσσ0|2

)
dx+ ∆t

∫
Ω

(
α+ 1
4ηp

|σσσ0|2 + (ηs + 3ηp)|εεε(u0)|2
)

dx.

which, for ∆t ≤ λ, yields (1.34).

For the second result, the goal is to get rid of the extra-stress tensor σσσn by using (1.33c).
Taking λ times the difference between two steps of (1.37a) plus α times (1.37a) gives:

∫
Ω
ρλ
un+1 − 2un + un−1

∆t2 · v dx+
∫

Ω
2(ηs + ηp)λεεε

(
un+1 − un

∆t

)
: εεε(v) dx

−
∫

Ω

(
λ
pn+1 − pn

∆t + αpn+1
)

(∇ · v) dx

+
∫

Ω
λ

(
σσσn − σσσn−1

∆t − 2ηp
Dn −Dn−1

∆t

)
: εεε(v) dx+

∫
Ω
ρα
un+1 − un

∆t · v dx

+
∫

Ω
2(ηs + ηp)αεεε(un+1) : εεε(v) dx+

∫
Ω
α(σσσn − 2ηpDn) : εεε(v) dx = 0.

Using τ = εεε(v) in (1.37c) and (1.37d) to eliminate respectively σσσn,σσσn−1 and Dn,Dn−1,
we find:∫

Ω
ρλ
un+1 − 2un + un−1

∆t2 · v dx+
∫

Ω
2(ηs + ηp)λεεε

(
un+1 − un

∆t

)
: εεε(v) dx

−
∫

Ω

(
λ
pn+1 − pn

∆t + αpn+1
)

(∇ · v) dx (1.38)

−
∫

Ω
2ληpεεε

(
un − un−1

∆t

)
: εεε(v) dx+

∫
Ω
ρα
un+1 − un

∆t · v dx

+
∫

Ω
2(ηs + ηp)αεεε(un+1) : εεε(v) dx+

∫
Ω

2ηp(1− α)εεε(un) : εεε(v) dx = 0.

If α = 1, setting v = un+1−un in (1.38) and using a(a−b) = 1
2a

2− 1
2b

2+ 1
2(a−b)2, we find:
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∫
Ω

ρλ

2

∣∣∣∣∣un+1 − un

∆t

∣∣∣∣∣
2

+ ρλ

2

∣∣∣∣∣un+1 − 2un + un−1

∆t

∣∣∣∣∣
2

+ (ηs + ηp)|εεε(un+1)|2 + (ηs + ηp)|εεε(un+1 − un)|2

+ 2ηpλ∆t
∣∣∣∣∣εεε
(
un+1 − un

∆t

)∣∣∣∣∣
2

+ 2ηpλ∆t
∣∣∣∣∣εεε
(
un+1 − 2un + un−1

∆t

)∣∣∣∣∣
2

dx

+ ∆t
∫

Ω
ρ

∣∣∣∣∣un+1 − un

∆t

∣∣∣∣∣
2

+ 2ηsλ
∣∣∣∣∣εεε
(
un+1 − un

∆t

)∣∣∣∣∣
2

dx

=
∫

Ω

ρλ
2

∣∣∣∣∣un − un−1

∆t

∣∣∣∣∣
2

+ (ηs + ηp)|εεε(un)|2

+2ηpλ∆t
∣∣∣∣∣εεε
(
un − un−1

∆t

)∣∣∣∣∣
2
 dx.

The pressure terms cancel out by use of the equation (1.37b) for q = {pn+1, pn}. Summing
from n = 1 to n = N − 1, we obtain (1.35).

If α = 0, setting v = un+1 − un−1 in (1.38), we obtain:

∫
Ω

ρλ

2

∣∣∣∣∣un+1 − un

∆t

∣∣∣∣∣
2

+ 2ηpλ∆t
∣∣∣∣∣εεε
(
un+1 − un

∆t

)∣∣∣∣∣
2

+ 2ηpεεε(un) : εεε(un+1 − un−1)

+ 2ηsλ∆tεεε
(
un+1 − un

∆t

)
: εεε
(
un+1 − un−1

∆t

)
dx

=
∫

Ω

ρλ

2

∣∣∣∣∣un − un−1

∆t

∣∣∣∣∣
2

+ 2ηpλ∆t
∣∣∣∣∣εεε
(
un − un−1

∆t

)∣∣∣∣∣
2

dx.

Since a2 − b2 ≤ 2a(a+ b) we have∣∣∣∣∣εεε
(
un+1 − un

∆t

)∣∣∣∣∣
2

−
∣∣∣∣∣εεε
(
un − un−1

∆t

)∣∣∣∣∣
2

≤ 2εεε
(
un+1 − un

∆t

)
: εεε
(
un+1 − un−1

∆t

)

and

2εεε(un) : εεε(un+1 − un−1) = 2εεε(un) : εεε(un+1 − un) + εεε(un) : εεε(un − un−1)

=
∣∣∣εεε(un+1)

∣∣∣2 − |εεε(un)|2 −
∣∣∣εεε(un+1 − un)

∣∣∣2
+ |εεε(un)|2 −

∣∣∣εεε(un−1)
∣∣∣2 +

∣∣∣εεε(un − un−1)
∣∣∣2 .
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It yields

∫
Ω

ρλ

2

∣∣∣∣∣un+1 − un

∆t

∣∣∣∣∣
2

+ (2ηp + ηs)λ∆t
∣∣∣∣∣εεε
(
un+1 − un

∆t

)∣∣∣∣∣
2

+ ηp|εεε(un+1)|2 + ηp|εεε(un)|2 −∆t2ηp

∣∣∣∣∣εεε
(
un+1 − un

∆t

)∣∣∣∣∣
2

dx

≤
∫

Ω

ρλ

2

∣∣∣∣∣un − un−1

∆t

∣∣∣∣∣
2

+ (2ηp + ηs)λ∆t
∣∣∣∣∣εεε
(
un − un−1

∆t

)∣∣∣∣∣
2

+ ηp|εεε(un)|2 + ηp|εεε(un−1)|2 −∆t2ηp

∣∣∣∣∣εεε
(
un − un−1

∆t

)∣∣∣∣∣
2

dx.

Summing from n = 1 to n = N − 1 and assuming ∆t ≤ λ(2ηs + ηs)/ηp yields (1.36). �

Let us now consider the implicit scheme (1.25) for the linearized system (1.29):
Find un, pn and σσσn in Ω such that

ρ
un − un−1

∆t − 2ηs∇ · εεε(un) +∇pn −∇ · σσσn = 0, (1.39a)

∇ · un = 0, (1.39b)

ασσσn + λ

(
σσσn − σσσn−1

∆t

)
= 2ηpεεε(un). (1.39c)

Similarly as for the EVSS scheme (1.33), given u0 ∈ H1
0 (Ω)3 and σσσ0 ∈ L2(Ω)3×3, for

n = 1, . . . , N , let un, pn and σσσn to be the unique weak solution of (1.39) and further
assume that un ∈ H1

0 (Ω)3, pn ∈ L2
0(Ω) and σσσn ∈ L2(Ω)3×3. In this case, the following

Proposition proves the unconditional stability of the scheme. Unlike the Proposition
(1.5.1) for the EVSS scheme, it corresponds to the exact discrete counterpart of (1.30)
and (1.32):

Proposition 1.5.2. Consider the implicit scheme (1.39). For all ∆t > 0, ηs ≥ 0, ηp >
0, α = {0, 1}, we have:

∫
Ω

(
ρ|uN |2 + λ

2ηp
|σσσN |2

)
dx+

N∑
n=1

∆t
∫

Ω

(
4ηs|εεε(un)|2 + α

ηp
|σσσn|2

)
dx (1.40)

≤
∫

Ω

(
ρ|u0|2 + λ

2ηp
|σσσ0|2

)
dx.
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and

∫
Ω

(
ρλ

∣∣∣∣∣uN − uN−1

∆t

∣∣∣∣∣
2

+ 2(ηsα+ ηp)|εεε(uN )|2
)

dx (1.41)

≤
∫

Ω

(
ρλ

∣∣∣∣∣u1 − u0

∆t

∣∣∣∣∣
2

+ 2(ηsα+ ηp)|εεε(u1)|2
)

dx.

Proof. The weak formulation of the system of equations (1.39) yields for n = 1, . . . , N :∫
Ω
ρ
un − un−1

∆t · v dx+
∫

Ω
2ηsεεε(un) : εεε(v) dx (1.42a)

−
∫

Ω
pn(∇ · v) dx+

∫
Ω
σσσn : εεε(v) dx = 0, ∀v ∈ H1

0 (Ω)3,

∫
Ω

(∇ · un)q dx = 0, ∀q ∈ L2
0(Ω), (1.42b)

∫
Ω
ασσσn : τ dx+

∫
Ω
λ
σσσn − σσσn−1

∆t : τ dx (1.42c)

−
∫

Ω
2ηpεεε(un) : τ dx = 0, ∀τ ∈ L2(Ω)3×3.

By substituting the test functions in the system of equations (1.42) respectively by
v = un, q = pn and τ = σσσn, we obtain using the formula 2(a− b)a = a2 − b2 + (a− b)2:∫

Ω

ρ

2∆t · (|u
n|2 − |un−1|2 + |un − un−1|2) dx+ 2ηs

∫
Ω
|εεε(un)|2 dx−

∫
Ω
pn(∇ · un) dx

+
∫

Ω
σσσn : εεε(un) dx = 0, (1.43a)∫

Ω
(∇ · un)pn dx = 0, (1.43b)

∫
Ω
α|σσσn|2 dx+

∫
Ω

λ

2∆t · (|σ
σσn|2 − |σσσn−1|2 + |σσσn − σσσn−1|2) dx

−
∫

Ω
2ηpεεε(un) : σσσn dx = 0. (1.43c)

Substituting (1.43b), (1.43c) into (1.43a), it yields:∫
Ω
ρ
|un|2 − |un−1|2

∆t + λ

2ηp
|σσσn|2 − |σσσn−1|2

∆t dx+
∫

Ω
4ηs|εεε(un)|2 + α

ηp
|σσσn|2 dx

+ ∆t
∫

Ω

ρ ∣∣∣∣∣un − un−1

∆t

∣∣∣∣∣
2

+ λ

2ηp

∣∣∣∣∣σσσn − σσσn−1

∆t

∣∣∣∣∣
2
 dx = 0.

The first result is obtained by summing for n = 1 to N .
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For the second result, we proceed as in the previous Proposition. Let us take the scalar
product of (1.39a) with a test function v ∈ H1

0 (Ω)3, integrate over Ω and take the
difference between two consecutive time steps. We obtain∫

Ω
ρ
un+1 − 2un + un−1

∆t · v dx+
∫

Ω
2ηsεεε

(
un+1 − un

)
: εεε(v) dx

−
∫

Ω

(
pn+1 − pn

)
(∇ · v) dx+

∫
Ω

(σσσn+1 − σσσn) : εεε(v) dx = 0. (1.44)

Then we take λ/∆t times the above equation, add it to α times the weak formulation of
(1.39a):

∫
Ω
ρλ
un+1 − 2un + un−1

∆t2 · v dx+
∫

Ω
2ηsλεεε

(
un+1 − un

∆t

)
· εεε(v) dx

−
∫

Ω

(
λ
pn+1 − pn

∆t + α∇pn+1
)

(∇ · v) dx+
∫

Ω
ρα
un+1 − un

∆t · v dx (1.45)

+
∫

Ω
2ηsαεεε(un+1) : εεε(v) dx+

∫
Ω

(
ασσσn+1 + λ

σσσn+1 − σσσn

∆t

)
: εεε(v) dx = 0.

The pressure terms are cancelled out by equation (1.42b). Using v = un+1 − un in
(1.45) and τ = εεε(un+1−un) in (1.42c), we can also eliminate the extra-stress terms, and
applying the formulas (a− b)a = 1

2a
2 − 1

2b
2 + 1

2(a− b)2, it yields:

∫
Ω

ρλ

2

∣∣∣∣∣un+1 − un

∆t

∣∣∣∣∣
2

+ ρλ

2

∣∣∣∣∣un+1 − 2un + un−1

∆t

∣∣∣∣∣
2

+ (ηsα+ ηp)|εεε(un+1)|2

+ (ηsα+ ηp)|εεε(un+1)− εεε(un)|2 dx

+ ∆t
∫

Ω
ρα

∣∣∣∣∣un+1 − un

∆t

∣∣∣∣∣
2

+ 2ηsλ
∣∣∣∣∣εεεun+1 − un

∆t

∣∣∣∣∣
2

dx

≤
∫

Ω

ρλ

2

∣∣∣∣∣un − un−1

∆t

∣∣∣∣∣
2

+ (ηsα+ ηp)|εεε(un)|2 dx.

Summing from n = 1 to n = N − 1 we obtain the result. �

Remark 1.5.1. The results obtained from Propositions 1.5.1 and 1.5.2 do not give
stability estimates only related to data, but estimates also involving the first iterate
of the solution at time t1. To obtain those estimates, using more formal computation,

we start from the strong momentum equation (1.39a) that we multiply by u
n − un−1

∆t ,
integrate on Ω and use (1.39c):
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∫
Ω
ρ

∣∣∣∣∣un − un−1

∆t

∣∣∣∣∣
2

dx− 2
(
ηs + ηp∆t

λ+ α∆t

)∫
Ω

(∇ · εεε (un)) ·
(
un − un−1

∆t

)
dx

+
∫

Ω
∇pn ·

(
un − un−1

∆t

)
dx

=
(

λ

λ+ α∆t

)∫
Ω

(∇ · σσσn−1) ·
(
un − un−1

∆t

)
dx

Using the no-slip boundary conditions and the incompressibility condition, we obtain for
n = 1

∫
Ω
ρ

∣∣∣∣∣u1 − u0

∆t

∣∣∣∣∣
2

dx+
(2ηs

∆t + 2ηp
λ+ α∆t

)∫
Ω
εεε
(
u1
)

: εεε
(
u1 − u0

)
dx

=
(

λ

λ+ α∆t

)∫
Ω

(∇ · σσσ0) ·
(
u1 − u0

∆t

)
dx.

Using the formula 2(a − b)a = a2 − b2 + (a − b)2 and the Cauchy-Schwarz and Young
inequalites, we obtain for n = 1

∫
Ω

ρ

2

∣∣∣∣∣u1 − u0

∆t

∣∣∣∣∣
2

dx+
∫

Ω

(
ηs
∆t + ηp

λ+ α∆t

)
|εεε(u1)|2 dx

≤
∫

Ω

(
ηs
∆t + ηp

λ+ α∆t

)
|εεε(u0)|2 dx (1.46)

+
∫

Ω

(
λ

λ+ α∆t

)2 1
2ρ |∇ · σ

σσ0|2 dx.

This stability estimate blow off when ∆t goes to 0, except in the case of ηs = 0. Thus we
can formulate the final estimate, which depends on the parameter ηs: when ηs > 0, the
estimate (1.40) gives control on the L2 norm of the velocity, the extra-stress tensor and
the gradient of the velocity.

In the case of ηs = 0, then we obtain using the estimates (1.41) and (1.46):

∫
Ω

ρλ ∣∣∣∣∣uN − uN−1

∆t

∣∣∣∣∣
2

+ 2ηp|εεε(uN )|2
 dx

(1.41)
≤

∫
Ω

ρλ ∣∣∣∣∣u1 − u0

∆t

∣∣∣∣∣
2

+ 2ηp|εεε(u1)|2
 dx

≤
∫

Ω

ρ(λ+ α∆t)
∣∣∣∣∣u1 − u0

∆t

∣∣∣∣∣
2

+ 2ηp|εεε(u1)|2
 dx

(1.46)
≤

∫
Ω

(
2ηp|εεε(u0)|2 + λ2

ρ(λ+ α∆t) |∇ · σ
σσ0|2

)
dx.
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We can obtain a similar result for the EVSS scheme, which is a conditionally stable
scheme in time. Take the scalar product of (1.33a) with (un − un−1)/∆t, integrate over
Ω and use homogeneous Dirichlet boundary conditions. From Proposition 1.5.1 and using
analogous computations as for the implicit scheme, we have for ∆t ≤ λ and α ∈ {0, 1}:

∫
Ω

(
ρλ

∣∣∣∣∣uN − uN−1

∆t

∣∣∣∣∣
2

+ 2(αηs + ηp)|εεε(uN )|2
)

dx

≤
∫

Ω

(
2ληs + ηp

∆t + 1
) ∣∣∣εεε(u0)

∣∣∣2 dx+
∫

Ω

λ

ρ

∣∣∣∇ · (σσσ0 − εεε(u0))
∣∣∣2 dx.

�

The two following Propositions prove some convergence results for the implicit time
discretisation solution of (1.39). First, the convergence for the time approximation of u
and σσσ is proved.

Proposition 1.5.3. Assume that the weak solution of the problem (1.29)
u ∈ L2((0, T );H1

0 (Ω)3) ∩H2((0, T );L2(Ω)3), p ∈ L2((0, T );L2
0(Ω))

and σσσ ∈ H2((0, T );L2(Ω)3×3). Let n > 0, ∆t > 0, tn = n∆t and un, pn,σσσn be the unique
weak solution of the implicit time scheme (1.39). Then, ∃C > 0 independent of the time
step ∆t such that:

ρ
∥∥∥u(tN )− uN

∥∥∥2

L2(Ω)3
+ λ

2ηp

∥∥∥σσσ(tN )− σσσN
∥∥∥2

L2(Ω)3×3
(1.47)

+ ∆t
N∑
n=1

(
4ηs ‖εεε(u(tn)− un)‖2L2(Ω)3×3 + α

2ηp

∥∥∥σσσ(tN )− σσσN
∥∥∥2

L2(Ω)3×3

)
≤ C∆t2.

Proof in Appendix C.1

In the case of ηs = 0, a convergence result for ∂u
∂t and εεε(u) is proven for the implicit

scheme (1.39).

Proposition 1.5.4. Assume that the weak solution of the problem (1.29)
u ∈ L2((0, T );H1

0 (Ω)3) ∩H3((0, T );L2(Ω)3), p ∈ L2((0, T );L2
0(Ω))

and σσσ ∈ H2((0, T );H(div)(Ω)3×3). Let n > 0, tn = n∆t and un, pn,σσσn be the unique
weak solution of the implicit time scheme (1.39). Then, ∃C > 0 independent of the time
step ∆t such that:
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ρλ

∥∥∥∥∥(u(tN )− u(tN−1))
∆t − u

N − uN−1

∆t

∥∥∥∥∥
2

L2(Ω)3

+ 2(ηsα+ ηp)
∥∥∥εεε(u(tN )− uN )

∥∥∥2

L2(Ω)3×3

+ ∆t
N∑
n=1

(
ρα

∥∥∥∥∥(u(tn)− u(tn−1))
∆t − u

n − un−1

∆t

∥∥∥∥∥
2

L2(Ω)3

(1.48)

+ 4ηs

∥∥∥∥∥εεε
(

(u(tn)− u(tn−1))
∆t − u

n − un−1

∆t

)∥∥∥∥∥
2

L2(Ω)3×3

)

≤ ρλ
∥∥∥∥∥u(t1)− u1

∆t

∥∥∥∥∥
2

L2

+ 2(ηsα+ ηp)
∥∥∥εεε(u(t1)− u1)

∥∥∥2

L2
+ C∆t2 + h.o.t.,

where h.o.t. denote higher order terms. Proof in Appendix C.2

The results proved in both Propositions (1.5.3) and (1.5.4) are the convergence counterpart
of the results (1.40) and (1.41) of Proposition (1.5.2). The equation (1.48) however relies
on the error on the first step, which can be eliminated using an analogous computation
as in Remark 1.5.1.

Remark 1.5.2. Numerical experiments show that the EVSS scheme is less accurate
when α = 0, ηs = 0 and the ηp/λ is very large (recall that ηp/λ is the Lamé coefficient
for an incompressible material). To understand this, consider the simplified model (1.29)
and the set of parameters for the incompressible Neo-Hookean elastic solid (ηs = 0, λ > 0
and α = 0). It yields by applying this set of parameter to (1.31):

ρ
∂2u

∂t2
+∇∂p

∂t
− 2ηp

λ
∇ · εεε(u) = 0. (1.49)

This equation corresponds to a wave equation for the wave displacement u. Consider the
EVSS scheme (1.33) in the case ηs = α = 0:

ρ
un+1 − 2un + un−1

∆t2 − 2ηp∆t∇ ·
(
εεε

(
un+1 − 2un + un−1

∆t2

))

+∇
(
pn+1 − pn

∆t

)
− 2ηp

λ
∇ · εεε(un) = 0.

and compare to the implicit scheme (1.45) in the case ηs = α = 0 it yields:

ρ
un+1 − 2un + un−1

∆t2 +∇
(
pn+1 − pn

∆t

)
− 2ηp

λ
∇ · εεε(un+1) = 0. (1.50)

Therefore, the EVSS scheme carries an extra term corresponding to the time discretisation
of −2ηp∆t∇ · εεε

(
∂2u
∂t2

)
, thus we can anticipate that the implicit scheme should be more

accurate than the EVSS scheme when ηp is large. This will be confirmed by numerical
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experiments. �

1.6 Analysis of the free-surface flow model for the time
discretisation

In this section, we compute the discrete counterpart of the a priori estimate (1.11). Let
N ∈ R∗, ∆t = T/N and tn = n∆t. Let n > 0 and consider the implicit time discretisation
scheme (1.25) of the diffusive system of equation (1.14) the correction step. Let ϕn at
time tn and Ωn = {x ∈ Λ;ϕn(x) = 1}. The initial and boundary conditions are similar
as described at the end of sections 1.1 and 1.3. The velocity un−

1
2 and extra-stress

σσσn−
1
2 were previously computed together with ϕn in the prediction step (1.12). For

tn−1 ≤ t ≤ tn, the free surface is defined as ∂Ωn\∂Λ. It is assumed that no force apply
at the free surface: (−pnI + 2ηsεεε(u)) + σσσn)n = 0, where n is the unit outer normal of
∂Ωn\∂Λ. On ∂Λ, no slip boundary conditions (u = 0) are prescribed. Similarly as in
section 1.2, since un is not defined on the whole domain Λ, we define in a formal way
the product of (1.1b) with ϕu, then integrate on Λ, as:

∫
Λ
ρϕn

un − un−
1
2

∆t · un dx =
∫

Ω(t)
ρ
un − un−

1
2

∆t · un dx.

Hence, taking the scalar product of (1.25a) with ϕnun, (1.25b) with ϕnpn, (1.25c) with
ϕnσσσn and integrating over the whole domain Λ yields

−
∫

Λ
ϕnun · (∇ · (2ηsεεε(un)− pnI − σσσn)) dx+

∫
Λ
ρϕn

un − un−
1
2

∆t · un dx

=
∫

Λ
ρϕng · un dx, (1.51a)∫

Λ
ϕn(∇ · un)pn dx = 0 (1.51b)∫

Λ

α

2ηp
ϕn|σσσn|2 dx+

∫
Λ

λϕn

2ηp∆t
(
σσσn − σσσn−

1
2
)

: σσσn−
1
2 dx−

∫
Λ
ϕnεεε(un) : σσσn dx

= λ

2ηp
S(un−

1
2 ,σσσn−

1
2 , ϕn).

(1.51c)

The variables un, pn and σσσn are not defined on the whole domain Λ and thus the same
formal convention as previously has been applied for the integration. From free-surfaces
boundary conditions and u = 0 on ∂Λ we find

−
∫

Λ
ϕnun · (∇ · (2ηsεεε(un)− pnI − σσσn)) dx = −

∫
Ωn
un · (∇ · (2ηsεεε(un)− pnI − σσσn)) dx

=
∫

Λ
ϕn
(
2ηs|εεε(un)|2 − pn∇ · un + σσσn : εεε(un)

)
dx.

38



1.6. Analysis of the free-surface flow model for the time discretisation

Using the formula 2a(a− b) = a2 − b2 + (a− b)2 and divergence theorem, we obtain∫
Λ
ϕn
(
2ηs|εεε(un)|2 − pn∇ · un + σσσn : εεε(un)

)
dx

+
∫

Λ

ρ

2∆tϕ
n
(
|un|2 − |un−

1
2 |2 +

∣∣∣un − un− 1
2

∣∣∣2) dx =
∫

Λ
ρϕng · un dx,∫

Λ
ϕn(∇ · un)pn dx = 0.

and ∫
Λ

α

2ηp
ϕn|σσσn|2 dx+

∫
Λ

λϕn

2ηp∆t

(
|σσσn|2 − |σσσn−

1
2 |2 +

∣∣∣σσσn − σσσn− 1
2

∣∣∣2) dx

−
∫

Λ
ϕnεεε(un) : σσσn dx = λ

2ηp
S(un−

1
2 ,σσσn−

1
2 , ϕn).

It finally yields

∫
Λ

(
ρ|un|2 + λ

2ηp
|σσσn|2

)
ϕn dx+ ∆t

∫
Λ

(
4ηs|εεε(un)|2 + α

ηp
|σσσn|2

)
ϕn dx

+ ∆t2
∫

Λ

ρ ∣∣∣∣∣un − un−
1
2

∆t

∣∣∣∣∣
2

+ λ

2ηp

∣∣∣∣∣σσσn − σσσn−
1
2

∆t

∣∣∣∣∣
2ϕn dx

=
∫

Λ

(
ρ|un−

1
2 |2 + λ

2ηp
|σσσn−

1
2 |2
)
ϕn dx

+ ∆t
(∫

Λ
2ρϕng · un dx+ λ

ηp
S(un−

1
2 ,σσσn−

1
2 , ϕn)

)
.

Following chapter 3.4 in [Pir88], we find with the change of variables (1.13):

∫
Λ

(
ρ|un−

1
2 |2 + λ

2ηp
|σσσn−

1
2 |2
)
ϕn dx

=
∫

Λ

(
ρ|un−1|2 + λ

2ηp
|σσσn−1|2

)
ϕn−1

∣∣∣∣det (I + ∆t∇un−1
)−1

∣∣∣∣ dx.

From incompressibility condition, we have

det
(
I −∆t∇un−1

)−1
= 1/

(
1−∆t(∇ · un−1) + ∆t2|∇un−1|2 −O(∆t3)

)
= 1/

(
1 + ∆t2|∇un−1|2 −O(∆t3)

)
= 1 + Cn−1∆t2 +O(∆t3).

Here, the value Cm−1 is dependent on the gradient of the velocity, hence not constant.
Additional analysis is needed to obtain a priori estimate for this problem and will not be
addressed here. The interested reader can refer, for instance, to [Rav85, Sül88] for the
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flows: from Newtonian fluids to elastic solids

Newtonian case without free-surface.

1.7 Analysis of a simplified model for the fully discretized
scheme

We address now the full discretisation of the system (1.29). Consider a domain entirely
filled with a liquid or solid (ϕ = 1 in Λ and thus Λ = Ω(t) = Ω, for 0 ≤ t ≤ T ). The FE
discretisation of the implicit scheme (1.39) is:
Find unH ∈ VH , pnH ∈ QH∫

Ω
ρ
unH − u

n−1
H

∆t · vH dx+
∫

Ω
2
(
ηs + ηp∆t

λ+ α∆t

)
εεε(unH) : εεε(vH) dx (1.52a)

−
∫

Ω
pnH∇ · vH dx+

∫
Ω

λ

λ+ α∆tσ
σσn−1
H : εεε(vH) dx = 0, ∀vH ∈ VH ,

∫
Ω

(∇ · unH)qH dx+
∑
K∈TH

αK

∫
K
∇pnH · ∇qH dx = 0, ∀qH ∈ QH , (1.52b)

and then find σσσnH ∈ TH such that∫
Ω
σσσnH : τττH dx =

∫
Ω

λ

λ+ α∆tσ
σσn−1
H : τττh dx (1.52c)

+
∫

Ω

2ηp∆t
λ+ α∆tε

εε(unH) : τττH dx, ∀τH ∈ TH ,

where VH , QH and TH are the spaces of piecewise linear finite elements (1.26) for the
full domain, when Ωn

H = Ω = Λ. Here, the stabilisation coefficient αK is defined similarly
as in section 1.4.3 for the implicit scheme (1.28). The terms − λ

λ+∆t∇ · σσσ
n− 1

2
H − ρg are

removed to simplify the computations.

The equation (1.52a) is not equivalent to the finite element formulation of the implicit
scheme (1.25), which would yield

∫
Ω
ρ
unH − u

n−1
H

∆t · vH dx+
∫

Ω
2ηsεεε(unH) : εεε(vH) dx−

∫
Ω
pnH(∇ · vH) dx (1.53)

+
∫

Ω
σσσnH : εεε(vH) dx = 0, ∀vH ∈ VH ,

Since vH ∈ VH , εεε(vH) /∈ TH ; rather we have εεε(vH) ∈WH = {w ∈ L2(ΩH)3×3;w K ∈
P0(K),∀K ∈ TH}. Thus, the equation (1.53) cannot be retrieved from (1.52a). We are
going to prove that the implicit formulation (1.52) does not impact the stability of the
numerical scheme.

To do so, we introduce the continuous L2-projection operator onto TH . Let πH :
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(L2(Ω))3×3 → TH be the projection operator onto TH , defined for all w ∈ (L2(Ω))3×3 by
πH(w) ∈ TH and: ∫

Ω
πH(w) : τττH dx =

∫
Ω
w : τττH dx, ∀τττH ∈ TH . (1.54)

We have the following result:

Proposition 1.7.1. Consider the numerical scheme (1.52). For all ∆t > 0, ηs ≥ 0, ηp >
0 and α = {0, 1}, we have:

∫
Ω

(
ρ|uNH |2 + λ

2ηp
|σσσNH |2

)
dx+ ∆t

N∑
n=1

∫
Ω

(
4ηs|εεε(unH)|2 + α

ηp
|σσσnH |2

)
dx (1.55)

≤
∫

Ω

(
ρ|u0

H |2 + λ

2ηp
|σσσ0
H |2

)
dx.

and

∫
Ω

(
ρλ

∣∣∣∣∣uNH − uN−1
H

∆t

∣∣∣∣∣
2

+ 2ηsα|εεε(uNH)|2 + 2ηp|πH(εεε(uNH))|2
)

dx+
∑
K∈TH

αK

∫
K
α|∇pNH |2 dx

+ ∆t2
∫

Ω

αηp
λ+ α∆t

∣∣∣εεε(uNH)− πH(εεε(uNH))
∣∣∣2 dx

≤
∫

Ω

(
ρλ

∣∣∣∣∣u1
H − u0

H

∆t

∣∣∣∣∣
2

+ 2ηsα|εεε(u1
H)|2 + 2ηp|πH(εεε(u1

H))|2
)

dx (1.56)

+
∑
K∈TH

αK

∫
K
α|∇p1

H |2 dx+ ∆t2
∫

Ω

αηp
λ+ α∆t

∣∣∣εεε(u1
H)− πH(εεε(u1

H))
∣∣∣2 dx.

Proof. Let τH = πH(εεε(vH)) in (1.52c) and from (1.54) it yields∫
Ω
σσσnH : εεε(vH) dx =

∫
Ω

λ

λ+ α∆tσ
σσn−1
H : εεε(vH) dx+

∫
Ω

2ηp∆t
λ+ α∆tε

εε(unH) : πH(εεε(vH)) dx.

Plugging this expression back into (1.52a) yields

∫
Ω
ρ
unH − u

n−1
H

∆t · vh dx+
∫

Ω
2ηsεεε(unH) : εεε(vH) dx−

∫
Ω
pnH∇ · vh dx+

∫
Ω
σσσnH : εεε(vH) dx

+
∫

Ω

2ηp∆t
λ+ α∆tε

εε(unH) : (εεε(vH)− πH(εεε(vH))) dx = 0. (1.57)

From the L2-projection operator πH definition (1.54), we have∫
Ω

2ηp∆t
λ+ α∆tπH(εεε(unH)) : (εεε(unH)− πH(εεε(unH))) dx = 0. (1.58)
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Notice that multiplying (1.52c) by λ+ α∆t
∆t yields

∫
Ω
ασσσnH : τττH dx+

∫
Ω
λ
σσσnH − σσσ

n−1
H

∆t : τττH dx =
∫

Ω
2ηpεεε(unH) : τττH dx. (1.59)

Let vH = unH in (1.57), qH = pnH in (1.52b) and τττH = σσσnH in (1.59). Using (1.58) and
the identity a(a− b) = 1

2(a2 − b2 + (a− b)2), we find∫
Ω
ρ(|unH |2 + |unH − un−1

H |2) + λ

2ηp
(|σσσnH |2 + |σσσnH − σσσn−1

H |2) dx

+ ∆t
∫

Ω

(
4ηs|εεε(unH)|2 + α

ηp
|σσσnH |2

)
dx

+ ∆t
∑
K∈TH

αK

∫
K
|∇pnH |2 dx+ ∆t2

∫
Ω

4ηp
λ+ α∆t |ε

εε(unH)− πH(εεε(unH))|2 dx

=
∫

Ω
ρ|un−1

H |2 + λ

2ηp
|σσσn−1
H |2 dx.

Summing from n = 1 to N yields

∫
Ω

(
ρ|uNH |2 + λ

2ηp
|σσσNH |2

)
dx+ ∆t

N∑
i=1

∫
Ω

(
4ηs|εεε(uiH)|2 + α

ηp
|σσσiH |2

)
dx

+ ∆t2
N∑
i=1

∫
Ω

(
ρ

∣∣∣∣∣uiH − ui−1
H

∆t

∣∣∣∣∣
2

+ λ

2ηp

∣∣∣∣∣σσσiH − σσσi−1
H

∆t

∣∣∣∣∣
2)

dx (1.60)

+ ∆t
N∑
i=1

∑
K∈TH

αK

∫
K
|∇piH |2 dx+ ∆t2

N∑
i=1

∫
Ω

( 4ηp
λ+ α∆t |ε

εε(uiH)− πH(εεε(uiH))|2
)

dx

=
∫

Ω

(
ρ|u0

H |2 + λ

2ηp
|σσσ0
H |2

)
dx,

which yields (1.55).

For the second result, we proceed as in Proposition 1.5.2. Let us take the difference
between two consecutive time steps of the modified momentum equation (1.57), and
divide the result by ∆t to obtain

∫
Ω

(
un+1
H − 2unH + un−1

H

∆t2

)
· vH dx+

∫
Ω

2ηsεεε
(
un+1
H − unH

∆t

)
: εεε(vH) dx

−
∫

Ω

(
pn+1
H − pnH

∆t

)
(∇ · vH) dx+

∫
Ω

(
σσσn+1
H − σσσnH

∆t

)
: εεε(vH) dx

+
∫

Ω

2ηp∆t
λ+ α∆tε

εε

(
un+1
H − unH

∆t

)
: (εεε(vH)− πH(εεε(vH))) dx = 0.
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Then we take λ times the above equation and add it to α times (1.57):

∫
Ω
ρ

(
α
un+1
H − unH

∆t + λ
un+1
H − 2unH + un−1

H

∆t2

)
· vH dx

+
∫

Ω
2ηs

(
αεεε(un+1

H ) + λεεε

(
un+1
H − unH

∆t

))
: εεε(vH) dx (1.61)

−
∫

Ω

(
αpn+1

H + λ
pn+1
H − pnH

∆t

)
(∇ · vH) dx+

∫
Ω

(
ασσσn+1

H + λ
σσσn+1
H − σσσnH

∆t

)
: εεε(vH) dx

+
∫

Ω

2ηp∆t
λ+ α∆t

(
αεεε
(
un+1
H

)
+ λεεε

(
un+1
H − unH

∆t

))
: (εεε(vH)− πH(εεε(vH))) dx = 0.

Take the difference between two time steps in (1.52b) gives∫
Ω
∇ · (un+1

H − unH)qH dx+
∑
K∈TH

αK

∫
K
∇(pn+1

H − pnH) · ∇qH dx = 0. (1.62)

Let vH = un+1
H − unH in (1.61) and qH = αpn+1

H + λ
pn+1

H −pn
H

∆t in (1.62). It yields

∫
Ω

ρλ

2

∣∣∣∣∣un+1
H − unH

∆t

∣∣∣∣∣
2

+ ρλ

2

∣∣∣∣∣un+1
H − 2unH + un−1

H

∆t

∣∣∣∣∣
2

dx+ ∆t
∫

Ω
ρα

∣∣∣∣∣un+1
H − unH

∆t

∣∣∣∣∣
2

dx

+
∫

Ω
2ηs

(
αεεε(un+1

H ) + λεεε

(
un+1
H − unH

∆t

))
: εεε(un+1

H − unH) dx

+
∑
K∈TH

αK

∫
K
∇(pn+1

H − pnH) · ∇
(
αpn+1

H + λ
pn+1
H − pnH

∆t

)
dx

+
∫

Ω

2ηp∆t
λ+ α∆t

(
αεεε
(
un+1
H

)
+ λεεε

(
un+1
H − unH

∆t

))
: (εεε(un+1

H − unH)− πH(εεε(un+1
H − unH))) dx

+
∫

Ω

(
ασσσn+1

H + λ
σσσn+1
H − σσσnH

∆t

)
: εεε(un+1

H − unH) dx =
∫

Ω

ρλ

2

∣∣∣∣∣unH − un−1
H

∆t

∣∣∣∣∣
2

dx.

Now we take τττH = πH(εεε(un+1
H − unH)) in (1.59) and using (1.54) we obtain

∫
Ω

(
ασσσn+1

H + λ
σσσn+1
H − σσσnH

∆t

)
: εεε(un+1

H − unH) dx

(1.59)=
∫

Ω
2ηpεεε(un+1

H ) : (πH(εεε(un+1
H − unH))) dx

(1.54)=
∫

Ω
2ηpπH(εεε(un+1

H )) : (πH(εεε(un+1
H − unH))) dx.
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Using the equality (αa+ β(a− b))(a− b) = α
2 (a2 − b2) +

(
β + α

2
)

(a− b)2, we find

∫
Ω
ρλ

∣∣∣∣∣un+1
H − unH

∆t

∣∣∣∣∣
2

+ ρλ

∣∣∣∣∣un+1
H − 2unH + un−1

H

∆t

∣∣∣∣∣
2

+ 2ηsα(|εεε(un+1
H )|2 + |εεε(un+1

H )− εεε(unH)|2) dx

+
∫

Ω
2ηp(|πH(εεε(un+1

H ))|2 + |πH(εεε(un+1
H )− εεε(unH))|2) dx

+ ∆t
∫

Ω
ρα

∣∣∣∣∣un+1
H − unH

∆t

∣∣∣∣∣
2

+ 4ηsλ
∣∣∣∣∣εεε
(
un+1
H − unH

∆t

)∣∣∣∣∣
2

dx

+
∑
K∈TH

αK

∫
K
α|∇pn+1

H |2 +
( 2λ

∆t + α

)
|∇(pn+1

H − pnH)|2 dx

+ ∆t
∫

Ω

2αηp∆t
λ+ α∆t |ε

εε(un+1
H )− πH(εεε(un+1

H )|2 dx

+ ∆t
∫

Ω

2ηp∆t
λ+ α∆t

(
α+ 2λ

∆t

)
|εεε(un+1

H − unH)− πH(εεε(un+1
H − unH))|2 dx

=
∫

Ω

ρλ

2

∣∣∣∣∣unH − un−1
H

∆t

∣∣∣∣∣
2

+ 2ηsα|εεε(unH)|2 + 2ηp|πH(εεε(unH))|2 dx

+
∑
K∈TH

αK

∫
K

α

2 |∇p
n
H |2 dx+ ∆t

∫
Ω

2αηp∆t
λ+ α∆t |ε

εε(unH)− πH(εεε(unH))|2 dx.

Summing from n = 1 to n = N − 1 we obtain (1.56). �

A similar result can be obtained for the following EVSS numerical scheme for the
linearized system (1.29), using the stabilisation coefficient αK defined similarly as in
section 1.4.3 for the EVSS scheme (1.27):∫

Ω
Dn−1
H : τττH dx =

∫
Ωn
εεε(un−1

H ) : τττH dx, ∀τH ∈ TH , (1.63a)

∫
Ω
ρ
unH − u

n−1
H

∆t · vH dx+
∫

Ω
2(ηs + ηp)εεε(unH) : εεε(vH) dx (1.63b)

−
∫

Ω
pnH∇ · vH dx =

∫
Ω

(2ηpDn−1
H − σσσn−1

H ) : εεε(vH) dx, ∀vH ∈ VH ,

∫
Ω

(∇ · unH)qH dx+
∑
K∈TH

αK

∫
K
∇pnH · ∇qH dx = 0, ∀qH ∈ QH , (1.63c)

∫
Ω
σσσnH : τττH dx =

∫
Ω

λ

λ+ α∆tσ
σσn−1
H : τττH dx (1.63d)

+
∫

Ω

2ηp∆t
λ+ α∆tε

εε(unH) : τττH dx, ∀τH ∈ TH .
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Proposition 1.7.2. Consider the numerical scheme (1.63). For all ∆t ≤ λ, ηs ≥ 0,
ηp > 0: and α = {0, 1}, we have:

∫
Ω

(
ρ|uNH |2 + λ

4ηp
|σσσNH |2

)
dx ≤

∫
Ω

(
ρ|u0

H |2 + λ

2ηp
|σσσ0
H |2

)
dx (1.64)

+ ∆t
∫

Ω

(
(ηs + 3ηp)|εεε(u0

H)|2 + α+ 1
4ηp

|σσσ0
H |2

)
dx+ ∆t

∑
K∈TH

αK
2

∫
K
|∇p0

H |2 dx.

Furthermore, for α = 1, we have for ∆t > 0, with ηs ≥ 0, ηp > 0:

∫
Ω

(
ρλ

∣∣∣∣∣uNH − uN−1
H

∆t

∣∣∣∣∣
2

+ (ηs + ηp)|εεε(uNH)|2
)

dx

+
∑
K∈TH

αK

∫
K
|∇pNH |2 dx+

∫
Ω

2ηpλ
∣∣∣∣∣πH

(
εεε

(
uNH − u

N−1
H

∆t

))∣∣∣∣∣
2

dx (1.65)

≤
∫

Ω

ρλ ∣∣∣∣∣u1
H − u0

H

∆t

∣∣∣∣∣
2

+ (ηs + ηp)|εεε(u1
H)|2

 dx+
∑
K∈TH

αK

∫
K

α

2 |∇p
1
H |2 dx

+
∫

Ω
2ηpλ

∣∣∣∣∣πH
(
εεε

(
u1
H − u0

H

∆t

))∣∣∣∣∣
2

dx

and for α = 0 and ∆t ≤ λ we have:

∫
Ω

ρλ

2

∣∣∣∣∣uNH − uN−1
H

∆t

∣∣∣∣∣
2

+
∫

Ω
ηp(|πH(εεε(uNH))|2 + |πH(εεε(uN−1

H ))|2) dx

+ ∆t
∫

Ω
(ηs + ηp)λ

∣∣∣∣∣εεε
(
uNH − u

N−1
H

∆t

)∣∣∣∣∣
2

dx+ ∆t
∑
K∈TH

αkλ

2

∫
K

∣∣∣∣∣∇
(
pNH − p

N−1
H

∆t

)∣∣∣∣∣
2

dx

≤
∫

Ω

ρλ

2

∣∣∣∣∣u1
H − u0

H

∆t

∣∣∣∣∣
2

dx+
∫

Ω
ηp(|πH(εεε(u1

H))|2 + |πH(εεε(u0
H))|2) dx (1.66)

+ ∆t
∫

Ω
(ηs + 2ηp)λ

∣∣∣∣∣εεε
(
u1
H − u0

H

∆t

)∣∣∣∣∣
2

dx+ ∆t
∑
K∈TH

αkλ

2

∫
K

∣∣∣∣∣∇
(
p1
H − p0

H

∆t

)∣∣∣∣∣
2

dx.

Proof in Appendix C.3

Similarly to the stability estimates proofs for the analytical solution, the implicit scheme
is proved to be unconditionally stable, whereas it is not the case for the EVSS scheme.
However, even if the first stability estimates shows no control on σσσnH for ηs = 0, the
velocity and its gradient are controlled and thus σσσnH as well.

The projection operator πH shows similarity to the ZZ error estimator introduced in
[ZZ95] in the 1D case. Indeed, the projection πH is equivalent to the projector of
the gradient ∇uh ∈ WH onto the space of piecewise linear finite element function
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TH . It is proved in [ZZ98] that, for a Laplace problem with enough regularity, this
quantity converges to the norm of the gradient of the error. However in our case, no
proofs of convergence could be obtained for the quantity ‖εεε(unH)− πH(εεε(unH))‖, but
it can be bounded. Indeed, we have ‖εεε(unH)− πH(εεε(unH))‖L2(Ω)3×3 ≤ ‖εεε(unH)‖L2(Ω)3×3

and ‖πH(εεε(unH))‖L2(Ω)3×3 ≤ ‖εεε(unH)‖L2(Ω)3×3 . Finally, the proposition 1.7.1 shows that
‖εεε(unH)‖L2(Ω)3×3 <∞ for ηs > 0 and ‖πH(εεε(unH))‖L2(Ω)3×3 <∞ for ηs = 0.

Consider the quantity at time tn, n = 1, . . . , N

En =
∫

Ω

(
ρ|unH |2 + λ

2ηp
|σσσnH |2

)
dx+

n∑
i=1

∆t
∫

Ω

(
4ηs|εεε(uiH)|2 + α

ηp
|σσσiH |2

)
dx, (1.67)

with its initial value for n = 0

E0 =
∫

Ω

(
ρ|u0

H |2 + λ

2ηp
|σσσ0
H |2

)
dx. (1.68)

The inequality (1.55) in the proposition 1.7.1 shows that (1.67) is bounded by (1.68).
Note that, for n = 1, . . . , N :

∫
Ω

λ

2ηp

∣∣∣∣∣σσσnH − σσσn−1
H

∆t

∣∣∣∣∣
2

dx =
∫

Ω
εεε(unH) : σ

σσnH − σσσ
n−1
H

∆t dx−
∫

Ω

α

2ηp
σσσnH : σ

σσnH − σσσ
n−1
H

∆t dx

≤ ‖εεε(unH)‖L2(Ω)3×3

∥∥∥∥∥σσσnH − σσσn−1
H

∆t

∥∥∥∥∥
L2(Ω)3×3

+ α

2ηp
‖σσσnH‖L2(Ω)3×3

∥∥∥∥∥σσσnH − σσσn−1
H

∆t

∥∥∥∥∥
L2(Ω)3×3

.

Hence, we find that∥∥∥∥∥σσσnH − σσσn−1
H

∆t

∥∥∥∥∥
L2(Ω)3×3

≤ ‖εεε(unH)‖L2(Ω)3×3 + α

2ηp
‖σσσnH‖L2(Ω)3×3 .

Thus, the remaining terms in (1.60) without the stabilisation term
∑
K∈TH

αK
∫
K |∇piH |2 dx

yields:

∆t2
N∑
i=1

∫
Ω

(
ρ

∣∣∣∣∣uiH − ui−1
H

∆t

∣∣∣∣∣
2

+ λ

2ηp

∣∣∣∣∣σσσiH −σσσσσσσσσi−1
H

∆t

∣∣∣∣∣
2)

dx

+ ∆t2
N∑
i=1

∫
Ω

( 4ηp
λ+ α∆t |ε

εε(uiH)− πH(εεε(uiH))|2
)

dx = O(∆t).
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1.7. Analysis of a simplified model for the fully discretized scheme

This means that, if we further assume that

∑
K∈TH

αK

∫
K
|∇piH |2 dx = O(H2), i = 1, . . . , N, (1.69)

the equation (1.60) in the proof of the proposition shows that the energy En (1.67)
converges in order one in time and space to the initial energy E0 (1.68). Unfortunately,
no evidence shows that (1.69) is true. If the gradient of the pressure can be bounded,
this convergence result can be confirmed numerically, as presented in the next chapter.
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2 Numerical experiments of incom-
pressible viscoelastic free surface
flows
In this chapter, numerical results obtained using the model described in chapter 1 are
presented. First we present the advantages of the newly introduced implicit scheme over
the EVSS scheme in a context of viscoelastic or elastic free surfaces flows. Finally the
model for elastic flows with free surfaces is validated for several test cases. This allows
to show the advantages of our model, mainly for large deformations and topology changes.

More precisely, we present a simulation in a full domain (ϕ ≡ 1) with an explicit solution
to show the advantages of implicit scheme, then a Poiseuille flow simulation is presented
in the next section. Three different problems have then been chosen for validation: a
traction or tensile testing, an Euler-Bernoulli beam oscillations and a buckling experiment.
Finally, the bouncing of an elastic material and a machining experiment is presented,
the latter demonstrating large deformations of steel-simulated material and tearing piece.
The numerical scheme is implemented in C++ and run on a system equipped with a
3.60GHz Intel Core i7-7820X processor and 128 GB RAM.

2.1 Validation of numerical scheme on exact solutions

In these two first numerical experiments, we focus on the comparison between the EVSS
and the implicit schemes for both the simplified model (1.29) and the complete model
(1.1).

2.1.1 Exact solution in a square domain for simplified model

In this problem, we address the simplified model (1.29). The cavity is fully filled (ϕ = 1),
and the nonlinear terms ∇uσσσ + σσσ∇uT as well as the convective terms are removed.
Consider a rectangular domain in two dimensions Λ = [0, 1]2 m2 containing a viscoelastic
fluid (α = 1) or an elastic solid (α = 0) with an initial velocity u0 and an initial
extra-stress tensor σσσ0. The set of parameters for this simulation is λ = 1 s, ρ = 1 kg/m3,
ηs = 0 Pa s, ηp = 10 Pa s and T = 0.112 s. We perform the simulations with α ∈ {0, 1}
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respectively for elastic and viscoelastic simulations. Using such a set of parameters,
initial and Dirichlet boundary conditions are chosen so that the exact solution in the
viscoelastic case (α = 1) is

u(x, t) =
(
− sin(πx) cos(πy)
cos(πx) sin(πy)

)
e−t/2

(
cos

(
ωt

2

)
+ sin

(
ωt

2

)
/ω

)
,

p(x, t) = 0,

σσσ(x, t) =
(
−40π cos(πx) cos(πy) 0

0 40π cos(πx) cos(πy)

)
e−t/2 sin

(
ωt

2

)
/ω,

where x = (x, y) and ω =
√

80π2 − 1. Similarly, the exact solution in the elastic case
(α = 0) is:

u(x, t) =
(
− sin(πx) cos(πy)
cos(πx) sin(πy)

)
cos(
√

20πt),

p(x, t) = 0,

σσσ(x, t) =
(
−
√

20π cos(πx) cos(πy) 0
0

√
20π cos(πx) cos(πy)

)
sin(
√

20πt).

Denoting by H the maximum diameter of the FE mesh, the coarse discretisation cor-
responds to H = 0.1 m, ∆t = 0.0005 s, the middle discretisation to H = 0.05 m,
∆t = 0.00025 s, the fine discretisation to H = 0.025 m, ∆t = 0.000125 s and even the
finer one with H = 0.0125 m, ∆t = 0.0000625 s. Since the prediction step is not included
in this experiment, the parameter h corresponding to the size of the grid cells is not
involved. Dirichlet boundary conditions apply on ∂Λ for u and the pressure p is set to 0
on the boundary. The simulation results obtained with the EVSS scheme (1.63) and the
implicit scheme (1.52) are displayed in Figure 2.1, where we compare exact and computed
solutions along the diagonal y = x at final time T . In Figure 2.2, convergence graphs are
plotted by computing the L2-error of the velocity u and extra-stress components σσσxx
and σσσyy for both numerical methods and physical cases (viscoelastic fluid and elastic
solid). An order one convergence can be observed for both schemes, although the implicit
scheme is more precise.

Let us show numerically the results of the a priori estimates in chapter 1, i.e. the
convergence of the discrete energy system (1.67)

En =
∫

Ω

(
ρ|unH |2 + λ

2ηp
|σσσnH |2

)
dx+

n∑
i=1

∆t
∫

Ω

(
4ηs|εεε(uiH)|2 + α

ηp
|σσσiH |2

)
dx (2.1)
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2.1. Validation of numerical scheme on exact solutions

Figure 2.1 – Exact solution in a square domain. Simulation of a viscoelastic flow and an
elastic solid deformation in a square domain. The coefficient σyy,H of the stress tensor is
shown along the diagonal of the domain for various mesh sizes at final time T = 0.112.
Top: explicit EVSS scheme, Bottom: implicit scheme. Left: the viscoelastic experiment
(α = 1), Right: the elastic experiment (α = 0).

to the initial system energy (1.68)

E0 =
∫

Ω

(
ρ|u0

H |2 + λ

2ηp
|σσσ0
H |2

)
dx. (2.2)

In Proposition 1.7.1, an order one convergence is proved in space and time of the discrete
system energy (1.67). In Figure 2.3, the evolution of the discrete system energy En is
presented for 0 ≤ t ≤ T , where T = 0.17 s. The coarser parameters here are H = 0.1 m,
∆t = 0.01 s. Convergence graph shows order one convergence of the error

∣∣En − E0∣∣ for
both viscoelastic (α = 1) and elastic (α = 0) cases. In the last case, since ηs = 0, the
remaining terms are the kinetic ρ ‖unH‖L2(Ω)3 and elastic λ

2ηp
‖σσσnH‖L2(Ω)3×3 energy. Hence,

although the implicit scheme does not preserve the total kinetic and elastic energy, we
have convergence to the initial energy.
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Figure 2.2 – Exact solution in a square domain. Convergence graphs. Top: L2 norm of
the error for velocity

∥∥∥u(T )− uNH
∥∥∥
L2(Ω)

. Middle: L2 norm of the error for extra-stress

component xx
∥∥∥σσσxx(T )− σσσNxx,H

∥∥∥
L2(Ω)

. Bottom: L2 norm of the error for extra-stress

component yy
∥∥∥σσσyy(T )− σσσNyy,H

∥∥∥
L2(Ω)

. Left: the viscoelastic experiment (α = 1), Right:
the elastic experiment (α = 0).
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2.1. Validation of numerical scheme on exact solutions

Figure 2.3 – Exact solution in a square domain. Convergence graphs of the discretized
system energy (1.67) for implicit scheme. Top: evolution of (1.67) in time. Bottom:
Absolute value of the error with initial value |En − E0|. Left: viscoelastic experiment
(α = 1). Right: elastic experiment (right) (α = 0).

2.1.2 Poiseuille flow for the free surface problem

The Poiseuille flow is a typical experiment for viscoelastic fluids [SJK+22]. Here the
goal is to compare both schemes (1.22) and (1.25) using the complete model, with a free
surface, the nonlinear terms ∇uσσσ + σσσ∇uT and transport terms. The same numerical
experiment has been used in [BPL06] for validation of the model using the EVSS scheme,
with values from [TMC+02].

A rectangular domain Λ = [0, L1] m×[0, L2] m×[0, L3] m is considered, with L1 = 4,
L2 = 1 and L3 = 0.2. Starting from an empty domain, an inflow on the left boundary
({x = 0}) of a viscoelastic fluid fills the domain with the following values for the velocity
field and the extra-stress tensor:

u(x, y, z, t) =

ux0
0

 σσσ(x, y, z, t) =

σxx σxy 0
σxy 0 0
0 0 0

 ,
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with

ux(y) = 6y(L2 − y), σxx(y) = 72ηsλ(2y − L2)2, σxy(y) = −6ηp(2y − L2).

No-slip boundary condition (u = 0) are imposed at the top and bottom boundaries of
Λ, free-slip (u · n = 0) at front and back, and an outflow with an imposed velocity is
enforced on the right end. The set of parameters for this simulation is ρ = 1 kg/m3,
ηs = 0.5 Pa s, ηp = 0.5 Pa s, λ = 0.5 s and T = 9 s. The viscoelastic flow is laminar,
hence the velocity and extra-stress imposed at the inflow are recovered in the whole
domain. The domain is eventually filled with fluid, as seen in Figure 2.4.

Figure 2.4 – Poiseuille flow. Evolution of the free surface in a numerical simulation of
Poiseuille flow in an initially empty cavity at times t = 0.8, 1.6, 2.4, 3.2 s.

The CFL constant (1.15) in this numerical experiment can be quite large. Hence, we
choose it to be equal to 6. Interpolation errors between the FE mesh are then lowered.
Unconditional stability was proved for the implicit scheme when nonlinear terms are not
considered. The value of λ is equal to 1. It corresponds to a Weissenberg number of
Wi = λL2/U = 1, where U is the average velocity, as studied in [BPL06]. Convergence
of the implicit scheme towards a steady state solution could not be obtained for a higher
Weissenberg number.

Convergence with respect to ∆t, h and H is studied starting with a full domain to speed
up the computations. The coarse setting corresponds to H = 0.1 m, h = 0.025 m and
∆t = 0.1 s. Finer meshes are then obtained by dividing the discretisation parameters
∆t, h and H by two. In Figure 2.5 the order one convergence is recovered. Similarly as
in the previous numerical experiment, the error of the implicit scheme is smaller than
the one of the EVSS scheme. The profile of velocity and extra-stress components xx and
xy on the line (x, z) = (2, 0.1) are shown in Figure 2.6. Boundary layers can be observed
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for the extra-stress as already reported in [BPL06].

Figure 2.5 – Poiseuille flow. Convergence graphs for the stationary Poiseuille flow for
EVSS and implicit schemes. Top: L2 norm of the error for the extra-stress components∥∥∥σσσxx(T )− σσσNxx,h

∥∥∥
L2(Ω)

(left) and
∥∥∥σσσxy(T )− σσσNxy,h

∥∥∥
L2(Ω)

(right). Bottom: L2 norm of the

error for the velocity
∥∥∥u(T )− uNh

∥∥∥
L2(Ω)

.

In these numerical experiments, the order one convergence of the numerical scheme
presented in chapter 1 has been verified for both viscoelastic flows (α = 1) and elastic
deformations (α = 0). Furthermore, the newly introduced implicit time discretisation
(1.28) proved to be more accurate than the EVSS scheme (1.27). The latter only proved
to be more stable in the case of a high Weissenberg number.

2.2 Numerical simulation of more realistic test cases

In the next simulations, the model for solid elastic deformations (α = 0 and ηs = 0) is
studied on more realistic test cases. The implicit scheme (1.28) is applied in this section
due to its improved accuracy.
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Figure 2.6 – Poiseuille flow. Convergence profile along the line (x, z) = (2, 0.1) for EVSS
scheme (left) and implicit scheme (right). Top: Extra-stress component σσσxx. Middle:
Extra-stress component σσσxy. Bottom: Velocity ux.

2.2.1 Tensile test

Traction tests are used to determine the physical properties of a material (Young Mod-
ulus, elongation, failure point, ...) [JCEL07, JEL08, CC04, POV+12]. In a so-called
tensile test, a specimen is subject to a longitudinal load and elongated until failure. The
specimen is usually composed of two shoulders and a gage section, see Figure 2.7. A
phenomenon called necking takes place, where the center cross section of the tensile
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specimen shrinks before failing. We want to model a traction experiment and obtain the
stress-strain curve of a given material. This curve yields the stress on the material with
respect to the relative elongation imposed on the tensile specimen.

The data for the tensile specimens and stress-strain curves are extracted from [CC04].
It corresponds to a SAE 1045 steel material. We consider the two different shapes of
tensile specimen in [CC04], as illustrated in Figure 2.7 (top row). The first specimen is
cylindrical and the gage section has length 68 mm. The second specimen is rectangular
(sheet sample) and has length 60 mm. More details on the dimensions of the tensile
specimens are listed in [CC04]. The corresponding set of parameters are ρ = 7800 kg/m3,
ηs = 0 Pa s, ηp = 3.7 · 1010 Pa s, λ = 0.5 s and α = 0, corresponding to a Young modulus
of E = 222000 MPa. Hence, the goal is to show the accuracy and the convergence of
our model using a stress strain curve. However, the Neo-Hookean model for incom-
pressible material is only allows to describe the stress-strain curve of a given material
for small strains. Thus, only the elastic property of the material can be approximated,
not the plastic ones. The latter describes the state where the deformations are not
revertible anymore, which is opposed to the elastic deformations. At this point, larger
deformations are obtained for a smaller loading force, which flatten the stress-strain curve.

Figure 2.7 – Tensile test. Up: Tensile specimen example (sources:
https://www.tecquipment.com/ and https://www.3dcontentcentral.com/). Bot-
tom: Elastic domain Ω0 on cells grid. Left: cylindrical section. Right: sheet
sample.

The cavity Λ is a cylinder of radius 0.008 m and length 0.1 m for the cylindrical specimen.
For the sheet sample, we use Λ = [−0.013, 0.013] m×[−0.005, 0.005] m×[−0.066, 0.066] m.
The initial elastic domain Ω0 = {x ∈ Λ;ϕ(x, 0) = 1} is displayed in Figure 2.7 (bottom
row). As in [BPL06], the axial force applied on the shoulders (both ends) of the specimen
is simulated using an imposed velocity. Shoulders are moved vertically along theOz axis in
opposite directions in order to stretch the specimen, at constant speed uimp = (0, 0,±0.5)
mm/s. It is applied by imposing velocity at the nodes of the FE mesh inside the domain
corresponding to shoulders locations. The convergence study consists in using three
different mesh sizes and time steps. In the coarse settings, the time step is ∆t = 0.4 s
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with final time T = 2 s, the cell grid size is h = 0.5 mm and the average finite element
diameter is H = 2 mm, aiming at a CFL number (1.15) on the cells grid of 0.5. The
RAM memory and CPU time to compute the simulations are summarised in the following
table:

Cylindrical section

h [mm] memory [GB] CPU time [h]
0.5 0.525 2.11 · 10−2

0.25 3.259 3.03 · 10−1

0.125 24.36 9.15

Sheet sample

h [mm] memory [GB] CPU time [h]
0.5 0.364 8.32 · 10−3

0.25 2.23 8.25 · 10−2

0.125 16.76 1.56

The memory usage and CPU running time are multiplied respectively by 8 and 16 when
h, H and ∆t are divided by 2, which are the expected proportions for 3D numerical
simulations. Two gauge marks at the end of the tensile bodies monitor the strain during
elongation. Here the total stress σ̃σσ = −pI +σσσ is taken into account for the computations
of the stress-strain curve, from the definition of an incompressible Neo-Hookean model
[DR06, Hol02]. The results are shown in Figure 2.8. As predicted, incompressible Neo-
Hookean model do not allow to follow the experimental stress-strain curve. Hence the
necking observed at t = 0.2 s does not occur in the simulations. However, the elastic
behaviour of the specimen is close to the experimental one. Since the parameter ηp is
very big, the EVSS scheme applied to traction experiment hardly converges, see remark
1.5.2 in section 1.5. However the implicit scheme does not deal with large elongation and
fails for t > 2 s.

Figure 2.8 – Tensile test. Stress-strain curve for experimental data and convergence
of implicit scheme. The horizontal axis eps[%] corresponds to the relative elongation
(L− L0)/L, where L0 is the initial length of the gage section. Left: cylindrical specimen.
Right: sheet sample. Zoom on elastic deformation.

The stress component σσσzz and pressure p are monitored in the center of the specimen
and in Figure 2.9 the quantity σ̃σσzz = −p + σσσzz is displayed at a given time t = 0.4 s
along the line (x, y) = (0, 0), which correspond to axial symmetry line of the cylinder.
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The profile for the sheet sample is taken along the line (x, y) = (0, 0) on the longest
symmetry axis. During the elastic stretch of the tensile experiment, we expect the stress
to be equally spread along the two gauge marks of the tensile specimen. Oscillations can
be observed for coarser meshes, when the complex behaviour of tensile test cannot be
approximated with enough precision. The use of a finer mesh and the implicit scheme
allow a better approximation.

Figure 2.9 – Tensile test. Axial profile of stress tensor component σσσzz. Left: cylindrical
specimen. Right: sheet sample.

To compute the viscoplastic phenomenon, the incompressible Neo-Hookean model must
be modified in order to take into account the nonlinear behaviour of the Cauchy stress
tensor. Alternative models as St-Venant Kirchhoff model could be applied, but the
compressible effect must be tackled, which is the topic of chapter 5. Nonlinear relations
could be applied to stress-strain relation [Leb02, CC04, JEL08]. The modified Oldroyd-B
equation (1.1d) for nonlinear strain yields

∂

∂t
σσσ + (u · ∇)σσσ −∇uσσσ − σσσ∇uT = 2ηp

λ

εεε(u)
1 +A |σσσ|B

. (2.3)

Using this formulation, the elastic property of the Neo-Hookean model is conserved for
small strains, but allow to obtain smaller values of the extra-stress when the deformations
become larger. An additional nonlinear relation is introduced by taking the norm of
the extra-stress tensor to the power B, thus this term is taken explicitly in the time
discretisation. In Figure 2.10, the stress-strain curves for A = 10−7 and two different
value of B in equation 2.3 are displayed. Visual convergence to the exact stress-strain
curve is observed for B = 1.4.

In order to test large deformations for the tensile test, a rubber material is used instead
of steel. In [POV+12] a stretch ratio L/L0 of 2.5 is considered, while the deformation of
steel does not exceed 1.1, showing the difference between ductile and brittle material
as explained in the introduction. The tensile specimen used in [POV+12] is replicated
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Figure 2.10 – Tensile test. Stress-strain curve for alternative constitutive equation for
A = 10−7. Left: B = 1.35. Right: B = 1.4.

here and the results are shown in Figure 2.11. The used parameters are ρ = 940 kg/m3,
ηs = 0 Pa s, ηp = 2 · 105 Pa s, λ = 0.5 s and α = 0, corresponding to a Young modulus of
E = 1.2 MPa. One simulation has been run with ∆t = 0.8 s with final time T = 12 s, the
cell grid size is h = 0.6mm and FE mesh diameter is H = 4 mm. The velocity imposed
is not linear anymore in order to obtain a constant strain rate in time [POV+12] so
uimp =

(
0, 0,±αL0e

αt
)
m/s, with α = 0.01 and L0 being the initial length of the tensile

specimen. The nonlinear terms of the simulation lead to unstability of the numerical
scheme and thus are removed to compute the simulation. It allows the tensile to obtain
an elongation ratio of near 1.3, see Figure 2.11.

Figure 2.11 – Tensile test. Rubber material traction profile. Top: the characteristic
function ϕ. Bottom: the extra-stress component σσσzz. From left to right: t = 0, 4, 8, 12 s.
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2.2.2 Euler-Bernoulli beam

The goal is now to achieve beam deformations and validate results using the Euler-
Bernoulli beam theory [BC09, JM13, BL19, TBMG20]. A beam is defined as a structure
with a length that is proportionally much larger than the size of its cross section. The
assumption of the Euler-Bernoulli beam theory is that, when bending moment is applied,
the cross-sectional area is infinitely rigid, thus not deformable. Furthermore the cross-
sectional area remains normal to the deformed axis of the beam, as shown in Figure 2.12.

w

x

y

Figure 2.12 – Euler-Bernoulli beam assumption. Small displacement are allowed and the
cross-section area is not deformed. The cross-section remains normal to the deformed
axis of the beam.

From these assumptions, we compute a set of equations for the beam for a set of boundary
conditions. The complete stationary sets of equations can be found in [Pas08]. Let w(x, t)
be the deformation in the Oy axis of a given point x in the Ox axis on the beam at time
t, see Figure 2.12. The equation reads

∂2w

∂t2
+ EI

ρA

∂4w

∂x4 = f, (2.4)

where f denotes external forces. Here E is the Young modulus of the beam material, I
is the section area momentum, ρ is the density and A is the section area. In the case of
a cantilever beam, the left-hand side is fixed and the right-hand side is free. Thus, the
initial and boundary conditions are:

ω(0, t) = 0, ∂w

∂x
(0, t) = 0, ∂2w

∂x2 (L, t) = 0, ∂3w

∂x3 (L, t) = 0,

w(x, 0) = 0, ∂w

∂t
(x, 0) = v0(x).

(2.5)

Using the change of variable w(x, t) = X(x)T (t) and f = 0 we obtain the following set
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of equations:

T ′′(t) + ω2T (t) = 0, (2.6)

X(4)(x)− β4X(x) = 0, (2.7)

where β4 = ρA
EIω

2 and ω represents the different frequencies of the beam deformations.
We obtain

T (t) = a sin(ωt) + b cos(ωt), (2.8)
X(x) = C1 sin(βx) + C2 cos(βx) + C3 sinh(βx) + C4 cosh(βx), (2.9)

where the constants are determined from boundary conditions. More precisely the
following system is obtained:

0 1 0 1
β 0 β 0

−β2 sin(βL) −β2 cos(βL) β2 sinh(βL) β2 cosh(βL)
−β3 cos(βL) β3 sin(βL) β3 cosh(βL) β3 sinh(βL)



C1
C2
C3
C4

 =


0
0
0
0

 .

A non-trivial solution is obtained when the kernel dimension is non-zero. We recover the
oscillations frequencies of the beam for n > 0:

βn = (2n− 1)π
2L , ωn =

√
EI

ρA
β2
n =

√
EI

ρA

((2n− 1)π
2L

)2
.

From (2.5) we recover the following solution:

w(x, t) =
+∞∑
n=1

cn sin(ωnt)φn(x), (2.10)

where
φn(x) = (cosh(βnx)− cos(βnx))− σn(sinh(βnx)− sin(βnx)),

with
σn = sinh(βnL)− sin(βnL)

cos(βnL) + cosh(βnL) .

The parameters cn are the Fourier coefficients for the function v0 in the orthonormal
basis {φn}. In our experiment we chose v0 = Cφ1, C ∈ R. This allows the beam to
oscillate only in its principal frequency and to recover a simple formula for the final
solution, thanks to Fourier theory. The solution hence becomes:

w(x, t) = (C/ω1) sin(ω1t)φ1(x),

and is illustrated in Figure 2.13. It is called a cantilever beam and we use no-slip
boundary conditions on the left part of the cavity. No force is applied but an initial
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velocity v0(x) = 0.06 · φ1(x) gives the impulsion for the deformation of the elastic solid.

Figure 2.13 – Euler-Bernoulli cantilever beam dynamic. Left: Time t = 0.1 s. Right:
Time t = 0.3 s. Top: Velocity magnitude ‖u‖. Bottom: Extra-stress coefficient σσσxx.

Simulations were done for two different sizes of cross-section length r = 0.06 m and
r = 0.12 m in a cavity Λ = [0, 1.6] m×[0, 0.6] m. The simulations are computed in pseudo
2D instead of 2D, in the sense that the variables are constant along the third dimension.
The cavity becomes Λ = [0, 1.6] m×[0, 0.6] m×[0, 0.1] m, the initial velocity in the Oz
component is zero and free-slip boundary conditions are applied on the domain boundary
∂Λ. This difference in computation is made easier by the cfsFlow software and only
slightly impact the computational time without impacting the simulation precision. Only
the implicit scheme has been applied for these simulations. Three meshes and times steps
have been used to prove convergence to the exact solution. In the coarse settings, the
time step is ∆t = 0.075 s with final time T = 1.5 s, the cell grid size is h = 6.25 mm
and the average finite element diameter is H = 20 mm. The finer settings are obtained
by dividing the discretisation parameters by two. The RAM memory and CPU time to
compute the simulations are summarised in the following table:

r = 0.06 m
h [mm] memory [GB] CPU time [h]

6.25 0.29 0.013
3.125 1.23 0.119
1.562 8.1 1.37

r = 0.12 m
h [mm] memory [GB] CPU time [h]

6.25 0.46 0.025
3.125 2.37 0.254
1.562 16.42 3.86

In Figure 2.14, convergence can be observed with respect to the exact solution computed
with the Euler-Bernoulli beam theory. A discrepancy between the numerical results
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and the Euler-Bernoulli beam model can be observed for the larger value of r, since the
Euler-Bernoulli beam theory can no longer be applied. However, the visual convergence
is still observed. When the beam velocity reaches its maximum deformation and the
velocity is close to zero, the CFL number (1.15) becomes small and interpolation errors
are observed. Thus the time step cannot be taken arbitrarily small.

Figure 2.14 – Euler-Bernoulli beam. The numerical approximation is monitored at the
free-end of the beam. Convergence of the monitored point compared with an exact
solution computed with Euler-Bernoulli beam theory. Top: r = 0.06 m. Bottom:
r = 0.12 m. Left: Position w(L, t). Right: Velocity ∂

∂tw(L, t).

2.2.3 Buckling experiment

Our goal is now to reproduce a buckling phenomena, that is the deformation of an axially
compressed bar when the exerted force P reaches a certain threshold. It is determined
by the so-called Euler buckling load, found out by Euler in 1744:

P = π2EI

(kL)2 , (2.11)
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where E and I are the Young modulus and section area moment as defined previously,
L is the length of the bar and k is a parameter depending on the number of degrees of
freedom of the end point where the load is applied. For instance, k = 1 implies that
the extremities are fixed but the angular moment is free (ω(0, t) = 0, ∂w∂x (0, t) free) and
k = 0.5 when both degrees of freedom are fixed (ω(0, t) = 0, ∂w∂x (0, t) = 0). The full
derivation of the Euler buckling load (2.11) can be found in [BL19].

The goal of this experiment is to estimate the Euler buckling load threshold. Two different
radii for the cross section r = {2, 4} mm are used in order to modify the section moment
I (see equation (2.4)). The length of the gage section of the initial elastic domains is
200 mm aand re illustrated in Figure 2.15. The computational domain Λ is a cylinder of
radius 30 mm and length 240 mm.

Figure 2.15 – Buckling experiment. Initial (t = 0) position and position after buckling.
Left: small radius r = 2 mm at time t = 0.5 s. Right: large radius r = 4 mm at time
t = 1 s.

As for the traction experiment, the force applied on the shoulders (both ends) of the
specimen is simulated using imposed velocity. Only the implicit scheme was applied
for this experiment as for the Euler-Bernoulli beam experiment. Shoulders are moved
vertically on Oz axis at constant speed uimp = (0, 0,−1) mm/s for the top shoulder,
applied by imposing velocity as previously. The convergence study consists in three
different mesh sizes and time steps. In the coarser case, the time step is ∆t = 0.4 s with
final time T = 2 s, the cell grid size is h = 0.8 mm and the minimum element diameter is
H = 2.5 mm, thus the CFL constant (1.15) is equal to 0.5. The RAM memory and CPU
time to compute the simulations are summarised in the following table:
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r = 2 mm
h [mm] memory [GB] CPU time [h]

0.8 0.92 0.007
0.4 7.06 0.056
0.2 55.64 0.7

r = 4 mm
h [mm] memory [GB] CPU time [h]

0.8 0.94 0.008
0.4 7.15 0.08
0.2 56.42 1.2

In order to capture the moment when the bar buckles, the variables values are monitored
at the bar center (0, 0, 0). In Figure 2.16 the stress and pressure are visualised as in the
tensile test experiment and the quantity σ̃σσzz = −p+ σσσzz is represented with respect to
time. The buckling moment is observed when the stress σ̃σσzz suddenly decreases. The
relative error with the theoretical value (2.11) is reported in Figure 2.17. The moment
when the bar buckles is a phenomena happening in an extremely small amount of time.
The time step ∆t of the simulation was taken as small as possible, but the CFL number
must be kept larger than 0.2 to avoid excessive interpolation errors.

Figure 2.16 – Buckling experiment. Stress with respect to time. Buckling occurs when
the stress suddenly decreases. The theoretical Euler buckling load is displayed as a
horizontal threshold. Left: small radius r = 2 mm. Right: large radius r = 4 mm.

These last numerical experiments are based on engineering test cases and allow to validate
numerically our numerical scheme using the implicit scheme.

2.3 Signorini boundary conditions and machining experi-
ments

In the two last numerical experiments of this chapter, the potential of our model is
exploited. Signorini boundary conditions are imposed instead of free slip boundary
conditions in order to make it leave the boundary. Then, we put the emphasis on the
potential of the numerical model and present a machining experiment.
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Figure 2.17 – Buckling experiment. Relative error of the stress on the column at buckling
with the Euler buckling load with order one convergence curve. Left: small radius
r = 2 mm. Right: large radius r = 4 mm.

2.3.1 Bouncing elastic ball

In this experiment, a ball-shaped elastic solid (α = 0, ηs = 0) is dropped in a cavity
with a given initial velocity u0 and extra-stress tensor σσσ0. It enters in contact with the
bottom of the cavity before bouncing back upwards. For this experiment, we need to
define Signorini boundary conditions [Sig33]. They define a set of boundary conditions
for an elastic solid to collide with a frictionless rigid surface. Let us denote by n the
unit outer normal of ∂Λ and t are all unitary vector orthogonal to n. The normal
and tangent force are respectively defined as Tn = (−pn + (2ηsεεε(u) + σσσ)n) · n and
Tt = (−pn+ (2ηsεεε(u) + σσσ)n) · t. The Signorini boundary conditions read

Tt = 0, Tn ≤ 0, u · n ≤ 0, (u · n)Tn = 0. (2.12)

Details can be found in [KO88, BBRS05], where a variational Lagrangian formulation of
the problem has been investigated. A different approach is taken here in order to take
into account the Eulerian formulation of the problem. The goal is to allow the material
to detach from the boundary in order to bounce upwards.

The algorithm goes as follows: after the prediction step of the splitting algorithm, the
functions ϕn,un−

1
2

H ,σσσ
n− 1

2
H have been computed on the structured grid and interpolated

on the FE mesh. We compute a continuous piecewise linear FE approximation T n−1
n,H of

Tn at intermediate time step n− 1
2 on the boundary of the domain. In this purpose, we

compute Dn− 1
2

H = πH(εεε(un−
1
2

H )) on the space of piecewise P1 finite element, using (1.27a).
Hence we obtain T n−1

H = 2ηsD
n− 1

2
H + σσσ

n− 1
2

H − pn−1
H I and T n−1

n,H = (T n−1
H n) · n for each

vertex on the boundary of the domain. Then, on each vertex of the mesh

• If T n−1
n,H < 0, then according to (2.12), unH · n must be set to 0.
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• Else, the normal stress T nn,H = (2ηsεεε(unH) + σσσnH)n − pn will be set to 0 in the
correction step, so that the total force is 0.

The elastic ball is placed in a cavity Λ = [0, 0.4]2 m2 × [0, 0.3] m, with the mass center
situated at (0.2, 0.2, 0.15) m. The ball has radius r = 0.08 m is initialized with velocity
u0 = (0, 0,−0.1) m/s, extra-stress σσσ0 = 0. It is only subjected to gravity forces. The
parameters are ρ = 1100 kg/m3, λ = 10−2s and ηp = 102 Pa s. Three sets of discretisation
parameters is used. In the coarse case, the time step is ∆t = 0.024 s with final time
T = 0.4 s, the cell grid size is h = 0.004 m and the FE mesh size is H = 0.02 m. The
elastic material deforms itself when hitting the bottom of the cavity and its elastic energy
is transformed back into upgoing velocity when moving back up. In Figure 2.18, the
evolution of the barycenter of the characteristic function ϕ in time is presented for both
numerical schemes. We can observe that both EVSS and implicit schemes provide us
similar results. In Figure 2.19, screenshots of the elastic material evolution is shown
using the implicit scheme.

Figure 2.18 – Bouncing elastic ball. Convergence of mass center position for the EVSS
and implicit schemes.

In Figure 2.20, the algorithm is illustrated for two different time steps. The nodes where
the normal component of the force is negative are displayed. The velocity has now a
negative normal component and the ball leaves the boundary on the next time step. In
Figure 2.21, the values of the pressure and the normal component of the body surface force
T nH,n have been monitored through time on the boundary at position (0.2, 0.2, 0). Their
value are zero before the elastic solid is in contact with the bottom surface. Instabilities
arise when the ball touches and leaves the bottom when using the EVSS, which shows
another advantages of the implicit scheme.
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Figure 2.19 – Bouncing elastic ball. Simulation of an incompressible neo-Hookean elastic
ball of radius r = 0.08 m hitting the bottom of a box, only subject to gravitational force.
Signorini boundary conditions are used and the ball bounces against the surface. From
left to right, top to bottom: t = 0, 0.048, 0.096, 0.144, 0.192, 0.24, 0.288, 0.336 s.
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Figure 2.20 – Bouncing elastic ball. Simulation of an incompressible neo-Hookean elastic
ball of radius r = 0.08 m hitting the bottom of a box, only subject to gravitational force.
Signorini boundary conditions are used. The ball is pushed upwards. Top: Snapshots of
characteristic function (ϕ = 1 in the blue region). Middle: normal force at the bottom.
Bottom: nodes where velocity has a negative normal component. Left: t = 0.168 s.
Right: t = 0.192 s.
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Figure 2.21 – Bouncing elastic ball. Evolution of the force on boundary at position
(0.2, 0.2, 0) for three different mesh sizes. Left: EVSS scheme. Right: implicit scheme.

2.3.2 Machining simulation

Finally a steel machining type experiment is presented. The goal is to cut into a piece of
steel to give it a specific shape. In Arrazola et.al [AÖ10], a finite element simulation of
chip formation process is presented, see Figure 2.22, where the model is discretised using
an Arbitrary-Lagrangian-Eulerian method. We would like to reproduce such machining
simulations using our own model, which allows large deformations and topology.

Figure 2.22 – Left: steel machining. Right: machining simulation figures extracted from
[AÖ10].

A first test case is investigated, where an elastic solid (α = 0, λ > 0, ηs = 0) models the
steel work with a free surface using model (1.1). This test case investigates the large
deformation of the elastic solid when it is split in half. The visual convergence and
the stability of the numerical scheme on this simplified test case is shown. A pseudo-
2D simulation is applied here as described in section 2.2.2. The steel is injected in a
rectangular domain Λ = [0, 0.05] m ×[0, 0.04] m ×[0, 0.001] m with a notch modelling the
rigid tool. The inflow boundary corresponds to the surface {0.015 ≤ x ≤ 0.035; y = 0.04}.
In this numerical experiment, the set of parameters is ρ = 7500 kg/m3, λ = 10−3 s
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ηs = 0 Pa s, ηp = 2 · 105 Pa s and α = 0. The use of large value of the ratio ηp/λ
allows to obtain the Young modulus of steel. The coarser discretisation configuration is
H = 1 mm, h = 0.25 mm and ∆t = 0.5 ms. Finer meshes are then obtained by dividing
discretisation parameters by two. The steel is injected at the top of the domain at speed
u = (0,−1, 0) m/s. Free-slip boundary conditions are applied for the pseudo-D direction
and in the notch boundaries, and an outflow let the material flow out of the domain
when it reaches the bottom. Results are shown in Figure 2.23 for the finer mesh. The
material flows in the cavity and is cut by the notch in the center corner of the domain,
creating a singularity of the solution. The Figure 2.24 shows the visual convergence of
the approximated characteristic function ϕ.

Figure 2.23 – Machining simulation. Simplified 2D test case for implicit scheme. Extra-
stress component σσσyy. From left to right: t = 0.01, 0.025, 0.035 s.

Figure 2.24 – Machining simulation. Simplified 2D test case for implicit scheme. Extra-
stress component σσσyy at time t = 0.05 s. From left to right: H = 1, 0.5 and 0.25 mm.

Our implicit time discretisation scheme (1.25) has been used rather than the EVSS
scheme (1.24). Using a large value of the parameter ηp in the hyperbolic case α = 0
yields utterly large errors in simulations using the EVSS scheme, as mentioned in Remark
1.5.2 in section 1.5. In Figure 2.25, two simulations using the EVSS and implicit schemes
are presented. The same parameters as previously have been used except for the two
different values of the parameters ηp = {2 · 105, 2 · 107} and λ = {10−3, 10−1}. Their ratio
remains ηp/λ = 2 · 107 Pa. The difference on the approximated characteristic function ϕ
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and extra-stress tensor σσσ is too large between both simulations, which motivates the use
of the implicit scheme for machining simulation.

Figure 2.25 – Machining simulation. Simplified test case. Illustration of the issue raised
by the ratio ηp/λ at t = 0.03 s. Left: elastic simulation for ηp = 2 · 107 Pa s, λ = 10−1 s.
Right: elastic simulation for ηp = 2 · 105 Pa s, λ = 10−3 s. Top: EVSS scheme. Bottom:
implicit scheme.

Finally, a more sophisticated simulation is presented. The tool is still modelled by a
notch in the 3D domain but is shaped to form a realistic case. The set of parameters is
ρ = 7500 kg/m3, λ = 10−3 s and ηp = 2 · 105 Pa s. As previously mentioned, the use of
the EVSS scheme is avoided here, in order to ensure a realistic numerical result. The
results are presented in Figure 2.26. A chip is formed and allows to cut our material.
Although no change of topology is performed, large deformation of the piece of steel is
obtained.
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Figure 2.26 – Machining simulation. Extra-stress tensor coefficient σσσzz on small grid.
Top: t = 0.2 s. Bottom: t = 0.3 s.
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3 Numerical modelling of multi-
ple incompressible viscoelastic
free-surface flows
The goal is to extend the model in [JBCP14], corresponding to multiple incompressible
and immiscible Newtonian flows to the viscoelastic and elastic case. This allows to
consider fluid-fluid, fluid-structure and structure-structure interactions.

In this chapter, the model is presented first. The numerical approximation is then
described, the implicit scheme of chapter 1 being applied to the multiphase formulation.
Stability estimates of the time stepping schemes are then presented.

3.1 The mathematical model

The goal is to model the interaction of L > 1 phases, which rheologies range from
incompressible Newtonian or Oldroyd-B fluids to incompressible Neo-Hookean elastic
solids. The materials are considered isothermal, incompressible and immiscible. Consider
a bounded cavity Λ ⊂ R3 and let ϕ` : Λ× [0, T ]→ {0, 1} be the characteristic functions
for each material ` = 1, . . . , L. The domain containing material ` is then defined as equal
to 1 in material ` and 0 outside. They define the subdomains

Ω`(t) = {x ∈ Λ;ϕ`(x, t) = 1},

for ` = 1, . . . , L, ∀t ∈ [0, T ]. Since the materials are considered immiscible, the subdo-
mains Ω`(t), ` = 1, . . . , L do not intersect ∀t ∈ [0, T ]. Hence, defining ϕ : Λ×[0, T ]→ [0, 1]

as ϕ =
L∑
`=1

ϕ`, the complete material domain is defined as

Ω(t) = {x ∈ Λ;ϕ(x, t) = 1} =
L⋃
`=1

Ω`(t).

The space-time domain containing the material is defined as in chapter 1 as QT =
{(x, t) ∈ Λ× (0, T );x ∈ Ω(t), 0 < t < T}.
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Consider the notations of chapter 1. Let Ω0 = Ω(0) =
L⋃
`=1

Ω`(0) be the initial configuration

and x : Ω0 × [0, T ]→ Λ be the Lagrangian description of the displacement of the fluids.
The displacement of a particle X ∈ Ω0 after deformation at time t is defined via the
velocity of the deformation u using equation (1.2), see Figure 3.1.

ϕ1(X, 0)
Ω1(0)

ϕ2(X, 0)
Ω2(0)

u

t

•
X

•
x(X, t)

ϕ1(x, t)
Ω1(t)

ϕ2(x, t)
Ω2(t)

u

Figure 3.1 – Sketch of multiple materials deformation.

The material particles X ∈ Ω`(0) are transported to the position x(X, t), with the
material velocity u, the characteristics functions ` satisfy in the sense of distributions:

∂ϕ`
∂t

+ (u · ∇)ϕ` = 0, ` = 1, . . . , L, in Λ× [0, T ]. (3.1)

Thus, the characteristic functions satisfy for ` = 1, . . . , L and for all X ∈ Ω`(0):

ϕ`(x(X, t), t) = ϕ`(X, 0). (3.2)

By summing the equation (3.2) over ` = 1, . . . , L, we obtain that the characteristic
function ϕ satisfies the transport equation in the weak sense:

∂ϕ

∂t
+ (u · ∇)ϕ = 0, in Λ× [0, T ]. (3.3)

Hence, it also satisfies ϕ(x(X, t), t) = ϕ(X, 0). In the computational domain, the velocity
field u : QT → R3, the pressure field p : QT → R, the symmetric extra-stress tensor field
σσσ : QT → R3×3 satisfy:
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ρ

(
∂u

∂t
+ (u · ∇)u

)
−∇ · (2ηsεεε(u)) +∇p−∇ · σσσ = ρg, in QT , (3.4a)

∇ · u = 0, in QT , (3.4b)

ασσσ + λ

(
∂σσσ

∂t
+ (u · ∇)σσσ −∇uσσσ − σσσ∇uT

)
= 2ηpεεε(u), in QT , (3.4c)

where the parameters ρ, ηs, ηp, λ, α are piecewise constant in space, with a discontinuity
at the interfaces. For instance, ρ` denotes the constant density of phase `, ` = 1, . . . , L,
and the density ρ is then defined with respect to the characteristic functions as

ρ =
L∑
`=1

ρ`ϕ`. (3.5)

The definition is analogous for the remaining parameters ηs, ηp, λ, α. The material number
` determines:

1. an incompressible Newtonian fluid if α` = 1, λ` = 0,

2. an incompressible Oldroyd-B viscoelastic fluid if α` = 1, λ` > 0,

3. or an incompressible Neo-Hookean elastic solid if α` = 0, ηs,` = 0 and λ` > 0.

At initial time t = 0, the material ` region is defined as Ω`,0 = {x ∈ Λ;ϕ`(x, 0) = 1},

for ` = 1, . . . , L and the computational domain Ω0 =
L⋃
`=1

Ω`,0. The initial velocity field

u0 = u(·, 0) and extra-stress tensor σσσ0 = σσσ(·, 0) are prescribed in Ω0. On ∂Λ either zero
tangent force (free slip) (u · n = 0, σσσn · t = 0), zero normal force (u · t = 0, σσσn · n = 0),
no slip (u = 0) or Signorini boundary conditions (2.12) can be prescribed. Finally, as in
section 1.1, in case of inflow boundary conditions the velocity and extra stress must be pre-
scribed at the inflow boundary: u = uin and σσσ = σσσin on Γin = {x ∈ ∂Λ; (u·n)(x, t) < 0}.

For 0 ≤ t ≤ T , the free surface at time t is defined as ∂Ω(t)\∂Λ. The boundary conditions
prescribed on the free surface corresponds to the no external forces condition, that is
(−pI + 2ηs(ϕ)εεε(u)) + σσσ) · n = 0, where n is the unit outer normal of the free surface.
Since the parameters ρ, ηs, ηp, λ, α are piecewise constant in space, the equation (3.4a)
has to be understood in the weak sense and the conditions on the interface Γi,j(t) between
two subdomains Ωi(t) and Ωj(t), for 0 ≤ t ≤ T , are:

[u] = 0, (3.6)
[(2ηsεεε(u) + σσσ)n− pn] = 0, (3.7)

where the brackets [·] denotes the jump of the variables across the interface Γi,j(t). The
jump of the force at the interface is derived from the momentum equation (3.4a), while
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the velocity continuity is needed to write the weak formulation of (3.4), see for instance
[QV99]. Similar conditions are obtained for the coupling of viscid and inviscid Stokes
equations [QLV91] or in fluid-structure interactions (ηs,1 = 0, ηs,2 > 0) [DR06, Ric13].

Should surface tension forces apply on the interface Γij , then additional forces terms
must be added in (3.4a) and the interface condition becomes [Kat86, TELB06]:
[(2ηsεεε(u) + σσσ)n− pn] = Fs. The vector Fs denotes forces acting at the interface. Surface
tension forces are not considered here. For further informations, the reader can refer to
[Dav83, AMW98, Cab06].

Remark 3.1.1. The equations (3.5) and (3.2) gives the total mass conservation since
for every particle X ∈ Ω0:

ρ(X, 0) =
L∑
`=1

ρ`ϕ`(X, 0) =
L∑
`=1

ρ`ϕ`(x(X, t), t)) = ρ(x(X, t), t).

�

3.2 Time discretisation: an order one splitting scheme for
multiphase problem

Similarly as in the case L = 1, an order one splitting algorithm is applied to solve
the system of equations (3.4). Hence, the advection and diffusion terms are splitted
and solved separately. Let ∆t be the time step, N be the number of time steps,
∆t = T/N and tn = n∆t, n = 0, 1, . . . , N . Let n ≥ 1 and assume that at time tn−1,
the approximated volume fractiony ϕn−1

` : Λ → R are known, ` = 1, . . . , L. The
approximated computational domain is defined by Ωn−1 = {x ∈ Λ;ϕn−1(x) = 1}. Let
un−1 : Ωn−1 → R3 and σσσn−1 : Ωn−1 → R3×3 be the approximation of the velocity
u(tn−1) and extra-stress tensor σσσ(tn−1) respectively. During the prediction step, the set
of advection equations from tn−1 to tn in Λ is solved:
Find ψ` : Λ × [tn−1, tn] → {0, 1}, ` = 1, . . . , L, v : Λ × [tn−1, tn] → R3 and τττ : Λ ×
[tn−1, tn]→ R3×3 such that:

∂v

∂t
+ (v · ∇)v = 0, (3.8a)

∂τττ

∂t
+ (v · ∇)τττ = 0, (3.8b)

∂ψ`
∂t

+ (v · ∇)ψ` = 0, ` = 1, . . . , L, (3.8c)

with initial conditions

v(tn−1) = un−1, τττ(tn−1) = σσσn−1, ψ`(tn−1) = ϕn−1
` , ` = 1, . . . , L.
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problem

Dirichlet boundary conditions for the system of equations (3.8) are only prescribed
if inflow boundary conditions are applied on Γin. Analogously as for L = 1, the
system of equations (3.8) is solved exactly using the method of characteristics. Let us
denote by un−

1
2 ,σσσn−

1
2 , ϕn` the solutions at time tn of the system (1.12). The method of

characteristics yields for X ∈ Ωn−1:

un−
1
2 (X + ∆tun−1(X)) = un−1(X), (3.9a)

σσσn−
1
2 (X + ∆tun−1(X)) = σσσn−1(X), (3.9b)

ϕn` (X + ∆tun−1(X)) = ϕn−1
` (X), ` = 1, . . . , L. (3.9c)

The variables ϕn` , ` = 1, . . . , L, solutions of the transport equations (3.8c) at time tn,
determine the updated subdomains Ωn

` = {x ∈ Λ;ϕn` (x) = 1}. Moreover the total

characteristic function ϕn =
L∑
`=1

ϕn` is updated and the computational domain is defined

by Ωn = {x ∈ Λ;ϕn(x) = 1} =
L⋃
`=1

Ωn
` . The parameters are updated at time t = tn as

fn =
L∑
`=1

f`ϕ
n
` , (3.10)

for f = ρ, ηs, ηp, λ, α. Then, the correction step consists in solving the remaining system
of diffusive equations:
Find v : Ωn × [tn−1, tn] → R3, q : Ωn × [tn−1, tn] → R and τ : Ωn × [tn−1, tn] → R3×3

satisfying

ρn
∂v

∂t
−∇ · (2ηns εεε(v)) +∇q −∇ · τ = ρng, (3.11a)

∇ · v = 0, (3.11b)

αnτ + λn
(
∂τ

∂t
−∇vτ − τ∇vT

)
= 2ηnpεεε(v), (3.11c)

with the initial conditions v(tn−1) = un−
1
2 and τ (tn−1) = σσσn−

1
2 and the associated

boundary conditions discussed previsouly in section 3.1. The parameters ρn, ηns , λn, ηnp , αn

are approximations based on the characteristic functions ϕn` . The approximation of
velocity, pressure and extra-stress at time tn are then updated by un = v(tn), pn = q(tn)
and σσσn = τ (tn). A sketch of the main steps of the splitting algorithm is illustrated in
Figure 3.2.
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un−1

un−1

ϕn−1
1

Ωn−1
1

pn−1

ϕn−1
2

Ωn−1
2

σσσn−1

σσσn−1

Prediction
step un−

1
2

σσσn−
1
2

ϕn1
Ωn

1

ϕn2
Ωn

2

Correction
step un

pn

σσσn

ϕn1
Ωn

1

ϕn2
Ωn

2

Figure 3.2 – Sketch of the main steps of splitting algorithm. In the prediction step,
each fluid domain Ω` is updated by solving (3.9c) for the characteristic function ϕn` ,
` = 1, . . . , L. The velocity and extra-stress tensor are first transported by solving (3.9a)
and (3.9b), then updated to un and σσσn during the correction step, by solving (3.11).

3.3 Space discretisation: Two-grid approach

3.3.1 Prediction step: multiphase algorithms on a structured grid

The space discretization relies on the same two-grid approach of chapter 1. The method
of characteristics is used to solve the advection equations (3.8) and the formulas are given
by (3.9). A cell Cijk with cell barycenter xijk is defined to be active when ∃` ∈ {1, . . . , L}
such that ϕn`,ijk > 0. Its content is transported with the vector ∆tun−1

ijk . This implies
an ordering ` = 1, . . . , L of the phase to be transported, but this does not have a major
influence on the numerical results. A multiphase version of the SLIC and decompression
algorithms are used in order to respectively reduce numerical diffusion and deal with
overfilling. The multiphase version of SLIC is analogous to the algorithm presented in
chapter 1. The amount of material ` in the cell Cijk at time tn−1 is denoted ϕn−1

`,ijk and
is pushed towards the edge with fully filled neighbour cell. Whenever there are m > 1
different phases in an interface cell, they are respectively pushed towards the fully filled
neighbour cells, see Figure 3.3.

The multiphase version of the decompression algorithm deals with overfilled cells where

ϕnijk =
L∑
`=1

ϕn`,ijk > 1. The excess of material in each phase is subtracted from over-

filled cells and redistributed to the partially filled neighbour cells. Algorithm 1 used
in this thesis has been presented in [JBCP14]. When a cell is overfilled, the leftovers
are stored in a buffer in order to be redistributed. The excess of each phase is com-
puted in order to keep the ratio of all phases in the cell. Then, a loop is applied on the
cells partially filled. They are filled once again by respecting the ratio between the phases.

In some specific cases it is of interest to consider each phase separately, see Algorithm
2. Here, the first loop of the decompression algorithm is applied first on the phases in
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∆tun−1
ij

ϕn−1
1,ij = 0.4

ϕn−1
2,ij = 0.6

Figure 3.3 – Multiphase SLIC algorithm. The red cells have ϕn−1
1,ij values equal to 1 and

the blue cells have ϕn−1
2,ij values equal to 1. The cells at the interface are partially filled

by each phase. Consider one having 40% of phase 1 and 60% of phase 2. It is first
compressed toward filled cells, then the characteristic functions are transported.

the redistribution process [SA]. It is of particular interest when a phase is immersed in
another one. It asks for a specific treatment in order to ensure the VOF from either the
immersed or the immersing phase to be redistributed in priority. An empirical analysis
of the performance of these decompression algorithms is tackled in section 4.3.

Algorithm 1 Decompression algorithm for multiple phases [JBCP14]
for ` = 1, . . . , L and all cells such that ϕnijk > 1 (in decreasing order) do

e`,ijk ← (ϕnijk − 1)ϕn`,ijk/ϕnijk . Compute excess ratio w.r.t. each phase.
ϕn`,ijk ← ϕn`,ijk − e`,ijk, . Update the VOF for each phase in the cell.
B` ← B` + e`,ijk, . Store the VOF excess for each phase.

for all cells such that 0 < ϕn`,ijk < 1 (in decreasing order) do
for each phase ` = 1, . . . , L do

if B` > 0 then
r`,ijk ← (1− ϕnijk)ϕn`,ijk/ϕnijk . Compute the relative VOF void.
ϕn`,ijk ← ϕn`,ijk + r`,ijk, . Update the VOF for each phase.
B` ← B` − r`,ijk, . Update the buffer.

if ∃` ∈ {1, . . . , L} such that B` > 0 then
Distribute the remaining excess to closest neighbour partially filled cells. If not

possible, store for the next iteration.

3.3.2 Interpolation algorithms

Let H > 0 and TH be a triangulation of the cavity Λ of maximum diameter H > 0. In
order to compute the correction step, the characteristic function ϕn−1

ijk is interpolated
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Algorithm 2 Decompression algorithm for multiple phases with phases priority
for ` = 1, . . . , L and all cells such that ϕn`,ijk > 1 (in decreasing order) do

e`,ijk ← (ϕnijk − 1)ϕn`,ijk/ϕnijk
ϕn`,ijk ← ϕn`,ijk − e`,ijk, . The first step of buffer filling is kept unchanged.
B` ← B` + e`,ijk,

for each phase ` = 1, . . . , L do . The loop on phases is here done first.
for all cells such that 0 < ϕn`,ijk < 1 (in decreasing order) do

if B` > 0 then
r`,ijk ← (1− ϕnijk)ϕn`,ijk/ϕnijk . Compute the relative VOF void.
ϕn`,ijk ← ϕn`,ijk + r`,ijk, . Update the VOF for each phase.
B` ← B` − r`,ijk, . Update the buffer.

if ∃` ∈ {1, . . . , L} such that B` > 0 then
Distribute the remaining excess to closest neighbour partially filled cells. If not

possible, store for the next iteration.

from the cell grid to the FE mesh TH via an L2 projection. The interpolation operator
uses the same equation (1.16) as for the case L = 1. The active FE region is then defined
as

Ωn
H = {K ∈ TH : ∃P ∈ {PKi }4i=1 vertices of K such that ϕnH(P ) ≥ 0.5}. (3.12)

The intermediate velocity un−
1
2

ijk and extra-stress tensor σσσn−
1
2

ijk are similarly interpolated
on the FE mesh using the interpolation equations (1.18), see Remark 1.4.1, section 1.4.2.

The set of parameters fn = ρn, ηns , η
n
p , λ

n, αn are then interpolated on the FE mesh, where
their value fnH is piecewise constant. They depend on the values of the characteristic
functions ϕn`,ijk, ` = 1, . . . , L, on each cell Cijk. Thus two different approaches are
available for the interpolation, as illustrated in Figure 3.4.

1. One possibility is to do the interpolation of each characteristic functions ϕn`,ijk,
` = 1, . . . , L on the FE mesh. Then we compute their values for all K ∈ TH using
an L2-interpolation:

fnH K = 1
4

4∑
i=1

L∑
`=1

f`ϕ
n
`,H(PKi )

L∑
`=1

ϕn`,H(PKi )
, (3.13)

where PKi are the four nodes of the element K.

2. The second way to compute these parameters are to calculate first their values on
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each cell grid by using the formula

fnijk =

L∑
`=1

f`ϕ
n
`,ijk

L∑
`=1

ϕn`,ijk

, (3.14)

for f = ρ, ηs, ηp, λ, α and then interpolate the results onto the FE mesh, using the
same interpolation formula as previously applied to the characteristic function.
They are then interpolated from the nodes to the elements by an L2-projection
formula.

Numerical experiments have shown that no fundamental difference in the numerical results
can be observed. Thus, the second approach is applied in our numerical computations
since it has the advantages of not looping on the cells for each phase.

ϕn`,ijk

ϕn`,H

ρnijk

ρnH

Parameters
approximation (3.14)

Interpolation
on K (1.19)

Parameters
approximation (3.13)

Interpolation
on K (1.19)

Figure 3.4 – Interpolation algorithm from cells grid to FE mesh. Both strategies are
considered. First the parameters are evaluated on the cells and then interpolated on
the FE mesh. The second choice is to interpolate the characteristic functions on the FE
mesh and approximate the parameters in a second step.

3.3.3 Correction step: finite elements

Consider now the FE discretization of the system of equations (3.11). Consider the
triangulation TH and the active domain Ωn

H defined in (3.12). From the continuity
conditions at the interface (3.6),(3.7), no specific treatment on the FE space have to
be taken into account. Then, the considered piecewise linear FE spaces are the same
as considered for L = 1 and as defined in (1.26). Both time discretisations of the
correction step presented in chapter 1 are adapted for the time discretization of the
system (3.11). For the EVSS scheme, the stabilization tensor Dn− 1

2
H ∈ T nH is computed
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using the equation (1.27a) and the problem reads:
Find unH ∈ V n

H , pnH ∈ QnH such that

∫
Ωn

H

ρnH
unH − u

n− 1
2

H

∆t · vH dx+
∫

Ωn
H

2(ηns,H + ηnp,H)εεε(unH) : εεε(vH) dx−
∫

Ωn
H

pnH(∇ · vH) dx

=
∫

Ωn
H

(2ηnp,HD
n− 1

2
H − σσσn−

1
2

H ) : εεε(vH) dx+
∫

Ωn
H

ρnHg · vH dx, ∀vH ∈ V n
H , (3.15a)

∫
Ωn

H

(∇ · unH)qH dx

+
∑

K∈TH
K⊂Ωn

H

αK

∫
K

(
∇pnH −∇ · σσσ

n− 1
2

H − ρnHg
)
· ∇qH dx = 0, ∀qH ∈ QnH , (3.15b)

and in the next step we solve the weak formulation of the Oldroyd-B equation to recover
the extra-stress tensor σσσnH ∈ T nH such that:∫

Ωn
H

σσσnH : τττH dx =
∫

Ωn
H

λnH
λnH + αnH∆tσ

σσ
n− 1

2
H : τττH dx

+
∫

Ωn
H

λnH∆t
λnH + αnH∆t(∇u

n
Hσσσ

n− 1
2

H + σσσ
n− 1

2
H (∇unH)T ) : τττH dx (3.15c)

+
∫

Ωn
H

2ηnp,H∆t
λnH + αnH∆tε

εε(unH) : τττH dx, ∀τττH ∈ T nH .

The local stabilization coefficients αk are defined by

αK =


|K|

2
3

12(ηns,H + ηnp,H) if ReK ≤ 3,

|K|
2
3

4ReK(ηns,H + ηnp,H) otherwise,
, ReK = ρ|K|

1
3 maxx∈K |u

n− 1
2

H (x)|
2(ηns,H + ηnp,H) .

The implicit numerical scheme for time discretization (1.28) is adapted here for multiphase
flows. The finite element approximations of the velocity unH and of the pressure pnH are
computed by solving:
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Find unH ∈ V n
H , pnH ∈ QnH such that

∫
Ωn

H

ρnH
unH − u

n− 1
2

H

∆t · vH dx+
∫

Ωn
H

2
(
ηns,H +

ηnp,H∆t
λnH + αnH∆t

)
εεε(unH) : εεε(vH) dx

−
∫

Ωn
H

pnH(∇ · vH) dx =
∫

Ωn
H

ρnHg · vH dx−
∫

Ωn
H

λnH
λnH + αnH∆tσ

σσ
n− 1

2
H : εεε(vH) dx (3.16a)

−
∫

Ωn
H

λnH∆t
λnH + αnH∆t(∇u

n− 1
2

H σσσ
n− 1

2
H + σσσ

n− 1
2

H (∇un−
1
2

H )T ) : εεε(vH) dx, ∀vH ∈ V n
H ,

∫
Ωn

H

(∇ · unH)qH dx (3.16b)

+
∑

K∈TH
K⊂Ωn

H

αK

∫
K

(
∇pnH −

λnH
λnH + αnH∆t∇ · σ

σσ
n− 1

2
H − ρnHg

)
· ∇qH dx = 0, ∀qH ∈ QnH .

Similarly as for the EVSS scheme, we solve the weak formulation of the Oldroyd-B
equation (3.15c) to recover the extra-stress tensor σσσnH ∈ TH . Similarly, the coefficients
αK are defined as:

αK =



|K|
2
3

12(ηns,H + ηnp,H
∆t

λn
H+αn

H∆t)
if ReK ≤ 3

|K|
2
3

4ReK(ηns,H + ηnp,H
∆t

λn
H+αn

H∆t)
else,

, ReK = ρ|K|
1
3 maxx∈K |u

n− 1
2

H (x)|
2(ηns,H + ηnp,H

∆t
λn

H+αn
H∆t)

.

3.4 Stability and convergence study of linear system

In this section, the stability analysis done in chapter 1 is carried for L > 1. The analysis
is applied for completely filled cavity (ϕ(x, t) = 1, for all x ∈ Λ and for all t ∈ [0, T ]).
The additional issue is to deal with the interfaces between Ωi and Ωj , i, j = 1, . . . , L and
the advection terms are removed. The goal is to find a priori estimate for a simplified
analytical model. Then, we recover a similar result in the discrete case.

3.4.1 Analysis of a simplified multiphase model

Stability estimates for a simplification of the model (3.4) are now studied. The nonlinear
terms in the Oldroyd-B equation (3.4c) and the external forces are removed, and a
completely filled cavity is considered (ϕ = 1 and Λ = Ω(t) = Ω, for 0 ≤ t ≤ T ).
Furthermore, we assume the characteristic functions to be constant in time: ϕ`(x, t) =
ϕ`(x, 0), x ∈ Ω, t ∈ [0, T ] and ` = 1, . . . , L. The weak formulation of the simplified
problem reads in Ω× [0, T ]:
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∫
Ω
ρ
∂u

∂t
· v dx+

∫
Ω

(2ηsεεε(u) + σσσ) : εεε(v) dx (3.17a)

−
∫

Ω
p(∇ · v) dx = 0, ∀v ∈ H1

0 (Ω)3,∫
Ω

(∇ · u)q dx = 0, ∀q ∈ L2
0(Ω), (3.17b)∫

Ω
ασσσ : τ dx+

∫
Ω
λ
∂σσσ

∂t
: τ dx−

∫
Ω

2ηpεεε(u) : τ dx = 0, ∀τ ∈ L2(Ω)3×3. (3.17c)

The parameters f = ρ, ηs, ηp, λ, α are piecewise constant and defined as in (3.5): f =
L∑
`=1

f`ϕ`. Finally, homogeneous Dirichlet boundary conditions apply: u = 0 on ∂Ω.

Using v = u in (3.17a), q = p in (3.17b) and τ = 1
2ηp
σσσ in (3.17c) (ηp,` > 0, ` = 1, . . . , L),

we find, for 0 < t < T :

d
dt

(∫
Ω

ρ

2 |u|
2 dx

)
+
∫

Ω
2ηs|εεε(u)|2 + σσσ : εεε(u) dx−

∫
Ω
p(∇ · u) = 0,∫

Ω
p(∇ · u) = 0,

d
dt

(∫
Ω

λ

4ηp
|σσσ|2 dx

)
+
∫

Ω

α

2ηp
|σσσ|2 dx−

∫
Ω
σσσ : εεε(u) dx = 0,

since the characteristic functions are constant in time, so ∂
∂tf = 0, for f = ρ, ηs, ηp, λ, α.

Finally, we obtain

d
dt

∫
Ω

(
ρ|u|2 + λ

2ηp
|σσσ|2

)
dx+

∫
Ω

4ηs|εεε(u)|2 + α

ηp
|σσσ|2 dx = 0. (3.18)

The equation (3.18) is analogous to the a priori estimate (1.32) proved for the case L = 1.
As previously, an alternative stability result must be obtained when η`,s = 0 for any
` = 1, . . . , L, in order to bound the velocity gradient εεε(u). However, since the parameters
are now piecewise constant, only the case α` = 0, ` = 1, . . . , L is treated. When α` = 0,
` = 1, . . . , L, the strong form of the system (3.17) reads

ρ
∂u

∂t
−∇ · (2ηsεεε(u) + σσσ) +∇p = 0, (3.19a)

∇ · u = 0, (3.19b)
∂σσσ

∂t
= 2ηp

λ
εεε(u). (3.19c)

Since α` = 0, we then must have λ` > 0, ` = 1, . . . , L. Otherwise only a trivial solution
would be obtained for the velocity (0 = 2ηpεεε(u)). By taking the time derivative of
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(3.19a), we can substitute (3.19c) into the result and it yields

ρ
∂2u

∂t2
−∇ ·

(
2ηsεεε

(
∂u

∂t

)
+ 2ηp

λ
εεε(u)

)
+∇∂p

∂t
= 0,

since ∂f
∂t = 0, for f = ρ, ηs, ηp, λ, α. Taking the scalar product with ∂u

∂t and integrate over
Ω yields

d
dt

(∫
Ω
ρ

∣∣∣∣∂u∂t
∣∣∣∣2 + 2ηp

λ
|εεε(u)|2 dx

)
+
∫

Ω
2ηs

∣∣∣∣εεε(∂u∂t
)∣∣∣∣2 dx = 0. (3.20)

3.4.2 Analysis of a simplified model for the discretisation in time

Now, let us consider the implicit discretisation in time for the simplified system (3.17).
Since the characteristic functions ϕn` are constant in time, we still consider piecewise
constant parameters ρ, ηs, ηp, λ, α. The weak formulation of the problem reads:
For n = 1, . . . , N , find un, pn and σσσn in Ω such that∫

Ω
ρ
un − un−1

∆t · v dx+
∫

Ω
(2ηsεεε(un) + σσσn) : εεε(v) dx (3.21a)

−
∫

Ω
pn(∇ · un) dx = 0, ∀v ∈ H1

0 (Ω)3,∫
Ω

(∇ · un)q dx = 0, ∀q ∈ L2
0(Ω), (3.21b)∫

Ω
ασσσn : τ dx+

∫
Ω
λ

(
σσσn − σσσn−1

∆t

)
: τ dx (3.21c)

−
∫

Ω
2ηpεεε(un) : τ dx = 0, ∀τ ∈ L2(Ω)3×3.

The weak formulation (3.21) implies the interface conditions [(2ηsεεε(un)+σσσn−pnI)n] = 0
and [un] = 0, for n = 1, . . . , N . By using v = un in (3.21a) and τ = σσσn in (3.21c), we
find∫

Ω

ρ

2 |u
n|2 + ρ

2 |u
n − un−1|2 dx+ ∆t

∫
Ω

2ηs|εεε(un)|2 + σσσn : εεε(un) dx−∆t
∫

Ω
pn(∇ · un) dx

=
∫

Ω

ρ

2 |u
n−1|2 dx.

∫
Ω

λ

4ηp
|σσσn|2 + λ

4ηp
|σσσn − σσσn−1|2 dx+ ∆t

∫
Ω

α

2ηp
|σσσn|2 dx

=
∫

Ω

λ

4ηp
|σσσn−1|2 dx+ ∆t

∫
Ω
σσσn : εεε(un) dx.
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This yields by summing the two previous equations and removing the pressure terms
using (3.21b):

∫
Ω

(
ρ|un|2 + λ

2ηp
|σσσn|2

)
dx+

∫
Ω

(
ρ|un − un−1|2 + λ

2ηp
|σσσn − σσσn−1|2

)
dx

+ ∆t
∫

Ω

(
4ηsεεε(un) + α

ηp
|σσσn|2

)
dx

=
∫

Ω

(
ρ|un−1|2 + λ

2ηp
|σσσn−1|2

)
dx

This is the multiphase counterpart of the result (1.40). Now we want to compute an
estimate which gives an upper bound of εεε(un) in the case α` = 0, ` = 1, . . . , L. The
strong form of (3.21) yields for n = 0, . . . , N − 1:

ρ
un+1 − un

∆t −∇ · (2ηsεεε(un+1) + σσσn+1) +∇pn+1 = 0, (3.22a)

∇ · un+1 = 0, (3.22b)
σσσn+1 − σσσn

∆t = 2ηp
λ
εεε(un+1). (3.22c)

Take the difference between two consecutive steps of (3.22a) and substitute (3.22c) into
the result yields:

ρ
un+1 − 2un + un−1

∆t −∇ ·
(
2ηsεεε(un+1 − un) + σσσn+1 − σσσn

)
+∇(pn+1 − pn) = 0.

Take the scalar product of the result with u
n+1 − un

∆t and integrate over Ω. Since the
interface conditions are true for n = 0, 1, . . . , N , we have [(2ηsεεε(un+1 − un) + σσσn+1 −
σσσn− (pn+1− pn)I)n] = 0 and [un+1−un] = 0, for n = 0, . . . , N − 1. Thus, the diffusion
terms read

− 1
∆t

∫
Ω

(un+1 − un) · (∇ ·
(
2ηsεεε(un+1 − un) + σσσn+1 − σσσn

)
+∇(pn+1 − pn)) dx

= − 1
∆t

L∑
`=1

∫
Ω`

(un+1 − un) · (∇ ·
(
2ηs,`εεε(un+1 − un) + σσσn+1 − σσσn

)
+∇(pn+1 − pn)) dx

= 1
∆t

L∑
`=1

∫
Ω`

(2ηs,`εεε(un+1 − un) + σσσn+1 − σσσn − (pn+1 − pn)I) : (εεε(un+1 − un) dx

− 1
∆t

L∑
`=1

∫
∂Ω`

(un+1 − un) · (2ηs,`εεε(un+1 − un) + σσσn+1 − σσσn + (pn+1 − pn)I)n dS

= 1
∆t

∫
Ω

2ηs|εεε(un+1 − un|2 + (σσσn+1 − σσσn) : εεε(un+1 − un) dx,
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where the pressure terms and surface integrals cancel out respectively using equation
(3.21b) and the interface conditions previously highlighted. By taking the tensor product
of (3.21c) with εεε(un+1 − un) and integrate over Ω, we find

1
∆t

∫
Ω

(σσσn+1 − σσσn) : εεε(un+1 − un) dx =
∫

Ω

2ηp
λ
εεε(un+1) : εεε(un+1 − un) dx

It yields by summing the results:

∫
Ω

ρ

2

∣∣∣∣∣un+1 − un

∆t

∣∣∣∣∣
2

dx+
∫

Ω

ρ

2

∣∣∣∣∣un+1 − 2un + un−1

∆t

∣∣∣∣∣
2

dx+
∫

Ω

ηp
λ
|εεε(un+1)|2 dx

+
∫

Ω

2ηp
λ
|εεε(un+1 − un)|2 dx+ ∆t

∫
Ω

2ηs

∣∣∣∣∣εεε
(
un+1 − un

∆t

)∣∣∣∣∣
2

dx

=
∫

Ω

ρλ

2

∣∣∣∣∣un − un−1

∆t

∣∣∣∣∣
2

dx+
∫

Ω

ηp
λ
|εεε(un)|2 dx.

Summing from n = 0 to n = N − 1, it yields the discrete counterpart of (3.20):

∫
Ω
ρ

∣∣∣∣∣uN − uN−1

∆t

∣∣∣∣∣
2

dx+
∫

Ω

2ηp
λ
|εεε(uN )|2 dx+ ∆t

N−1∑
n=0

∫
Ω

4ηs

∣∣∣∣∣εεε
(
un+1 − un

∆t

)∣∣∣∣∣
2

dx

≤
∫

Ω
ρ

∣∣∣∣∣u1 − u0

∆t

∣∣∣∣∣
2

dx+
∫

Ω

2ηp
λ
|εεε(u1)|2 dx.

It also correspond to the multiple phases counterpart of the a priori estimate (1.41) in
the case α = 0. Numerical experiments are presented in the next chapter.
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4 Numerical experiments of mul-
tiple incompressible viscoelastic
free-surface flows
In this chapter, validation of the multiphase model is presented. First, the collision be-
tween elastic structures is studied. Two sets of parameters are used, and the convergence
of both time discretisation schemes is analysed. Both elastic material split after collision,
thus changes of topology are observed and explained.

A simulation of multiple incompressible Newtonian and viscoelastic flows is provided.
A viscoelastic droplet is immersed in a Newtonian fluid and flows in a constricted tube.
Convergence of the numerical scheme is shown and compared to the numerical results of
a referenced article [ZIM17].

Fluid-structure interaction is investigated. First, an elastic material falls in a Newtonian
fluid due to gravity. It deforms but never touches the boundary of the cavity, extending
a result in [Hil07]. The performances of the different decompression algorithms are
compared. A shock absorber experiment is then proposed, where three different phases
are involved. An elastic material, immersed in a viscoelastic fluid is enveloped in a
mechanical hull. The influence of the relaxation time parameter is studied.

4.1 Collision between two elastic materials

We address the interaction between structures by considering two incompressible Neo-
Hookean phases. Two ball-shaped solids collide into each other, inducing large deforma-
tions. The two subdomains then split, inducing a change of topology of the computational
domain. We present a 3D simulation, where the variables are constant in the Oz axis. The
cavity Λ = [−0.43, 0.35] m×[−0.14, 0.14] m×[0, 0.02] m is considered. The two different
materials are defined by their initial subdomains Ω1,0 = {(x, y) ∈ Λ; (x+ 0.135)2 + y2 <

0.01} and Ω2,0 = {(x, y) ∈ Λ; (x−0.135)2 +y2 < 0.01}, thus ϕ1(x, 0) = 1 for x ∈ Ω1,0 and
zero elsewhere, and ϕ2(x, 0) = 1 for x ∈ Ω2,0 and zero elsewhere. The surrounding air is
modelled as vacuum and the free surfaces are determined by the characteristic function
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ϕ = ϕ1 + ϕ2. The phases are initialised with the same velocity u0 = (±10, 0) m/s in
opposite directions. In Figure 4.1, the position and velocity of both phases are displayed
at initial time t = 0 and time t = 4.3 ms slightly after the collision. Free-slip boundary
conditions are applied on the domain boundary ∂Λ.

Figure 4.1 – Colliding elastic balls. The component along the axis Ox (horizontal) of
the velocity ux is displayed. Top: initial time t = 0 ms. Bottom: deformed materials
at t = 4.3 ms. Left: P1 set of parameters for phase 2. Right: P2 set of parameters for
phase 2.

The material corresponding to ϕ1 has the following set of parameters: ρ1 = 1000 kg/m3,
ηs,1 = 0 Pa s, ηp,1 = 2 · 104 Pa s, λ1 = 0.01 s and α1 = 0. It corresponds to an
incompressible Neo-Hookean solid with an analogous density and Young modulus as
rubber. Two sets of parameters have been chosen for the second material in order to run
different simulations:

P1: In the first setting, the two phases correspond to the same material (f1 = f2, for f =
ρ, ηs, ηp, λ, α) and we expect to observe symmetry in our numerical computations.

P2: In the second setting, the material is more dense (ρ2 = 2000 kg/m3) and more rigid
(ηp,2 = 105 Pa s), where the other parameters remain identical (ηs,1 = ηs,2, λ1 = λ2
and α1 = α2). The second phase being more dense, it has more momentum than
the first phase.

Both EVSS (3.15) and implicit (3.16) schemes are applied to run the simulations. In the
coarse settings, the time step is ∆t = 0.538 ms with final time T = 21.5 ms, the cell grid
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size is h = 4.375 mm and the average finite element diameter is H = 15 mm. In Figures
4.2 and 4.3, the velocity component ux of the barycenter of each phase is monitored
through time. In Figure 4.2, the set of parameters P1 is used, where the parameters are
the same for each phase. We can observe that the symmetry of the curves is obtained for
both schemes, by multiplying the value of the curve by −1. The elastic effects makes
the phases bounces off each other and the velocity becomes negative smoothly. The
symmetry is broken in Figure 4.3, when the second set of parameters is used. The less
dense material is pulled backward with a velocity norm close to its original one, while
the more dense loses movement energy. We can notice that the material gets a positive
velocity at t = 9 ms for the implicit scheme, while it is almost stopped for the EVSS
scheme.

Figure 4.2 – Colliding elastic balls. Horizontal velocity ux of the barycenter of each
phase for 0 ≤ t ≤ 9 ms for the first set of parameters P1. Top: EVSS scheme (3.15).
Bottom: implicit scheme (3.16). Left: First phase. Right: Second phase.

The exact solution for this problem is not known. Nevertheless, convergence is observed
for the implicit scheme (3.16) for both sets of parameters P1 and P2. Here, the EVSS
scheme (3.15) is less accurate. As mentioned in Remark 1.5.2 for L = 1, the EVSS
scheme is less accurate if ηp is larger than one. Furthermore, let us consider the kinetic
and elastic energy (1.67) defined in section 1.7. Since α` = ηs,` = 0, ` = 1, 2, it yields
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Figure 4.3 – Colliding elastic balls. Horizontal velocity ux of the barycenter of each
phase for 0 ≤ t ≤ 9 ms for the second set of parameters P2. Top: EVSS scheme (3.15).
Bottom: implicit scheme (3.16). Left: First phase. Right: Second phase.

En =
∫

Ωn

(
ρ|unH |2 + λ

2ηp
|σσσnH |2

)
dx, n = 0, 1, . . . , N . The evolution of En is displayed

in Figure 4.4. Even though the convergence of this quantity is not guaranteed, we can
observe that the energy of the EVSS scheme decreases strongly when the balls collide,
while it remains smooth using the implicit scheme.

Finally, the different set of parameters in a simulation affect the condition number of
the linear system, solved using the GMRES algorithm with an ILU preconditioner. In
Figure 4.5, the number of iterations of the GMRES solver is displayed for the simulation
for both sets of parameters P1 and P2 in the case h = 1 mm for both schemes. It shows
that the linear system computed with the EVSS scheme requires more iterations than
the one for the implicit scheme. As expected, we notice that the use of two phases with
different parameters (P2) than only one set of parameters for both phases (P1) implies a
worse conditioning of the linear system. The RAM memory and CPU time to compute
the simulations for the implicit scheme are summarised in the following table:
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Figure 4.4 – Colliding elastic balls. Kinetic and elastic energy evolution. Top: EVSS
scheme (3.15). Bottom: implicit scheme (3.16). Left: P1 set of parameters. Right: P2
set of parameters.

Set of parameters P1

h [mm] memory [GB] CPU time [h]
4.375 0.14 0.015
2.2 0.676 0.189
1.1 4.041 3.32
0.55 31.5 66.48

Set of parameters P2

h [mm] memory [GB] CPU time [h]
4.375 0.141 0.015
2.2 0.67 0.192
1.1 4.254 3.36
0.55 32.84 67.89

The velocity u and extra-stress tensor σσσ are monitored on the horizontal axis along the
line Ox (y = 0, z = 0.01) at time t = 4.3 ms, when the shock has happened and the
phases are deforming. In Figure 4.6, the profile of velocity is displayed for both set of
parameters for the implicit scheme (3.16). The convergence is observed for both sets
of parameters P1 and P2 as well. The symmetry is indeed obtained for the first set of
parameters P1. In Figure 4.7, the component xx of extra-stress σσσnh,xx is displayed along
the Ox axis. The momentum is higher in the second set of parameters P2, as well as the
consequent force around the interface.

In order to validate the multiphase model (3.4), with respect to the unified model for
L = 1 (1.1), a numerical experiment using the numerical framework presented in chapter
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Figure 4.5 – Colliding elastic balls. Comparison of GMRES iterations between schemes
EVSS scheme (3.15) implicit scheme (3.16). Left: P1 set of parameters. Right: P2 set of
parameters.

Figure 4.6 – Colliding elastic balls. Velocity ux along the axis Ox at time t = 4.3 ms
for the implicit scheme (3.16). Left: first set of parameters for ϕ2. Right: second set of
parameters for ϕ2.

1 is run using the same parameters for each phase, that is the set of parameters P1,
using the implicit scheme (1.28) for the model using one phase, and the implicit scheme
(3.16) for the multiphase model. In Figure 4.8, the profile of velocity is displayed for
both numerical models for two different time steps. The profile of the velocity remains
identical for both numerical framework until the materials split. In the second figure,
the material just splitted and the velocity is large. Small differences can be spotted in
this case. This can be explained by the difference in the numerical algorithms applied to
take into account the multiple phases.

In Figure 4.9 the profile of the velocity on cells are displayed at time t = 17.2 ms for
the set of parameters P1. The momentum of both materials allows the phases to split,
changing the topology of the domain Ω(t). The continuity condition of the velocity on
the interface (3.6) should not allow this change of topology. It is a numerical artefact,

96



4.1. Collision between two elastic materials

Figure 4.7 – Colliding elastic balls. Component xx of extra-stress σσσxx along the axis
Ox (y = 0, z = 0.01) at time t = 4.3 ms for the implicit scheme (3.16). Left: first set of
parameters for ϕ2. Right: second set of parameters for ϕ2.

Figure 4.8 – Colliding elastic balls. Velocity ux along the axis Ox for the implicit
scheme (3.16) using the unified model (1.1) and the multiphase model (3.4) for the set
of parameters P1. Left: t = 7 ms . Right: t = 14 ms.

due to the method of characteristics and the SLIC and decompression algorithms. If the
gradient of the velocity is large enough at the interface, the VOF on cells is transported
because the velocity is not zero. We can notice this splitting on the monitored velocity
when a gap is obtained between both phases. Thus, topology change is obtained for
h < 8 mm with the implicit scheme and for h < 2 mm for the EVSS scheme.

This change of topology was not obtained for the second set of parameters P2 for
both numerical schemes, and the phases remained glued to each other due to the
continuity of the velocity. In Figure 4.10, 3D simulations are computed for both
sets of parameters P1 and P2, using the implicit scheme (3.16). The cavity Λ =
[−0.43, 0.35] m×[−0.14, 0.14] m×[−0.14, 0.14] m is now considered. The two different
materials are now spheres and defined by their initial subdomains Ω1,0 = {(x, y) ∈
Λ; (x+ 0.135)2 + y2 + z2 < 0.01} and Ω2,0 = {(x, y) ∈ Λ; (x− 0.135)2 + y2 + z2 < 0.01}.
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Figure 4.9 – Colliding elastic balls. Change of topology appear when velocity is equal to
0 on graph. Top: Velocity ux along the axis Ox at time t = 17.2 ms. Bottom: Velocity
ux on cells. Left: EVSS scheme (3.15). Right: implicit scheme (3.16).

Small defects on the surface of the first material (ϕ1 = 1) can be observed. They are
due to SLIC and decompression algorithms, designed for a fluid numerical scheme. In
this case, the materials are splitted for both sets of parameters P1 and P2. Since this
phenomenon is a numerical artefact, the momentum of the balls decreases. Indeed, the
continuity of the velocity at the interface implies that the heavy material holds back the
light one.

Nevertheless, a change of topology is expected as a physical reality: two rubber balls
colliding with each other then repel each other. The mathematical framework that we use
unfortunately does not allow us to reproduce this result. Our thoughts on future work
on the problem are the following. In chapter 2, Signorini boundary conditions (2.12) are
imposed on the boundary of the cavity in order to let the ball bouncing upwards, where
the normal force T n−1

n,H = (T n−1
H n) · n = ((2ηsD

n− 1
2

H +σσσ
n− 1

2
H )n− pn−1

H n) · n is computed
on the domain boundary. A similar condition as the Signorini boundary conditions
could thus be imposed at the interface. If T n−1

n,H > 0, the materials tend to split. In
this particular case, the continuity condition must be artificially broken. The algorithm
would rely on removing cells in active regions, in order to break the contact between
the materials. It would result in a discontinuity in the velocity which would allow to
separate the materials, although yielding a loss of mass. This is future work.
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Figure 4.10 – Colliding elastic balls. Velocity ux for the two phases, specified by the
characteristic functions ϕ1 (left) and ϕ2 (right). From top to bottom: t = 0, 6, 8, 12, 16 ms.
Left: first set of parameters for ϕ2. Right: second set of parameters for ϕ2.
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4.2 Interactions between Newtonian and Oldroyd-B fluids

In this section, we consider the flow of multiple Oldroyd-B viscoelastic fluids. To validate
our model, the numerical experiments in [ZIM17] are reproduced. In this article, a
viscoelastic droplet is immersed in a Newtonian fluid, flowing in a constricted tube, see
Figure 4.11. Several necks are presented in [ZIM17], the sharp-edged neck in the tube has
been chosen here, since our numerical scheme can capture the singularity (see machining
experiment, in section 2.3.2).

x

Figure 4.11 – Constricted tube. Sketch of the numerical experiment. A viscoelastic
droplet is immersed in a Newtonian flow, with inflow on the left and outflow on the right.
Half of the pipe is presented, but numerical simulations are computed on a quarter of
the pipe. It preserves the symmetry of the experiment and earns computational time.

The cavity is a cylinder of length L = 12 m and of radius R = 1 m. The neck has
length 2R = 2 m and height 0.6R = 0.6 m. The axial symmetry of the simulation allow
to only simulate one quarter of the cylinder, see Figure 4.12. Thus, the cavity Λ is a
subdomain of the rectangular domain [−6, 6] m×[0, 1]2 m2. An inflow is set on the surface
{x = −6}, with a parabolic profile for the velocity uin = V (1− (y2 + z2), 0, 0), where V
is a Reynolds dependent parameter. An outflow is set on the opposite side boundary,
where we impose zero-force on the boundary. Free-slip boundary conditions are set on
the surface {y = 0} and {z = 0} on the symmetry axes and no-slip boundary condition
are set on the remaining curved boundaries. A Newtonian fluid, characterised by the
function ϕ1, flows in the domain and carries the viscoelastic droplet away, characterised
by the function ϕ2. The non-dimensional parameters used in [ZIM17] are

Re = 5ρ1V R

2(µs,1 + µp,1) = 10, Wi = λ2V

R
= 1,

respectively defining the Reynolds and Weissenberg numbers and

β = µs,2
µs,2 + µp,2

= 0.5, θ = µs,2 + µp,2
µs,1 + µp,1

= 2, α = ρ2
ρ1

= 1,

being the solvent viscosity, viscosity and density ratios. This yields the following set
of parameters: for a radius R = 1 m, a velocity V = 1 m/s, the Newtonian fluid has
the parameters ρ1 = 1 kg/m3, µs,1 = 0 Pa s, µp,1 = 0.25 Pa s, λ1 = 0 s and α1 = 1.
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The Oldroyd-B viscoelastic fluid has the parameters ρ2 = 1 kg/m3, µs,2 = 0.25 Pa s,
µp,2 = 0.25 Pa s, λ2 = 1 s and α2 = 1.

Figure 4.12 – Constricted tube. Velocity in the FE mesh and characteristic function ϕ2
for the viscoelastic droplet. Top: t = 0. Bottom: t = 0.5 s.

A first numerical simulation is computed in order to test the convergence of the velocity
and pressure. Four mesh sizes are used, where the coarser settings are the following: the
average FE mesh diameter is H = 0.2 m, and more precision is imposed at the neck with
H = 0.1 m. The grid cell diameter is h = 0.05 m and the time step is ∆t = 0.008 s. The
initial viscoelastic droplet is Ω2,0 = {x = (x, y, z) ∈ Λ; ‖x− (−2.8, 0, 0)‖ < 0.7}. The
simulation is stopped when a laminar flow is obtained, thus at a final time T = 0.5 s. In
Figure 4.13, the profile of the velocity component ux and the pressure p along the axis
Ox is displayed at final time T . Convergence of the results are obtained, with a lower
precision on the pressure.

For the next numerical experiment, the initial viscoelastic droplet is Ω2,0 = {x =
(x, y, z) ∈ Λ; ‖x− (−2, 0, 0)‖ < 0.7}. The initial velocity u0 and the initial extra-stress
tensor σσσ0 are the solutions of the previous numerical results in Figure 4.12. In Figure
4.14 (top), the solution for h = 0.012 m is displayed. The VOF function is similar to the
results in [ZIM17] up to t = 0.7 s. The results become different after that time. In our
simulations, the droplet is slowed down at the neck. Furthermore, the velocity of the
flow is larger at the center of the cylinder and especially at the neck where the pressure
quickly decreases. Thus, the droplet is sped up at its center (at the symmetry axes)
and starts to hollow out in the middle when it passes through the neck. It eventually
develops a tail at the end of the simulation.
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Figure 4.13 – Constricted tube. Simulation of two phases flows without free surface.
Profile monitoring along the axis Ox at time t = 0.3 s. Left: Velocity component ux.
Right: Pressure p.

In order to tackle this problem, a simulation with an increased viscosity (µs,2 = µp,2 = 2)
is performed in Figure 4.14 (bottom). The hole at the extremity here does not form but
it grows a tail anyway. Furthermore, the simulation is slowed down even more. The
constitutive equation for the extra-stress tensor in [ZIM17] uses a FENE-CR model, but
has a sufficiently low effect on the viscoelastic droplet in order for us to compare our
results. Indeed, this model implies finite extensibility of the dumbells, for maximum
elongation L0. But this parameter is here taken to be very high, implying a behaviour
close to an Oldroyd-B fluid.

Finally, the addition of surface tension in the model of [ZIM17] has a real impact on the
droplet. Indeed, it is controlled by the capillary number Ca = (µs,1 + µp,1)V/σ, where σ
denotes the surface tension coefficient. In their simulation, this number is taken very
low and implies a strong effect of the surface tension. It is further motivated by the
tail growing at the end of the droplet, which would be prevented by a strong force at
the interface. Finally, a study on the effect of the capillary number has been carried on
in [ZIM17], which shows that the droplet is hollowing out when the capillary number
increases (no surface tension is obtained when the limit goes to infinity). In order to
take into account the surface tension in our model, the algorithm would rely on a similar
approach as in [CHMP21], where the mesh is adapted to fit on the free surfaces and
on the multiphase interface, corresponding to the nodes where 0 ≤ ϕ`,H , ϕm,H < 1,
` 6= m for at least two phases `,m = {1, . . . , N}. A convolution smoothing ∇ϕ̃` of the
characteristic function ϕ` is applied in order to compute n = ∇ϕ̃`/ ‖∇ϕ̃`‖ and the mean
curvature k = ∇ · (∇ϕ̃`/ ‖∇ϕ̃`‖) [Cab06]. This is future work.
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Figure 4.14 – Constricted tube. Velocity in the FE mesh and extra-stress component σσσzz
for the viscoelastic droplet on cells. Top: ηs,2 = ηp,2 = 0.25. Bottom: ηs,2 = ηp,2 = 2.
From left to right: t = 0, 0.75, 1.25, 1.625, 2.125, 3.5 s.
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4.3 Lack of collision of a deformable elastic disk immersed
in a Newtonian fluid

Consider a cavity Λ ∈ R2, filled with a Newtonian fluid and containing an immersed
rigid body, with the shape of a disk. Gravity forces then drive the material towards the
bottom of the cavity. In [Hil07], it is proved that the body never touches the bottom of
the cavity. This lack of collision between the material and the boundary was reproduced
numerically in [DPW21], where a space-time adaptive algorithm catches the pressure
peak observed when the material reaches the boundary of the domain. For a deformable
elastic material, bouncing upwards was observed in [GSST22], for an Eulerian formulation
of the Fluid-Structure Interaction model. The goal of this experiment is to benchmark
our numerical solver with the result in [GSST22]. Furthermore, the influence of the
rigidity of the elastic disk is studied.

Similarly as in section 4.1, pseudo 2D simulations are considered. Consider the domain
Λ = [−0.6, 0.6] m×[0, 0.9] m×[0, 0.02] m and an incompressible Neo-Hookean elastic disk.
The immersed incompressible Newtonian fluid domain is characterised by the function
ϕ1. The parameters are ρ1 = 1 kg/m3, ηs,1 = 0.2 Pa s, ηp,1 = 0 Pa s, λ1 = 0 s and
α1 = 1. The incompressible Neo-Hookean material phase is initialised in the subdomain
Ω2,0 = {(x, y, z) ∈ Λ;x2 + (y − 0.3)2 < 10−2}, with the parameters ρ2 = 1001 kg /
m3, ηs,2 = 0 Pa s, λ2 = 0.01 s and α2 = 0. Two different values are used for the
parameter ηp,2 ∈ {50, 500} Pa s. This yields a shear modulus parameter of the elastic
material of {5, 50} kPa. No external forces are considered and the initial velocity is
u0 = (0,−0.5, 0) m/s in Ω1,0 and (0, 0, 0) m/s in Ω2,0. The solution is smoothed by the
correction step at the first iteration. Three mesh sizes are considered for the convergence
study. In the coarse settings, the maximum diameter of the FE mesh is H = 28 mm and
is reduced to H = 5 mm near the boundary in order to better capture the pressure at
the bottom of the domain. The grid cells diameter is h = 5 mm and the time step is
∆t = 0.0045 s. The results are displayed in Figure 4.15 for both values of ηp,2, when the
pressure at the bottom of the cavity is maximum and at the end of the simulation. We
can observe larger deformations of the elastic disk for the softer material.

In Figure 4.16, the evolution of the position of the bottom of the disk in time is shown
for the soft material (ηp,2 = 50 Pa s) and the more rigid one (ηp,2 = 500 Pa s). In both
cases, we can observe convergence of the curves and the elastic disk does not touch the
bottom of the cavity. The snapshots on the FE mesh and on the cells grid in Figure 4.17
are captured at t = 0.3 s for ηp,2 = 50 Pa s and at t = 0.23 s for ηp,2 = 500 Pa s, where
the peak of pressure is observed. Several mesh nodes in the fluid between the disk and
the boundary shows that the disk does not touch the boundary.
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Figure 4.15 – Lack of collision. Pressure at the bottom on FE and VOF disk on cells.
Top: pressure peak time. Left: ηp,2 = 50 Pa s at t = 0.3 s. Right: ηp,2 = 500 Pa s at
t = 0.23 s. Bottom: Depression when bouncing back. Left: ηp,2 = 50 Pa s at t = 0.5 s.
Right: ηp,2 = 500 Pa s at t = 0.4 s.

Figure 4.16 – Lack of collision. Evolution of the bottom of the disk. Left: ηp,2 = 50 Pa s.
Right: ηp,2 = 500 Pa s.

105



Chapter 4. Numerical experiments of multiple incompressible viscoelastic
free-surface flows

Figure 4.17 – Lack of collision. FE mesh and grid convergence for VOF of the disk, at
the time corresponding to the maximum pressure peak and h = 0.004, 0.002, 0.001 m.
Left: ηp,2 = 50 Pa s at t = 0.3 s. Right: ηp,2 = 500 Pa s at t = 0.25 s.

In Figure 4.18, we can see that the pressure peak at the bottom of the cavity is slightly
higher that the maximum amount obtained in [GSST22] for ηp,2 = 500 Pa s. It is better
caught for a sufficiently small mesh size and time step. The peak pressure is smaller for
the more soft material, since the bottom is more deformed and flattened, which increases
the surface of contact and decreases the maximum pressure. Furthermore, we can observe
that the elastic material bounce upwards and a depression appears between the bottom
of the disk and the boundary of the cavity.

Figure 4.18 – Lack of collision. Evolution of the pressure p at position (0, 0.002). Left:
ηp,2 = 50 Pa s. Right: ηp,2 = 500 Pa s.

In Figure 4.19, the velocity field in the computational domain is displayed at time t = 0.2 s
and t = 0.3 s for ηs,2 = 500 Pa s. The velocity is constant in the disk as long as the
pressure peak does not form. The boundary layer induced by the fluid incompressibility
can be seen. Then, the disk bounces upwards due to elastic effects. Thus, the velocity
vortex in the fluid, induced by the disk movement, is inverted.

Finally, the GMRES iterations needed to solve the linear system are displayed in Figure
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Figure 4.19 – Lack of collision. Simulation of two phases flows without free surface for
ηp,2 = 500 Pa s. Velocity field u. Left: t = 0.2 s. Right: t = 0.3 s.

4.20. The number of iterations doubles each time the time and space discretisation is
divided by two. They also are slightly higher for a bigger value of ηp,2. Together with the
numerical experiment in section 4.1, it confirms that a higher discrepancy between the
parameters increases the number of iterations of the algorithm. Although, this difference
is kept relatively small. The RAM memory and CPU time to compute the simulations
for the implicit scheme are summarised in the following table:

ηs,2 = 50 Pa s

h [mm] memory [GB] CPU time [h]
5 0.517 0.235

2.5 2.009 2.09
1.25 8.415 31.44
0.625 38.03 472.24

ηs,2 = 500 Pa s

h [mm] memory [GB] CPU time [h]
5 0.506 0.236

2.5 2.041 2.16
1.25 8.157 29.52
0.625 40.72 459.12

The results we provided are harder to obtain for a larger value of ηp,2, thus a more rigid
material, and when gravity forces are considered. The pressure peak becomes larger and
asks for higher order precision to obtain the result, as reached with a space-time adaptive
algorithm like in [DPW21]. Thus, we consider the settings of the numerical experiment in
[DPW21] for a deformable elastic solid, whose rigidity is slightly larger than the previous
experiment. Consider the domain Λ = [−0.05, 0.05] m×[0, 0.08] m×[0, 0.005] m and an
incompressible Neo-Hookean elastic disk. The immersed incompressible Newtonian fluid
domain is characterised by the function ϕ1. The parameters are ρ1 = 1000 kg/m3,
ηs,1 = 1 Pa s, ηp,1 = 0 Pa s, λ1 = 0 s and α1 = 1. The incompressible Neo-Hookean
material phase is initialised in the subdomain Ω2,0 = {(x, y) ∈ Λ;x2+(y−0.035)2 < 10−4}
, with the parameters ρ2 = 10000 kg / m3, ηs,2 = 0 Pa s, ηp,2 = 1500 Pa s, λ2 = 0.01 s
and α2 = 0. The velocity is initialised to u0 = (0,−0.1) m/s in Ω1,0 and (0, 0) m/s in
Ω2,0. In the coarse settings, the maximum diameter of the FE mesh is H = 2.8 mm and
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Figure 4.20 – Lack of collision. Comparison of GMRES iterations between both set of
parameters. Left: ηp,2 = 50 Pa s. Right: ηp,2 = 500 Pa s.

is reduced to H = 0.4 mm near the boundary in order to better capture the pressure at
the bottom. The grid cells diameter is h = 0.4 mm and the time step is ∆t = 0.0015 s.
The position of the bottom of the disk is displayed on Figure 4.21. From the curves
convergence, it shows that the disk stops at approximately 0.2 mm of the boundary. In
Figure 4.22, we can see that the pressure peak observed between the disk and the bottom
of the cavity is larger for a more rigid disk. In our results, a discrepancy for the velocity
and pressure, is observed between the discretisation parameters. The larger between the
parameter values in each phase, the larger the discrepancy and the larger the loss of
accuracy of the numerical scheme.

Figure 4.21 – Lack of collision. Left: Evolution of the bottom of the disk. Right: zoom
from t = 0.09 s to 0.14 s.

In Figure 4.23, the efficiency of the decompression Algorithms 1 and 2 are compared. In
the bottom pictures, the amount of fluid which could not be distributed, and hence kept
in stock, is displayed with respect to time. This amount is significantly larger for the
Algorithm 1. Thus, we notice an optimised efficiency of the decompression algorithm for
multiphase simulations when we first loop on the phases instead of the cells, as applied
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Figure 4.22 – Lack of collision. Left: Velocity of the bottom point of the disk. Right:
Evolution of the pressure p at position (0, 0.002).

in Algorithm 2. However, this difference is smaller when the phases are not immersed
into one another. This occurs in particular when the set of parameters is very different
between the phases and the velocity gradient is large at the interface.

Figure 4.23 – Lack of collision. Comparison between both decompression algorithms.
Top: VOF characteristic function ϕ at time t = 0.1 s. Bottom: Evolution of remaining
VOF in the buffer. In orange (fluid), VOF of phase 1, in blue (disc), VOF of phase 2
and in green (vof), total VOF ϕ. Left: Algorithm 1. Right: Algorithm 2.
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4.4 Shock absorber

For this next numerical experiment, consider a fragile mechanism immersed in an Oldroyd-
B viscoelastic fluid, protected by a hull, see Figure 4.24. The goal is to investigate the
shock absorption of the viscoelastic fluid, in order to protect the inner mechanism.

Figure 4.24 – Shock absorber. Characterisation of the different phases. In blue: hull as
an elastic solid, characterised by the function ϕ1 with a free-surface. In orange: shock
absorber viscoelastic fluid, characterised by the function ϕ2. In red: mechanism as an
elastic solid, characterised by the function ϕ3.

The simulation has the following settings. Consider a 3D cavity Λ = [−0.05, 0.05]2 m2 ×
[0, 0.1] m, where three different phases are considered. First, the mechanical hull is mod-
elled as an incompressible Neo-Hookean solid, being enough soft to allow deformations.
Its initial subdomain is Ω1,0 = {(x, y) ∈ R2; 9 · 10−4 < x2 + (y− 0.046)2 < 1.6 · 10−3} and
its set of parameters is ρ1 = 3000 kg/m3, ηs,1 = 0 Pa s, ηp,1 = 104 Pa s, λ1 = 10−2 s
and α1 = 0. The shock absorber is an incompressible Oldroyd-B viscoelastic fluid, with
initial subdomain Ω2,0 = {(x, y) ∈ R2; 10−4 < x2 + (y − 0.046)2 < 9 · 10−4} and its set
of parameters is ρ2 = 900 kg/m3, ηs,2 = 0.4 Pa s, ηp,2 = 1.6 Pa s and α2 = 1. The
role of the parameter λ2 is studied and takes values in {0, 10−4, 10−3}. Finally, the
mechanism is modelled as an incompressible Neo-Hookean solid, with initial subdomain
Ω3(0) = {(x, y) ∈ R2;x2 + (y − 0.046)2 < 10−4}. The parameters are ρ3 = 1500 kg/m3,
ηs,3 = 0 Pa s, ηp,3 = 103 Pa s and α3 = 0. These set of parameters do not correspond to
specific materials. For the numerical settings, the average diameter of the FE mesh is
H = 1 mm. The grid cells diameter is h = 0.3 mm and the time step is ∆t = 0.0002 s.

In order to observe the influence of the immersing fluid on the mechanism, the pressure
p and the extra-stress tensor σσσ are monitored along the trajectory of the center of the
disk characterised by the function ϕ3, that is xcen = (0, 0, 0.046). In Figure 4.26, the
influence of the relaxation time of the viscoelastic fluid is compared. First, the position
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of the mass center xcen bounces upwards, due to the elasticity of the mechanical hull.
But it is influenced by the Oldroyd-B fluid, relatively to the relaxation time and the
time lapse of the shock. Now, we can observe that the force applied on the mechanism is
lightly influenced by the relaxation time of the viscoelastic fluid λ2. The elastic effect
indeed yields a higher pressure on the mechanism than a Newtonian fluid. However, for
a lower value of λ2, the curves reaches the same peak, but the elastic effects are relaxed
faster and reaches zero a bit faster.

Figure 4.25 – Shock absorber. Evolution of the position of the center of the mechanism
over time, transported with the materials.

Figure 4.26 – Shock absorber. Evolution of different components at the center of
the mechanism (characterised by ϕ3) over time, transported with the materials. Left:
Evolution of the pressure p. Right: Evolution of the stress component zz.

In Figure 4.27 and 4.28, the norm of the velocity u and the extra-stress component σσσyy
are displayed respectively at two different time t. At time t = 0.01 s, the hull collided
against the boundary, but the pressure peak appears at t = 0.0135 s, due to the elastic
momentum. We can already witness a major influence of the relaxation time λ on the
results. The viscoelastic effects imply instabilities in the flow within the hull when
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the shock happen. On the right side of Figure 4.27, the snapshots are taken at time
t = 0.024 s, where the pressure has relaxed. In Figure 4.28, we observe that the hull has
absorbed most of the shock, and the viscoelastic fluid has a small impact.

Figure 4.27 – Shock-absorber. Velocity magnitude ‖u‖. From top to bottom: λ =
0, 10−4, 10−3. Left: t = 0.006 s. Right: t = 0.015 s.
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Figure 4.28 – Shock-absorber. Extra-stress component σσσyy. From top to bottom:
λ = 0, 10−4, 10−3. Left: t = 0.006 s. Right: t = 0.015 s.
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5 Extension to weakly compressible
free surface flows

The system of equations (1.1) shows limitations in the modelling of physical phenomena.
The incompressible condition, leading to the divergence free condition ∇ · u = 0 allows a
simplified mathematical analysis, but is a strong hypothesis of the fluid nature [LL89].
This also concerns viscoelastic fluids, whose density is also variable in time and space.
Acoustic waves appear in fluids when considering compressible effects, which yield a more
complex model.

The Poisson ratio ν in continuum mechanics is a key parameter, since almost all elastic
materials cannot be considered as incompressible. Exceptions exist, like rubber, which
has a Poisson ratio close to ν = 0.5 and is considered nearly incompressible. Our elastic
material deformation model is formulated using Eulerian coordinates. The goal is to
obtain large deformations. However, the Neo-Hookean model has the particularity to
only model small strain and the plastic deformation of the material is not involved. Thus
the main advantage of the Eulerian formulation is missed and an extension of the model
must be considered. Multiple constitutive laws can be found in continuum mechanics
[RBJ97], but the two most popular are the Neo-Hookean and the St-Venant-Kirchhoff
models [DR06, LSKG+20]. The latter implies compressible materials, and this issue is
first tackled.

First, a mathematical framework from literature is presented for the modelling of weakly
compressible Newtonian and viscoelastic fluids. Then, we present a new model for the
deformation of compressible elastic materials, extending the incompressible model (1.1).
It is based on a compressible Neo-Hookean model, formulated in Eulerian coordinates.
This formulation allows us to build up a unified model for the simulation of weakly
compressible viscous and elastic flows. The numerical approximation of the model (1.1)
is extended to weakly compressible flows and we present a numerical experiment.
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5.1 Model extension: from incompressible flows to weakly
compressible materials

In this section, we will consider the extension of the model (1.1) to compressible Newto-
nian and viscoelastic fluids (α = 1) and use a compressible version of the Neo-Hookean
material to extend the elastic deformations model (α = 0). The derivation of the
system of equations describes the two different types of phases. For more details, we
refer to [LL89] for a complete mathematical analysis on fluid dynamics. The analo-
gous mathematical background as in chapter 1 is considered: let Λ be a cavity of R3

in which a fluid is contained and let T > 0 be the final time of the simulation. Let
ϕ : Λ× [0, T ]→ {0, 1} be the volume fraction of fluid. It is equal to 1 in the fluid and 0
in the surrounding vacuum. Thus the function ϕ denotes the characteristic function of
the liquid region, which is denoted by Ω(t) = {x ∈ Λ;ϕ(x, t) = 1} for 0 ≤ t ≤ T , and the
space-time domain containing the fluid is denoted by QT = {(x, t) ∈ Λ×(0, T );x ∈ Ω(t)}.

The characteristic function ϕ is transported with the fluid, for a velocity field u such that
∇ · u 6= 0. Hence, similarly as before, it satisfies ϕ(x(X, t), t) = ϕ(X, 0), for X ∈ Ω0,
where the characteristic lines x(X, t) solves d

dtx(X, t) = u(x(X, t), t). It is equivalent
to the equation (1.1a) in the sense of distributions.

5.1.1 Model extension for weakly compressible Newtonian fluids

The acoustic waves are fluctuations of pressure, travelling at a velocity called the speed
of sound c. They take place in compressible flows and are initiated by the variations of
the density. The Mach number Ma = u/c, where u determines the maximum velocity
of the fluid, allows to determine the relative velocity of these waves compared to the
fluid velocity. The incompressibility condition is retrieved for a Mach number Ma→ 0,
where density can be considered constant. Weakly compressible flows refer to flows with
a small Mach number and having low compressible effects [WKB04]. This allows to
treat a simplified system of equations, which is presented here based on the work of
[Bru99, BKW06]. Furthermore, we can consider pressure-based Navier-Stokes equations
in order to apply the numerical scheme presented in chapter 1.

Consider a weakly compressible fluid at initial state in Ω0, with density ρ0 and viscosity
ηs,0. We define ρ, ηs : QT → R being the density and viscosity in the fluid region. In the
fluid region, the velocity field u : QT → R3, a pressure field p : QT → R and the density
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ρ : QT → R satisfy:

ρ

(
∂u

∂t
+ (u · ∇)u

)
−∇ ·

(
2ηs

(
εεε(u)− 1

3(∇ · u)I
))

+∇p = ρg, (5.1a)

∂p

∂t
+ (u · ∇)p+ ρc2(∇ · u) = 0, (5.1b)

ρ = m

c2 (p+B), (5.1c)

where B is a factor with the same dimension as p and m a dimensonless power-index
[Bru99, BKW06]. They are further developped later on. The momentum equation (5.1a)
denotes the conservation principle

ρ

(
∂u

∂t
+ (u · ∇)u

)
−∇ · T = F , (5.2)

where T denotes the stress tensor and the right-hand side tensor F is the total external
forces on the system. For a compressible Newtonian flow, the stress tensor becomes
[LL89, TBE+01]

T = −p̃I + 2ηsεεε(u) +
(
ks −

2ηs
3

)
(∇ · u)I, (5.3)

where p̃ here denotes the pressure. The parameter ks is known as the bulk viscosity,
describing the effects of volume change on velocity diffusion. The Stokes hypothesis
states that ks = 0 [GeH95]. But we can also get rid of the parameters by considering
p := −1

3tr(T ), which is the so-called augmented pressure. From (5.3) it yields

p = p̃− ks∇ · u. (5.4)

Thus, the tensor becomes

T = −pI + 2ηsεεε(u)− 2ηs
3 (∇ · u)I. (5.5)

To close the system of equations for a Newtonian weakly compressible fluid with free
surface flows, an equation of state describing the thermodynamic state of the system
must be defined. We consider an isentropic system, defining an adiabatic and reversible
system. In an isentropic system, the Tait equation of state can be applied to link the
pressure with the density [Bru99, BKW06]:

p+B

p0 +B
=
(
ρ

ρ0

)m
, (5.6)

where p is the augmented pressure, p0, ρ0 are the values of the augmented pressure and
density at rest, B is a dimensionless factor ratio. By assuming the system to be isentropic,
the speed of sound c (i.e. the velocity at which pressure waves travels) can be determined
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by the relation [Bru99, BKW06]

c2 = ∂p

∂ρ
= p0 +B

ρ0
m

(
ρ

ρ0

)m−1
= m(p+B)

ρ
(5.7)

and yields the equation (5.1c). The parameters B and m are dependent on the fluid.
Since we consider weakly compressible flows, we assume very small changes of density
and we can assume the speed of sound to be constant in space and time [SY88, YA21].
In this case, and considering an isentropic system, the energy can be assumed to remain
constant, and the equation for the evolution of the energy does not need to be treated
[Bru99, BKW06, MJB+13]. Despite a lack in generality, this assumption allows to
consider a smaller set of equations. Finally, the continuity equation reads:

∂ρ

∂t
+∇ · (ρu) = 0. (5.8)

From (5.7), we obtain

0 = ∂ρ

∂t
+ (u · ∇)ρ+ ρ(∇ · u) = 1

c2

(
∂p

∂t
+ (u · ∇)p

)
+ ρ(∇ · u)

and yields (5.1b). This formulation yields an evolution equation for the pressure, enabled
for isentropic weakly compressible flows [Cho68, YA21]. The viscosity in an isentropic
system can be considered as linearly dependent of the density. Hence, ηs = ηs,0(ρ/ρ0).

Remark 5.1.1. The hypotheses of a constant speed of sound and of constant system
energy lacks on physical reality. The presence of friction due to the effect of viscosity
yields a decrease in the system energy. However, we can relax these hypotheses by
considering an alternative equation of state p = p(e, ρ) in an isothermal system and
consider the equation of energy for an isothermal system [TELB06]:

ρ

(
∂e

∂t
+ (u · ∇)e

)
−
(

2ηs
(
εεε(u)− 1

3(∇ · u)I
)
− pI

)
: ∇u = 0. (5.9)

�
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5.1.2 Weakly compressible viscoelastic flows

The model for Oldroyd-B weakly compressible viscoelastic flows reads:
Find u : QT → R3, p : QT → R, ρ : QT → R and σσσ : QT → R3×3 satisfy:

ρ

(
∂u

∂t
+ (u · ∇)u

)
−∇ ·

(
2ηs

(
εεε(u)− 1

3(∇ · u)I
))

+∇p (5.10a)

−∇ ·
(
σσσ − 1

3tr(σ
σσ)I

)
= ρg,

∂p

∂t
+ (u · ∇)p+ ρc2(∇ · u) = 0, (5.10b)

ρ = m

c2 (p+B), (5.10c)

σσσ + λ

(
∂σσσ

∂t
+ (u · ∇)σσσ + (∇ · u)σσσ −∇uσσσ − σσσ∇uT

)
= 2ηpεεε(u). (5.10d)

This model was derived in [BKW06, MP19]. Similarly as for the model (1.1), an additional
extra-stress tensor models the elastic behaviour:

ρ

(
∂u

∂t
+ (u · ∇)u

)
−∇ · (T + σσσ) = ρg, (5.11)

where T is described by (5.3) and σσσ is the viscoelastic extra-stress tensor. Using (5.11),
the system of equations is not consistent with the weakly compressible Newtonian flows
model (5.1). Indeed, when no elastic effect is considered, then the relaxation time λ is
equal to 0. We would like the system to model a compressible Newtonian fluid with
viscosity ηs + ηp for λ = 0. To tackle this problem and similarly as in section (5.1.1),
we consider an augmented pressure instead in (5.4), that is p := p̃− ks(∇ · u)− 1

3tr(σσσ)
[BKW06]. Using this formulation, it yields the momentum equation (5.10a).

The relation between the density and the pressure relies to the state equation (5.6). It
is still applied to obtain weakly compressible viscoelastic flow and yields the equations
(5.10b) and (5.10c). The viscosity terms ηs, ηp are linearly related to the density and
we have ηs = ηs,0(ρ/ρ0) and ηp = ηp,0(ρ/ρ0). Finally, as mentioned in the introduction,
different constitutive equations can be applied for the viscoelastic extra-stress tensor.
Here, the Oldroyd-B model is still applied and the constitutive equation (5.10d) has a
supplementary term due to the compressible effects [MP19].

5.1.3 Weakly compressible elastic deformations

Let us recall the notation from (1.1). Consider Ω0 = Ω(0) being the initial configuration
of a given material and X ∈ Ω0. The Lagrangian formulation of displacement is

x(X, t)−X =
∫ t

0
u(x(X, s), s) ds (5.12)
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where x is the deformation ofX at time t and u(x, t) the deformation velocity at position
x and time t in Eulerian coordinates. The deformation gradient tensor in Lagrangian
coordinates F̃ : Ω0 × [0, T ]→ R3×3 is defined for all X ∈ Ω0 by F̃ij(X, t) = ∂xi

∂Xj
(X, t).

We now define F : QT → R3×3 to be the deformation tensor in Eulerian coordinates as
F (x(X, t), t) = F̃ (X, t).

The general system of equations for structure deformations in Eulerian coordinates read:
Find u : QT → R3 and ρ : QT → R which satisfy:

ρ

(
∂u

∂t
+ (u · ∇)u

)
−∇ ·C = ρg, (5.13a)

ρJ = ρ0, (5.13b)

where C = C(F ) denotes the Cauchy stress tensor and J = det(F ). The system (5.13)
comes together with the deformation equation

∂F

∂t
+ (u · ∇)F = ∇uF , (5.14)

obtained by taking the time and space derivative of (5.12), similarly as in (1.5a). The equa-
tion (5.13a) denotes the momentum principle in Eulerian coordinates [Hol02, CMPF17].
Furthermore, the principle of mass conservation reads:∫

Ω0
ρ(X, 0) dX =

∫
Ω(t)

ρ(x, t) dx =
∫

Ω0
ρ(x(X, t), t)J̃(X, t) dX (5.15)

=
∫

Ω0
ρ(x(X, t), t)J(x(X, t), t) dX,

where J̃(X, t) = det(∇X(x(X, t))) = det(F̃ (X, t)) = det(F (x(X, t), t)) = J(x(X, t), t).
Since the equation (5.15) is true for any subdomains of Ω0, it yields the equation (5.13b)
with ρ0 = ρ(X, 0).

The constitutive equation for the Cauchy stress tensor of an incompressible Neo-Hookean
material is C = −pI + µ(FF T − I). A simple compressible Neo-Hookean model yields
[Ogd97, Hol02, PG15]

C = µJ−1(FF T − I) + λ(J − 1)I (5.16)

where µ, λ are the second and first Lamé parameters. Using this formulation and similarly
as suggested in [Pic16], we want to obtain an equation for a pressure p and an extra-stress
tensor σσσ instead of the deformation gradient tensor F in the system of equations (5.13).
Then, we would be able to formulate a unified model for weakly compressible flows,
based on the weakly compressible viscoelastic flows model (5.10) and on a parameter α.
In this optic, the Cauchy stress tensor can be expressed using the hydrostatic pressure
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[Hol02, PG15], so we split the Cauchy stress tensor C into C = σσσ − pI, with

σσσ = µJ−1(FF T − I), (5.17)
p = −λ(J − 1). (5.18)

Similarly as in Remark 3.1.1 in section 3.1, an equation for the evolution of J , using
Lemma A.0.1 in Appendix and (1.4), yields

d
dtJ(x(X, t), t) = J(x(X, t), t)tr

(
F−1(x(X, t), t) d

dtF (x(X, t), t)
)

(5.14)= J(x(X, t), t)tr
(
F−1(x(X, t), t))∇xu(x(X, t), t)F (x(X, t), t)

)
= J(x(X, t), t)tr(∇xu(x(X, t), t)) = J(x(X, t), t)(∇x · u(x(X, t), t)).

Thus we have

∂

∂t
J(x(X, t), t) + (∇xu(x(X, t), t) · ∇x)J(x(X, t), t) = d

dtJ(x(X, t), t) (5.19)

= J(x(X, t), t)(∇x · u(x(X, t), t)).

From the previous computation, we find for the pressure (5.18):

dp
dt (x(X, t), t) =

(
∂p

∂t
+ (u · ∇)p

)
(x(X, t), t) = −λ

(
∂J

∂t
+ (u · ∇)J

)
(x(X, t), t)

(5.19)= −λ(∇x · u(x(X, t), t))J (5.20)

Now for the extra-stress tensor σσσ, taking the convective derivative of (5.17) yields in
Eulerian coordinates:

∂σσσ

∂t
+ (u · ∇)σσσ = µ

(
∂J−1

∂t
+ (u · ∇)J−1

)
(FF T − I)

+ µJ−1
(
∂

∂t
(FF T − I) + (u · ∇)(FF T − I)

)
.

We have

∂J−1

∂t
+ (u · ∇)J−1 = − 1

J2

(
∂J

∂t
+ (u · ∇)J

)
(5.19)= − 1

J
(∇ · u)

and

∂

∂t
(FF T − I) + (u · ∇)(FF T − I) =

(
∂

∂t
F + (u · ∇)F

)
F T + F

(
∂

∂t
F T + (u · ∇)F T

)
= ∇uFF T + FF T∇uT .
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It yields

∂σσσ

∂t
+ (u · ∇)σσσ = −(∇ · u)σσσ + 2µJ−1εεε(u)

+ µJ−1
(
∇u(FF T − I) + (FF T − I)∇uT

)
.

Finally we obtain the new equation for the stress σσσ:

∂σσσ

∂t
+ (u · ∇)σσσ + (∇ · u)σσσ −∇uσσσ − σσσ∇uT = 2µ

J
εεε(u). (5.21)

Using the momentum equation (5.13a), the final model for compressible elastic deforma-
tion yields:
Find u : QT → R3, p : QT → R, ρ : QT → R and σσσ : QT → R3×3 which satisfy:

ρ

(
∂u

∂t
+ (u · ∇)u

)
−∇ · (σσσ − pI) = ρg, (5.22a)

∂p

∂t
+ (u · ∇)p+ λρ0

ρ
(∇ · u) = 0, (5.22b)

p = −λ
(
ρ0
ρ
− 1

)
, (5.22c)

∂σσσ

∂t
+ (u · ∇)σσσ + (∇ · u)σσσ −∇uσσσ − σσσ∇uT = 2ρµ

ρ0
εεε(u). (5.22d)

The pressure equation (5.22b) is equivalent to (5.20). The equation (5.22c) comes from
(5.18) and is analogous to an equation of state, rather close to Tait equation (5.6). From
(5.13b), the Lamé parameters µ/J = µρ/ρ0 and λJ = λρ0/ρJ express the modifications
due to compressible effects, where µ and λ are the value at incompressible position
(J = 1).

Remark 5.1.2. Alternative formulations for the Cauchy-stress tensor exist [PG15], for
instance

T = J−
2
3

(
σσσ − 1

3tr(σ
σσ)I

)
− pI,

where
σσσ = µJ−1(FF T − I), p = −

λ+ 2
3µ

4

(
J − 1

J3

)
.

Similar computations as previously applied yield the following model for compressible
elastic deformation:

ρ

(
∂u

∂t
+ (u · ∇)u

)
−∇ ·

((
ρ0
ρ

) 2
3
(
σσσ − 1

3tr(σ
σσ)I

))
+∇p = ρg, (5.23a)

∂p

∂t
+ (u · ∇)p+

(
1
4 + 3

4

(
ρ0
ρ

)4
)(

λ+ 2
3µ
)

(∇ · u) = 0. (5.23b)

This system of equations is more complicated, but take into account the term −1
3tr(σσσ)I
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in the diffusion term, similarly as in the system (5.10). �

5.1.4 Unified model for compressible viscoelastic flows and elastic solid
deformation

The goal in this section is to reunite the model for compressible Newtonian and viscoelastic
flows, and the model of compressible Neo-Hookean material deformations. In the cavity
Λ, the characteristic function ϕ : Λ× [0, T ]→ {0, 1} satisfy

∂ϕ

∂t
+ (u · ∇)ϕ = 0 (5.24a)

in the weak sense. Then, in the fluid domain, the unified model reads: Find u : QT → R3,
p : QT → R, ρ : QT → R and σσσ : QT → R3×3 satisfy:

ρ

(
∂u

∂t
+ (u · ∇)u

)
−∇ ·

(
2ηs

(
εεε(u)− 1

3(∇ · u)I
))

+∇p (5.24b)

−∇ ·
(
σσσ − α

3 tr(σ
σσ)I

)
= ρg,

∂p

∂t
+ (u · ∇)p+ β(∇ · u) = 0, (5.24c)

p = p(ρ), (5.24d)

ασσσ + λ

(
∂σσσ

∂t
+ (u · ∇)σσσ + (∇ · u)σσσ −∇uσσσ − σσσ∇uT

)
= 2ηpεεε(u), (5.24e)

where the newly introduced parameter β takes a different value for each rheology and takes
physical values, whereas the parameter α has a numerical meaning and is adimensional.
Furthermore, it controls the compressible effects, in the sense that the limit β →∞ gives
back the incompressible system. Initial conditions u(·, 0) = u0, p(·, 0) = p0, ρ(·, 0) = ρ0
and σσσ(·, 0) = σσσ0 are prescribed. The boundary conditions on the cavity Λ are similar as
described in chapter 1. The condition on the free-surface on ∂Ω\∂Λ is:(

2ηsεεε(u)− 1
3(∇ · u)I

)
n− pn+

(
σσσ − α

3 tr(σ
σσ)I

)
n = 0.

The equation of state (5.24d) is dependent on the material, whether it concerns a fluid
(Tait equation (5.6)) or a solid (hydrostatic pressure (5.18)). The parameters ηs, ηp are
linearly dependent on the density: ηs = ηs,0ρ/ρ0 and ηp = ηp,0ρ/ρ0. This yields the three
different cases previously obtained for the different sets of parameters:

1. When α = 1, λ = 0, we recover the system of equation of weakly compressible
Newtonian flows. The equation (5.24e) becomes σσσ = 2ηpεεε(u). We recover the
system of equations (5.1), for the viscosity parameter ηs + ηp. In this case, the
additional parameter β corresponds to ρc2. The equation of state must be the
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equation (5.1c).

2. When α = 1 and λ > 0, we recover the system of equation (5.10) modelling the flow
of weakly compressible Oldroyd-B viscoelastic fluid. Similarly as for the Newtonian
fluids, we have β = ρc2.

3. Finally, for α = 0 and ηs = 0, we recover the system (5.22) for the deformation of
compressible Neo-Hookean elastic solids. The parameters become β = λρ0/ρ and
µρ/ρ0 = ηp/λ = ηp,0ρ/(λρ0).

The addition of the continuity equation (5.8) adds an extra nonlinearity in equations
(5.24b) and (5.24c) (β is dependent on ρ). To the best of our knowledge, the well-
posedness of any three systems of equations listed above has not been proved. Indeed, no
maximum principle can be obtained for the density ρ in the compressible Navier-Stokes
equations (5.1) or compressible solid deformations (5.22). For these reasons, we dismiss
the continuity equations (5.8) and take

ρ(x, t) = ρ0 ∈ R+, ∀(x, t) ∈ QT . (5.25)

This simplification has already been applied in [SY88, YA21] for Newtonian compressible
flows. By applying constant parameters instead of new variables, we have better hopes to
find stability estimates for this model in a future work. Apart from the lack of physical
interpretation, the model still shows some advantages. Pressure waves are implied by
the equation (5.24c). It allows to treat acoustic waves in the material. Furthermore, the
divergence of the velocity is not equal to zero any more, and this implies changes of the
total volume. It also implies that the state equation is no longer needed to close our
system of equations and that all parameters ρ, ηs, β, α, λ and ηp are now constant.

Finally, when α and ηs are equal to 0, this simplification allows to use the system (5.23)
in Remark 5.1.2 instead of the original system of equations (5.22), which was preferred
for its simplicity. Indeed, the equation (5.24b) now becomes

ρ

(
∂u

∂t
+ (u · ∇)u

)
−∇ ·

(
2ηs

(
εεε(u)− 1

3(∇ · u)I
))

+∇p−∇ ·
(
σσσ − 1

3tr(σ
σσ)I

)
= ρg

and is now equivalent to (5.23a) for ηs = 0 and ρ = ρ0. In equation (5.23b), the parameter
β is now equal to λ + 2

3µ in the point 3. above, when α and ηs are equal to 0 and we
model a compressible Neo-Hookean material.

5.2 Numerical approximation for compressible flows

In this section, we address the numerical approximation of the system of equations (5.24).
Our goal is to apply the same numerical scheme used in the incompressible case (1.1).
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5.2. Numerical approximation for compressible flows

Thus, the splitting algorithm is applied to the system and we recover a prediction and
correction step. The specificities brought by the compressible case are then tackled.

5.2.1 Numerical approximation of the characteristic function for com-
pressible flows

The discretisation of the characteristic function in the VOF method is usually performed
with the finite volume method [dNKM07, Dum13, MJB+13]. Our goal in this section is
to apply the method of characteristics (1.13) to the compressible flow to the characteristic
function ϕ and the variables u and σσσ in the prediction step..

Let ∆t be the time step, N be the number of time steps, T = N∆t and tn = n∆t,
n = 0, 1, . . . , N . Let us assume that at time tn−1, the approximated volume fraction
ϕn−1 : Λ→ R and the approximated velocity field un−1 : Ωn−1 → R3 are known, where
Ωn−1 = {x ∈ Λ;ϕn−1(x) = 1}. Consider the characteristic lines x : Ωn−1× [tn−1, tn]→ Λ,
which satisfy the condition

d
dtx(X, t) = u(x(X, t), t), (5.26)

for all (X, t) ∈ Ωn−1× [tn−1, tn]. Let h > 0 and consider a grid made of cubic cells Cijk of
size h, with barycenter xijk. Let ϕn−1

ijk and un−1
ijk be the approximated value respectively

of the functions ϕn−1 and un−1 on each cell Cijk. These values are transported along
the vector ∆tun−1

ijk .

It can be proved in one dimension that the method of characteristics is equivalent to a
finite difference method [Cab04]. As illustrated in Figure 1.4, the cells can be considered
as particles, with a given value for ϕ. This function satisfies a transport equation. Since
the method of characteristics that we use is a particle method, then it actually solves the
conservative form of the transport equation (1.1a):

∂ϕ

∂t
+∇ · (ϕu) = 0. (5.27)

No proof of this result was found for the best of our knowledge. However, it can be
proved that a particle function solve the conservative form of the transport equation
[Rav85]. A study of particle method for the advection equation in conservative form can
be found in [CEPP14]. Furthermore, a numerical experiment at the end of this section
shows an empirical proof of this result.

This issue has no repercussion when the fluid is divergence-free (∇ · u = 0). Indeed, the
equation (5.27) yields ∂ϕ

∂t
+ (u · ∇)ϕ+ϕ(∇ ·u) = 0, which is equivalent to the transport

equation (1.1a) in this case. However, considering compressible fluids forces us to apply
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a correction to the previously used method of characteristics. For this reason, we use a
splitting algorithm again to solve our problem. The initial problem reads:
Find ϕ : [tn−1, tn]× Λ→ {0, 1} such that

∂ϕ

∂t
+ (u · ∇)ϕ = 0.

To solve it, we advocate the following splitting algorithm. A first correction equation is
solved. It yields:
Find ϕ : [tn−1, tn]× Λ→ {0, 1} such that

∂ϕ

∂t
− ϕ(∇ · u) = 0, (5.28a)

with initial condition ϕ(tn−1) = ϕn−1. The solution is denoted by ϕn−
1
2 . Finally, we

solve the conservative equation:
Find ϕ : [tn−1, tn]× Λ→ {0, 1} such that

∂ϕ

∂t
+∇ · (ϕu) = 0, (5.28b)

with initial condition ϕ(tn−1) = ϕn−
1
2 .

At the discrete level, the algorithm to solve (5.28) is the following:

1. The divergence of the velocity ∇ · un−1
ijk is approximated by a piecewise constant

function, on each cell of the grid for active cells only. It is computed on the FE
mesh and interpolated on the cells using either one of the equations in (1.21).

2. The equation (5.28a) is approximated in each non-empty cell Cijk:
For all active cells Cijk, find ϕ̃ijk : [tn−1, tn]→ R+ such that:

dϕ̃ijk
dt (t)− ϕ̃ijk(t)(∇ · un−1

ijk ) = 0, (5.29)

with the initial condition ϕ̃ijk(tn−1) = ϕn−1
ijk . The equation (5.29) admits an exact

solution for each cell Cijk:

ϕ̃ijk(t) = ϕn−1
ijk exp((t− tn−1)(∇ · un−1

ijk )), tn−1 ≤ t ≤ tn.

We denote the new variable to be transported along the characteristics by:

ϕ̄
n− 1

2
ijk := exp((tn − tn−1)(∇ · un−1

ijk )).

3. The SLIC algorithm illustrated in Figure 1.6 must be applied in order to avoid
numerical diffusion. However, this algorithm detects a cell to be full if its value is
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equal to 1. Hence, we cannot directly transport the newly computed value ϕ̃ijk(tn).
For this reason, the transport equation (5.28b) is first solved for the characteristic
function ϕn−1

ijk in each cell using the method of characteristics (1.13c), where the
SLIC algorithm can be applied. Then, we recover in each cell Cijk the updated
value ϕnijk, and the cell is considered active if ϕnijk > 0.

4. Note that ϕ̃ijk(tn) = ϕn−1
ijk ϕ̄

n− 1
2

ijk , which is the solution at time tn of the equation
(5.29). As described in section 1.4.1, where the weighted velocity ϕn−1

ijk u
n−1
ijk is

transported, the weighted function ϕn−1
ijk ϕ̄

n− 1
2

ijk is transported with the method of
characteristics to solve (5.28b). Then, we recover in each updated active cell Cijk
the updated value ϕ̄nijk.

5. The characteristic functions ϕnijk are then updated with the transported corrected
functions ϕ̄nijk by ϕnijk := ϕnijkϕ̄

n
ijk.

6. The decompression algorithm presented in section 1.4.1 is finally applied. Like
in the incompressible case, the overfilled cells and the cells advected out of the
domain are treated.

We present a numerical result for an empirical proof of appropriate convergence. Consider
a domain Λ = (−6, 0)× (−1, 1) and a velocity u(X, t) = (−x, 0) imposed in X = (x, y) ∈
Λ. Thus, it corresponds to a 2D test case, but the flow evolves only in 1D. Now let us
define

ϕ0(x, y) =

1 if |x+ 5| < 0.5
0 otherwise

to define the initial fluid domain .

The equation of the method of characteristics (5.26) yields

x(X, t) =
(
x exp(−t)

y

)

Thus, the equation ϕ(x(X, t), t) = ϕ(X, 0) yields

ϕ((x, y), t) = ϕ((x exp(t), y), 0). (5.30)

If we consider that the method of characteristics solves the equation (5.27), we find in a
formal computation:

d
dtϕ(x(X, t), t) = ∂

∂t
ϕ(x(X, t), t) + (u · ∇)ϕ(x(X, t), t)

= −(∇ · u)ϕ(x(X, t), t)
= ϕ(x(X, t), t),
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since ∇ · u = −1. Hence we obtain

ϕ((x, y), t) = ϕ((x exp(t), y), 0)et. (5.31)

For the numerical experiment, the coarse discretisation uses the cell size h = 0.05 m,
a time step ∆t = 0.012 s and final time T = 0.96 s. Figures 5.1 and 5.2 illustrate
snapshots of the results and convergence results respectively. In the left column, the
method of characteristics converges for an order lower than 1 to the solution (5.31),
which is the solution of the conservative form (5.27). Whereas in the right column, the
correction (5.29) implies a convergence of order O(∆t+ h) to the solution (5.30), which
is the solution of the initial non-conservative advection equation (1.1a). The numerical
diffusion implied by the method of characteristics is reduced using the SLIC algorithm.
Since the equation (5.28a) modifes the property ϕ ∈ {0, 1}, the decompression algorithm
is still to be applied, and does not alter the convergence of the algorithm. The result at
the bottom left in Figure 5.1 shows that this latter algorithm cannot be applied if the
correction (5.29) is not applied, since the values in each cell of the characteristic function
are not between 0 and 1.

5.2.2 Numerical approximation of the complete model

We address now the numerical approximation of the unified model for compressible flows.
The splitting algorithm presented in chapter 1 is adapted and the convective terms are
solved separately. During the prediction step, the following set of convection equations
from tn−1 to tn are solved:

∂v

∂t
+ (v · ∇)v = 0, (5.32a)

∂q

∂t
+ (v · ∇)q = 0, (5.32b)

∂τ

∂t
+∇ · (τ ⊗ v) = 0, (5.32c)

∂ψ

∂t
+ (v · ∇)ψ = 0, (5.32d)

with initial conditions

v(tn−1) = un−1, q(tn−1) = pn−1, τττ(tn−1) = σσσn−1, ψ(tn−1) = ϕn−1,

respectively. The computational domain is then updated, Ωn = {x ∈ Λ;ϕn(x) = 1}. The
correction step then consists in finding v : Ωn × [tn−1, tn]→ R3, q : Ωn × [tn−1, tn]→ R
and τ : Ωn × [tn−1, tn]→ R3×3 which satisfy
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Figure 5.1 – Profiles of ϕ at time t = 1 for four different mesh sizes and the exact solution.
Left: the correction (5.28a) is not applied. Right: the correction (5.28a) is applied. Top:
no SLIC and decompression algorithm. Middle: SLIC applied without decompression.
Bottom: SLIC and decompression
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Figure 5.2 – Relative error ‖ϕ(tn)− ϕn‖L2(Ω) / ‖ϕ(tn)‖L2(Ω) at time t = 1 for four different
mesh sizes. Left: the correction (5.28a) is not applied. Right: the correction (5.28a) is
applied.

ρ
∂v

∂t
−∇ ·

(
2ηs

(
εεε(v)− 1

3(∇ · v)I
))

+∇q −∇ ·
(
τ − 1

3tr(τ )I
)

= ρg, (5.33a)

∂q

∂t
+ β(∇ · v) = 0, (5.33b)

ατ + λ

(
∂τ

∂t
−∇vτ − τ∇vT

)
= 2ηpεεε(v), (5.33c)

with initial conditions v(tn−1) = un−
1
2 , q(tn−1) = pn−

1
2 and τ (tn−1)) = σσσn−

1
2 and

boundary conditions discussed previously. The approximation of velocity, pressure and
extra-stress at time tn are then updated by un = v(tn), pn = q(tn) and σσσn = τ (tn).

The method of characteristics (1.13) is applied to solve the system of equations (5.32).
As previously analysed, the method solves the conservative transport equations:

∂v

∂t
+∇ · (v ⊗ v) = 0, (5.34a)

∂q

∂t
+∇ · (qv) = 0, (5.34b)

∂τ

∂t
+∇ · (τ ⊗ v) = 0, (5.34c)

∂ψ

∂t
+∇ · (ψv) = 0, (5.34d)

Hence, it allows to solve (5.32c) exactly but a correction has to be made for the remaining
equations (5.32a),(5.32b),(5.32d). Now, let h > 0 and consider a grid made of cubic
cells Cijk of size h, with barycenter xijk. Let ϕn−1

ijk and un−1
ijk be the approximated

value respectively of the functions ϕn−1 and un−1 on each cell Cijk. The algorithm
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5.2. Numerical approximation for compressible flows

presented earlier for the characteristic function equation (5.32d) is similarly applied
to the equations (5.32a) and (5.32b). Hence, we solve in each non-empty cell Cijk the
approximated equations in [tn−1, tn]:

dṽijk
dt (t)− ṽijk(t)(∇ · un−1

ijk ) = 0, (5.35a)

dq̃ijk
dt (t)− q̃ijk(t)(∇ · un−1

ijk ) = 0, (5.35b)

dψ̃ijk
dt (t)− ψ̃ijk(t)(∇ · un−1

ijk ) = 0, (5.35c)

with the initial conditions ṽijk(tn−1) = un−1
ijk , q̃ijk(tn−1) = pn−1

ijk and ψ̃ijk(tn−1) = ϕn−1
ijk .

These equations are solved exactly in each cell Cijk at time tn:

ṽ
n− 1

2
ijk := ṽijk(tn) = un−1

ijk ψ̄
n− 1

2
ijk ,

q̃
n− 1

2
ijk := q̃ijk(tn) = pn−1

ijk ψ̄
n− 1

2
ijk ,

ψ̃
n− 1

2
ijk := ψ̃ijk(tn) = ϕn−1

ijk ψ̄
n− 1

2
ijk ,

where ψ̄n−
1
2

ijk = exp((tn − tn−1)(∇ · un−1
ijk )), similarly as in the previous section 5.2.1.

Now, we use the method of characteristics to transport the non-corrected characteristic
function ϕn−1

ijk . We obtain the updated characteristic function ϕnijk. Then, the function

ϕn−1
ijk ψ̄

n− 1
2

ijk is transported by the method of characteristics, which solves the equation
(5.34c) and we obtain the updated values ψnijk in each active cell. The characteristic
function ϕnijk at time tn is updated as ϕnijk := ϕnijkψ

n
ijk. This part is similar as explained

in section 5.2.1. Then, as motivated in chapter 1, the method of characteristics is used
on ϕn−1

ijk ṽ
n− 1

2
ijk to obtain the velocity un−

1
2

ijk and on ϕn−1
ijk q̃

n− 1
2

ijk to obtain the pressure pn−
1
2

ijk .

The extra-stress σσσn−
1
2

ijk is then recovered on the cells using the method of characteristics.

Consider now the FE discretization of the system of equations (5.36d). Let H > 0 and TH
be a triangulation of the cavity Λ of maximum diameter H. The characteristic function
ϕnijk is interpolated on the FE mesh and allows to define the computational domain Ωn

H ,
similarly as in section 1.4.2. Let V n

H ⊂ (C0(Ωn
H))3, QnH ⊂ C0(Ωn

H) and T nH ⊂ (C0(Ωn
H))3×3

be the piecewise linear FE spaces considered in section 1.4.3, with the definition (1.26).
The velocity un−

1
2

H ∈ V n
H , the pressure pn−

1
2

H ∈ QnH and the extra-stress σσσn−
1
2

H ∈ T nH are
obtained from interpolating the functions from the structured grid to FE mesh using
equation (1.18).

The implicit scheme previously applied to the incompressible scheme is adapted here for
the system of equations (5.33) of the correction step. Consider the semi-implicit time
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Chapter 5. Extension to weakly compressible free surface flows

discretisation of the correction step system of equations in Ωn:

ρ
un − un−

1
2

∆t −∇ ·
(

2ηs
(
εεε(un)− 1

3(∇ · un)I
))

(5.36a)

+∇pn −∇ ·
(
σσσn − 1

3tr(σ
σσn)I

)
= ρg,

1
β

pn − pn−
1
2

∆t +∇ · un = 0, (5.36b)

ασσσn + λ

(
σσσn − σσσn−

1
2

∆t −∇un−
1
2σσσn−

1
2 − σσσn−

1
2 (∇un−

1
2 )T

)
= 2ηpεεε(un). (5.36c)

Similarly as in equation (1.25d) we can explicit σσσn from (5.36c) and insert it in (5.36a)
to decouple the computation of (un, pn) and σσσn. Thus, we first find un : Ωn → R3 and
pn : Ωn → R such that

ρ
un − un−

1
2

∆t −∇ ·
(

2
(
ηs + ηp∆t

λ+ α∆t

)(
εεε(un)− 1

3∇ · u
n
)
I

)
+∇pn

= λ

λ+ α∆t

(
∇ · σσσn−

1
2 − 1

3∇
(
tr(σσσn−

1
2 )
))

(5.36d)

+ λ∆t
λ+ α∆t

(
∇ · (∇un−

1
2σσσn−

1
2 + σσσn−

1
2 (∇un−

1
2 )T ) + 2

3∇
(
∇un−

1
2 : σσσn−

1
2
))

+ ρg.

and then σσσn : Ωn → R3×3 satisfying (5.36c).

Hence, the FE discretisation of the correction step (5.33) reads:
Find unH ∈ V n

H , pnH ∈ QnH such that

∫
Ωn

H

ρ
unH − u

n− 1
2

H

∆t · vH dx+
∫

Ωn
H

2
(
ηs + ηp∆t

λ+ α∆t

)
εεε(unH) : εεε(vH) dx

−
∫

Ωn
H

2
3

(
ηs + ηp∆t

λ+ α∆t

)
(∇ · unH)(∇ · vH) dx−

∫
Ωn

H

pnH∇ · vH dx (5.37a)

=
∫

Ωn
H

ρg · vH dx−
∫

Ωn
H

λ

λ+ α∆t

(
σσσ
n− 1

2
H : εεε(vH)− 1

3tr(σ
σσ
n− 1

2
H )(∇ · vH)

)
dx

−
∫

Ωn
H

λ∆t
λ+ α∆t

((
∇un−

1
2

H σσσ
n− 1

2
H + σσσ

n− 1
2

H (∇un−
1
2

H )T
)

: εεε(vH)

− 2
3

(
∇un−

1
2

H : σσσn−
1
2

H

)
(∇ · vH)

)
dx, ∀vH ∈ V n

H ,

∫
Ωn

H

(∇ · unH)qH dx+
∫

Ωn
H

1
β

pnH − p
n− 1

2
H

∆t qH dx = 0, ∀qH ∈ QnH . (5.37b)

Then, we solve the weak formulation of the Oldroyd-B equation to recover the extra-stress
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5.3. Numerical simulation for volume changing

tensor σσσnH ∈ T nH , which is actually similar as the equation (1.27d).

The initial velocity u0
H , pressure p0

H and extra-stress tensor σσσ0
H are interpolated onto

V 0
H . However, depending on the initial pressure, oscillations can be observed and never

decrease due to the wave nature of the equation. In [YA21], the pressure was initialised
by solving a Poisson equation ∇p = ρg in order to suppress the oscillations. The pressure
p0
H can be computed by relying on the following stationary Stokes problem:∫

Ω0
H

p0
H∇ · vH dx =

∫
Ω0

H

ρg · vH dx−
∫

Ω0
H

2ηsεεε(u0
H) : εεε(vH) dx

+2ηs
3

∫
Ωn

H

(∇ · u0
H)(∇ · vH) dx

−
∫

Ω0
H

σσσ0
H : εεε(vH) dx

+1
3

∫
Ωn

H

tr(σσσ0
H)(∇ · vH) dx, ∀vH ∈ V 0

H .

(5.38)

5.3 Numerical simulation for volume changing

In this section, we only address the case α = ηs = 0, corresponding to the deformation
of a compressible Neo-Hookean material. It corresponds to a tensile test experiment,
similarly as developped in section 2.2.1 for rubber material. Indeed, the main motivation
of taking into account compressible effect is first to extend the model to improve the
result obtained in chapter 2. Validation results for the numerical model for weakly
compressible Newtonian and viscoelastic flows are still to be obtained.

Rubber is nearly incompressible and its Poisson ratio is close to 0.5. Consider the unified
model (5.24) for compressible Neo-Hookean solid, that is for α = 0 and ηs = 0. The
parameter β now corresponds to the first Lamé parameter λ. Consider the settings of the
rubber traction experiments, where the velocity is imposed on the shoulders of the tensile.
The mesh sizes and physical parameters remain the same: H = 4 mm, h = 0.6 mm,
∆t = 0.8 s, ρ = 940 kg/m3, ηp = 2 · 105 Pa s. The parameter β controls the change of
volume, thus the simulations are computed for values of β in {106, 107, 108} Pa s. The
initial pressure p0 is here initialised to 0 and the extra-stress tensor σσσ0 = 0. The initial
velocity is smoothed: u0 = (0, 0, 2 · 10−4 tanh(80z)).

In Figure 5.3, the pressure p and extra-stress component σσσzz are monitored along the
axis Oz in the axial direction of the tensile specimen, at the time corresponding to 0.1%
relative elongation. Visual convergence is observed. In Figure 5.4, a comparison of the
force σσσzz − p profile for the different values of the parameter β. As we can expect from
equation (5.24c), the pressure becomes smaller for a larger value of β. Finally, Figure
5.4 shows the evolution of the total volume

∫
Λ ϕ(x, t) dx over time. The conservation
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Chapter 5. Extension to weakly compressible free surface flows

of the total mass is not anymore respected due to the mass equation (5.24c) and the
numerical correction on the prediction step (5.29). A smaller value of β induces a larger
compressibility and we obtain a larger change in volume for β = 106 Pa s.

Figure 5.3 – Compressible model. Profile along the axis Oz at time t = 8 s and strain
0.1% for β = 106 Pa s. Left: Extra-stress component σσσzz. Right: Pressure p.

Figure 5.4 – Compressible model. Finer discretisation parameters. Left: Component z
of total force σσσzz − p profile at time t = 8 s and strain 0.1%. Right: Evolution of total
VOF volume with respect to strain.

134



Conclusion

The numerical framework proposed in [Mar00, BCP06] has been adapted to the unified
model of [Pic16] for the simulation of incompressible Newtonian and viscoelastic fluids
and incompressible Neo-Hookean elastic solid free-surface flows. An alternative time
discretisation of the diffusive part of the system was proposed and study on a simplified
system of equations. The unconditional stability of this implicit scheme and convergence
of the system energy was proved. The performance of the alternative time discretisation
has been tested on numerical experiments and shown to be superior to the EVSS scheme,
previously applied on Oldroyd-B model. The numerical validation of the incompressible
Neo-Hookean elastic model was carried on a set of numerical experiments based on engi-
neering applications. Finally, an algorithm applying the Signorini boundary conditions
on the system of equations was proposed and tested.

Then, we proposed a multiphase formulation of the previous system of equations, allowing
to model the interactions of multiple incompressible Newtonian and viscoelastic fluids
and incompressible Neo-Hookean elastic solids. The model is based on a VOF method
suggested by [JBCP14]. The numerical approximation of the system of equations was
adapted to the alternative rheology of the model by the application of the previously
used time discretisations of the diffusive terms. The performances of this new model were
tested on different numerical experiments, exhibiting its accuracy and flexibility. Indeed,
the number of phases to be simulated is not restricted and the method of characteristics
is a robust tool to handle their movements. Also, the model allows the simulation of
multiple rheologies using the same set of equations for a straightforward formulation,
letting us tackle a large panel of problems.

An extension to weakly compressible flows was proposed in order to improve the mod-
elling of physical problems. A compressible unified model was obtained, as well as a
complementary numerical framework, in order to take into account the compressible
effects. Indeed, an additional splitting algorithm for the transport equations allowed to
tackle the issue brought by the method of characteristics in compressible flows.

Future work is split on different axes:
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Conclusion

• The a priori estimates for the simplified multiphase model are not complete. A
multi-domain formulation of the simplified problem could allow to obtain multiphase
counterpart of the general results obtain in chapter 1 for N = 1.

• The interface conditions between the phases in the multiphase formulation can
be relaxed and would allow the modelling of surface tension. This additional
feature would improve the results for the simulation of mutliple fluids flows, for
instance in the numerical experiment in section 4.2. Together with a different
viscoelastic constitutive equation (FENE or Giesekus), these extensions would allow
the validation of our fluid model with respect to the literature review. Furthermore,
the algorithm proposed in section 4.1 can be implemented and tested for the
simulation of analogous Signorini boundary conditions on multiphase interface.

• Proper validation of the unified compressible model must be carried on. Compress-
ible extension to multiphase compressible flows is allowed by our formulation and
would bring an additional extension to the multiphase formulation we suggested.

• Finally, extension to order two schemes should be investigated. This could be done
using the order two Strang splitting scheme. A Crank-Nicolson time discretisation
of the correction step should also be applied. Then, a higher order interface
reconstruction should be investigated.
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Et si tu crois que c’est fini, ...
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A Appendix A: Useful results

Lemma A.0.1 (Jacobi’s formula [MN19], Theorem 8.1). Let n > 1 and A : R→ Rn×n

be an invertible differential matrix function. Then it holds

d
dt det(A(t)) = tr

(
adj(A(t))dA(t)

dt

)
= det(A(t))tr

(
A(t)−1 dA(t)

dt

)
Theorem A.0.1 (Reynold’s transport theorem [Hol02]). Let T > 0 and Ω0 ⊂ R3. Let
x : [0, T ]×Ω0 → R3 a particle displacement function, defining for all t ∈ (0, T ] a domain
Ω(t) = {x ∈ R3;∃X ∈ Ω0 such that x = ϕ(X, t)}. We also define the space-time domain
QT = {(x, t) ∈ R3 × [0, T ];x ∈ Ω(t)} and n(x, t) be the normal of the boundary ∂Ω(t)
at x. Now, let f : QT → R. Then, the following formula holds:

d
dt

(∫
Ω(t)

f dx
)

=
∫

Ω(t)

∂f

∂t
dx+

∫
∂Ω(t)

(u · n)f dS, (A.1)

where ∂
∂tx(X, t) = u(x(X, t), t) denotes the interface velocity.

Lemma A.0.2 (A first discrete Grönwall’s Lemma [Dub20]). Let N ≥ 1 be an integer.
Let an, γn, 0 ≤ n ≤ N and bn, cn, µn, 1 ≤ n ≤ N be non-negative numbers such that

am − am−1 + bm ≤ γm−1am−1 + µmam + cm, ∀1 ≤ m ≤ N.

Assume that µn < 1 for all 1 ≤ n ≤ N . Then

a2
m +

m∑
n=1

bn ≤
(
a0 +

m∑
n=1

cn

)
+ exp

(
m−1∑
n=0

γn

)
exp

(
m∑
n=1

µn
1− µn

)
, ∀1 ≤ m ≤ N.

Lemma A.0.3 (Corollary of Grönwall’s Lemma). Let N ≥ 1 be an integer. Let
an, bn, cn, µn be non-negative numbers for all 0 ≤ n ≤ N such that

a2
n + bn ≤ a2

n−1 + µnan + cn, ∀1 ≤ m ≤ N. (A.2)
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Then

a2
m +

m∑
n=1

bn ≤ exp(1)
(
a2

0 +
m∑
n=1

cn + N + 1
4

m∑
n=1

µ2
n

)
, ∀1 ≤ m ≤ N. (A.3)

Proof. We have from Young’s inequality:

a2
n − a2

n−1 + bn ≤ µnan + cn ≤
ε

2µ
2
n + 1

2εa
2
n + cn, (A.4)

for any ε > 0. Using Lemma A.0.2, we find

a2
m +

m∑
n=1

bn ≤
(
a2

0 +
m∑
n=1

1
2εµ

2
n +

m∑
n=1

cn

)
exp

(
m

ε

2− ε

)
.

For ε = 2/(N + 1) < 2, we find

exp
(
m

2/(N + 1)
2− 2/(N + 1)

)
≤ exp

(
N

2/(N + 1)
2− 2/(N + 1)

)
= exp(1).

�
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B Appendix B: Validation of inter-
polation methods between cells
and finite elements
Two interpolation methods were presented in section 1 to interpolate the variables from
the structured grid to unstructured FE mesh. We want to compare the convergence of the
L2-interpolation method (1.20) and the weighted distance method (1.18). Convergence
is checked starting for a domain Λ = [−0.14, 0.14]× [−0.14, 0.14] with a characteristic
function ϕ0(x) = {x = (x, y) ∈ Λ;x2 + y2 < 0.005} and initial velocity u0(x) =
16 ∗ (1 − y2). The coarse setting corresponds to H = 0.015 m, h = 0.0045 m and
∆t = 0.0016 s. Finer meshes are then obtained by dividing the discretisation parameters
by two, keeping the CFL number constant. The velocity is interpolated from one
mesh to the other until T = 0.0192 s. The expected convergence is divided by the
number of time steps and for CFL = ∆t/h and R = H/h yields ‖uH(t)− uH,0‖L2(Ω) ≤
C(h2 + H2)(T/∆t) = (CT (1 + R2)/CFL)h. In Figure B.1, the order 1 convergence
is recovered for both interpolation method. However, the weighted distance method
(Steiner) performs better than the L2-interpolation method (Maronnier) and were thus
used in our computations.

Figure B.1 – Convergence of interpolation method. Left: Active cells and FE mesh, the
velocity is displayed on the cells. Right: Convergence graphs for Maronnier’s (1.20) and
Steiner’s (1.18) interpolation methods.
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C Appendix C: Additional proofs

C.1 Proof of Proposition 1.5.3

Proof. Let enu = u(tn)−un, enp = p(tn)−pn and enσσσ = σσσ(tn)−σσσn. From Taylor expansion
we obtain from (1.29) at time tn:∫

Ω
ρ
u(tn)− u(tn−1)

∆t · v dx+
∫

Ω
2ηsεεε(u(tn)) : εεε(v) dx−

∫
Ω
p(tn)(∇ · v) dx (C.1)

+
∫

Ω
σσσ(tn) : εεε(v) dx+ ρ

∆t

∫ tn

tn−1

[∫ tn

t

(∫
Ω

∂2u

∂t2
(s) · v dx

)
ds
]

dt = 0, ∀v ∈ H1
0 (Ω),∫

Ω
q∇ · u(tn) dx = 0, ∀q ∈ L2

0(Ω),∫
Ω
ασσσ(tn) : τ dx+

∫
Ω
λ
σσσ(tn)− σσσ(tn−1)

∆t : τ dx−
∫

Ω
2ηpεεε(u(tn)) : τ dx

+ λ

∆t

∫ tn

tn−1

[∫ tn

t

(∫
Ω

∂2σσσ

∂t2
(s) : τ dx

)
ds
]

dt = 0, ∀τ ∈ L2(Ω)3×3.

Taking the difference between the previous equations and the weak formulation for the
implicit scheme (1.42) and it yields:∫

Ω
ρ
enu − en−1

u

∆t · v dx+
∫

Ω
2ηsεεε(enu) : εεε(v) dx−

∫
enp∇ · v dx (C.2)

+
∫

Ω
enσσσ : εεε(v) dx+ ρ

∆t

∫ tn

tn−1

[∫ tn

t

(∫
Ω

∂2u

∂t2
(s) · v dx

)
ds
]

dt = 0, ∀v ∈ H1
0 (Ω),∫

Ω
(∇ · enu)q dx = 0, ∀q ∈ L2

0(Ω) (C.3)∫
Ω
αenσσσ : τ dx+

∫
Ω
λ
enσσσ − en−1

σσσ

∆t : τ dx−
∫

Ω
2ηpεεε(enu) : τ dx (C.4)

+ λ

∆t

∫ tn

tn−1

[∫ tn

t

(∫
Ω

∂2σσσ

∂t2
(s) : τ dx

)
ds
]

dt = 0, ∀τ ∈ L2(Ω)3×3.

We set v = enu, q = epn, τττ = enσσσ and use the identity (a−b)a = 1
2 ‖a‖

2− 1
2 ‖b‖

2 + 1
2 ‖a− b‖

2

for a, b ∈ R3 (identical identity for a, b ∈ R3×3) to obtain:
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ρ

2∆t ‖e
n
u‖

2
L2(Ω)3 + ρ

2∆t

∥∥∥enu − en−1
u

∥∥∥2

L2(Ω)3
+ 2ηs ‖εεε(enu)‖2L2(Ω)3×3 +

∫
Ω
enσσσ : εεε(enu) dx

= ρ

2∆t

∥∥∥en−1
u

∥∥∥2

L2(Ω)3
− ρ

∆t

∫ tn

tn−1

[∫ tn

t

(∫
Ω

∂2u

∂t2
(s) · enu dx

)
ds
]

dt,(
α

2ηp
+ λ

4∆tηp

)
‖enσσσ‖

2
L2(Ω)3×3 + λ

4∆tηp

∥∥∥enσσσ − en−1
σσσ

∥∥∥2

L2(Ω)3×3
−
∫

Ω
εεε(enu) : enσσσ dx

= λ

4∆tηp

∥∥∥en−1
σσσ

∥∥∥2

L2(Ω)3×3
− λ

2ηp∆t

∫ tn

tn−1

[∫ tn

t

(∫
Ω

∂2σσσ

∂t2
(s) : enσσσ dx

)
ds
]

dt.

By using Cauchy-Schwarz inequality we find:

− ρ

∆t

∫ tn

tn−1

[∫ tn

t

(∫
Ω

∂2u

∂t2
(s) · enu dx

)
ds
]

dt ≤ ρ

∆t ‖e
n
u‖L2(Ω)3

∫ tn

tn−1

∫ tn

t

∥∥∥∥∥∂2u

∂t2
(s)
∥∥∥∥∥
L2(Ω)3

ds

 dt

≤ ρ ‖enu‖L2(Ω)3

∫ tn

tn−1

∥∥∥∥∥∂2u

∂t2
(t)
∥∥∥∥∥
L2(Ω)3

dt

≤ ρ
√

∆t ‖enu‖L2(Ω)3

∫ tn

tn−1

∥∥∥∥∥∂2u

∂t2
(s)
∥∥∥∥∥

2

L2(Ω)3

dt

 1
2

.

We similarly obtain

− λ

2ηp∆t

∫ tn

tn−1

[∫ tn

t

(∫
Ω

∂2σσσ

∂t2
(s) : enσσσ dx

)
ds
]

dt ≤ λ

2ηp

√
∆t ‖enσσσ‖L2(Ω)3×3

∫ tn

tn−1

∥∥∥∥∥∂2σσσ

∂t2
(s)
∥∥∥∥∥

2

L2(Ω)3×3

dt

 1
2

.

Thus it yields(
ρ ‖enu‖

2
L2(Ω)3 + λ

2ηp
‖enσσσ‖

2
L2(Ω)3×3

)
+ ∆t

(
4ηs ‖εεε(enu)‖2L2(Ω)3×3 + α

ηp
‖enσσσ‖

2
L2(Ω)3×3

)

≤
(
ρ
∥∥∥en−1
u

∥∥∥2

L2(Ω)3
+ λ

2ηp

∥∥∥en−1
σσσ

∥∥∥2

L2(Ω)3×3

)
+
(
ρ ‖enu‖

2
L2(Ω)3 + λ

2ηp
‖enσσσ‖

2
L2(Ω)3×3

) 1
2


ρ∆t3

∫ tn

tn−1

∥∥∥∥∥∂2u

∂t2
(s)
∥∥∥∥∥

2

L2(Ω)3

dt

 1
2

+

 λ

2ηp
∆t3

∫ tn

tn−1

∥∥∥∥∥∂2σσσ

∂t2
(s)
∥∥∥∥∥

2

L2(Ω)3×3

dt

 1
2
 .

Define for n = 0, . . . , N :

• an =
(
ρ ‖enu‖

2
L2(Ω)3 + λ

2ηp
‖enσσσ‖

2
L2(Ω)3×3

) 1
2

,
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• bn = ∆t
(

4ηs ‖εεε(enu)‖2L2(Ω)3×3 + α

ηp
‖enσσσ‖

2
L2(Ω)3×3

)
,

• µn =


ρ∆t3

∫ tn

tn−1

∥∥∥∥∥∂2u

∂t2
(s)
∥∥∥∥∥

2

L2(Ω)3

dt

 1
2

+

 λ

2ηp
∆t3

∫ tn

tn−1

∥∥∥∥∥∂2σσσ

∂t2
(s)
∥∥∥∥∥

2

L2(Ω)3×3

dt

 1
2
,

• cn = 0.

Applying Lemma A.0.3, it yields for N + 1 ≤ 2
∆t :

ρ
∥∥∥eNu ∥∥∥2

L2(Ω)3
+ λ

2ηp

∥∥∥eNσσσ ∥∥∥2

L2(Ω)3×3
+

N∑
n=1

∆t
(

4ηs ‖εεε(enu)‖2L2(Ω)3×3 + α

ηp
‖enσσσ‖

2
L2(Ω)3×3

)

≤ ∆t2
ρ ∫ T

0

∥∥∥∥∥∂2u

∂t2
(s)
∥∥∥∥∥

2

L2(Ω)3

dt+ λ

2ηp

∫ T

0

∥∥∥∥∥∂2σσσ

∂t2
(s)
∥∥∥∥∥

2

L2(Ω)3×3

dt

 .
which concludes the proof. �

C.2 Proof of Proposition 1.5.4

Proof. Let us use the previous notations of section C.1 and, for n = 0, . . . , N − 1:

〈Rn
u,v〉 =

∫ tn

tn−1

[∫ tn

t

(∫
Ω

∂2u

∂t2
(s) · v dx

)
ds
]

dt, (C.5)

〈Rn
σσσ,σσσ〉 =

∫ tn

tn−1

[∫ tn

t

(∫
Ω

∂2σσσ

∂t2
(s) : τ dx

)
ds
]

dt. (C.6)

Taking the difference between two time steps of the equation (C.1) yields∫
Ω
ρ
u(tn+1)− 2u(tn) + u(tn−1)

∆t · v dx+
∫

Ω
2ηsεεε(u(tn+1)− u(tn)) : εεε(v) dx

−
∫

Ω
(p(tn+1)− p(tn))(∇ · v) dx+

∫
Ω

(σσσ(tn+1)− σσσ(tn)) : εεε(v) dx

+ ρ

∆t〈R
n+1
u −Rn

u,v〉 = 0, ∀v ∈ H1
0 (Ω).

The difference between two time steps of the implicit scheme yields the equation (1.44).
Taking the difference with the latter equation and multiply by λ

∆t yields∫
Ω
ρλ
en+1
u − 2enu + en−1

u

∆t2 · v dx+
∫

Ω
2ηsλεεε

(
en+1
u − enu

∆t

)
: εεε(v) dx

−
∫

Ω
λ

(
en+1
p − enp

∆t

)
(∇ · v) dx+

∫
Ω
λ

(
en+1
σσσ − enσσσ

∆t

)
: εεε(v) dx

+ ρλ

∆t2 〈R
n+1
u −Rn

u,v〉 = 0, ∀v ∈ H1
0 (Ω).
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Using the equation (C.3), we can remove the pressure error terms. Add α times the
equation (C.2) to obtain:

∫
Ω
ρλ
en+1
u − 2enu + en−1

u

∆t2 · v dx+
∫

Ω
2ηsλεεε

(
en+1
u − enu

∆t

)
: εεε(v) dx+

∫
Ω
ρα

(
en+1
u − enu

∆t

)
· v dx

+
∫

Ω
2ηsαεεε(en+1

u ) : εεε(v) dx+
∫

Ω

(
αen+1

σσσ + λ

(
en+1
σσσ − enσσσ

∆t

))
: εεε(v) dx

+ ρλ

∆t2 〈R
n+1
u −Rn

u,v〉+ ρα

∆t〈R
n+1
u ,v〉 = 0.

Using τ = εεε(v) in (C.4), the error terms for the extra-stress are cancelled out and we
find:∫

Ω
ρλ
en+1
u − 2enu + en−1

u

∆t · v dx+
∫

Ω
2ηsλεεε

(
en+1
u − enu

∆t

)
: εεε(v) dx+

∫
Ω
ρα

(
en+1
u − enu

∆t

)
· v dx

+
∫

Ω
2(ηsα+ ηp)εεε(en+1

u ) : εεε(v) dx

+ ρλ

∆t2 〈R
n+1
u −Rn

u,v〉+ ρα

∆t〈R
n+1
u ,v〉+ λ

∆t〈R
n+1
σσσ , εεε(v)〉 = 0.

For v = en+1
u − enu, we find:

∫
Ω

ρλ

2

∣∣∣∣∣en+1
u − enu

∆t2

∣∣∣∣∣
2

+ ρλ

2

∣∣∣∣∣en+1
u − 2enu + en−1

u

∆t

∣∣∣∣∣
2

dx

+
∫

Ω
(ηsα+ ηp)|εεε(en+1

u )|2 + (ηsα+ ηp)|εεε(en+1
u − enu)|2 dx

+ ∆t
∫

Ω
ρα

∣∣∣∣∣en+1
u − enu

∆t

∣∣∣∣∣
2

+ 2ηsλ
∣∣∣∣∣εεε
(
en+1
u − enu

∆t

)∣∣∣∣∣
2

dx

=
∫

Ω

ρλ

2

∣∣∣∣∣enu − en−1
u

∆t

∣∣∣∣∣
2

dx+
∫

Ω
(ηsα+ ηp)|εεε(enu)|2 dx

− ρλ

∆t2 〈R
n+1
u −Rn

u, e
n+1
u − enu〉

− ρα

∆t〈R
n+1
u , en+1

u − enu〉 −
λ

∆t〈R
n+1
σσσ , εεε(en+1

u − enu)〉.
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We have

− 1
∆t2 〈R

n+1
u −Rn

u, e
n+1
u − enu〉

= 1
∆t

(∫ tn+1

tn

[∫ tn+1

t

(∫
Ω

∂2u

∂t2
(s) · e

n+1
u − enu

∆t dx
)

ds
]

dt

−
∫ tn

tn−1

[∫ tn

t

(∫
Ω

∂2u

∂t2
(s) · e

n+1
u − enu

∆t dx
)

ds
]

dt
)

= ∆t
[ ∫

Ω

1
∆t

(
∂u

∂t
(tn+1)− ∂u

∂t
(tn)

)
· e

n+1
u − enu

∆t dx

−
∫

Ω

u(tn+1)− 2u(tn) + u(tn−1)
∆t2 · e

n+1
u − enu

∆t dx
]

= ∆t
[ ∫

Ω

1
2

(
∂2u

∂t2
(tn+1)− ∂2u

∂t2
(tn)

)
· e

n+1
u − enu

∆t dx

+ 1
6

∫ tn+1

tn

∫
Ω

(tn+1 − t)∂
3u

∂t3
(t) · e

n+1
u − enu

∆t dx dt

− 1
6

∫ tn

tn−1

∫
Ω

(tn+1 − t)∂
3u

∂t3
(t) · e

n+1
u − enu

∆t dx dt
]

≤
(

∆t
3
2

2 + ∆t2

6

)∥∥∥∥∥en+1
u − enu

∆t

∥∥∥∥∥
L2(Ω)3

∫ tn+1

tn−1

∥∥∥∥∥∂3u

∂t3
(t)
∥∥∥∥∥

2

L2(Ω)3

dt

 1
2

.

The following terms are bounded as the following:

• − ρα

∆t〈R
n+1
u , en+1

u − enu〉 = −ρα
∫ tn+1

tn

[∫ tn+1

t

(∫
Ω

∂2u

∂t2
(s) ·

(
en+1
u − enu

∆t

)
dx
)

ds
]

dt

≤ αρ
∥∥∥∥∥en+1
u − enu

∆t

∥∥∥∥∥
L2(Ω)3

∫ tn+1

tn

∫ tn+1

t

∥∥∥∥∥∂2u

∂t2
(s)
∥∥∥∥∥
L2(Ω)3

ds

 dt

≤ αρ∆t
3
2

∥∥∥∥∥en+1
u − enu

∆t

∥∥∥∥∥
L2(Ω)3

∫ tn+1

t

∥∥∥∥∥∂2u

∂t2
(s)
∥∥∥∥∥

2

L2(Ω)3

ds

 1
2

≤ αρ∆t2

2

∫ tn

tn−1

∥∥∥∥∥∂2u

∂t2
(t)
∥∥∥∥∥

2

L2(Ω)3

dt+ αρ∆t
2

∥∥∥∥∥en+1
u − enu

∆t

∥∥∥∥∥
2

L2(Ω)3

,
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• − λ

∆t〈R
n+1
σσσ , εεε(en+1

u − enu)〉 = −λ
∫ tn+1

tn

[∫ tn+1

t

(∫
Ω

∂2σσσ

∂t2
(s) : εεε

(
en+1
u − enu

∆t

)
dx
)

ds
]

dt

= λ

∫ tn+1

tn

[∫ tn+1

t

(∫
Ω

∂2

∂t2
(∇ · σσσ)(s) :

(
en+1
u − enu

∆t

)
dx
)

ds
]

dt

≤ λ
∥∥∥∥∥en+1
u − enu

∆t

∥∥∥∥∥
L2(Ω)3×3

∫ tn+1

tn

∫ tn+1

t

∥∥∥∥∥ ∂2

∂t2
(∇ · σσσ)(s)

∥∥∥∥∥
L2(Ω)3×3

ds

 dt

≤ ρλ
∥∥∥∥∥en+1
u − enu

∆t

∥∥∥∥∥
L2(Ω)3×3

∆t3
∫ tn+1

tn

∥∥∥∥∥ ∂2

∂t2
(∇ · σσσ)(s)

∥∥∥∥∥
2

L2(Ω)3×3

ds

 1
2

.

Finally, we obtain for n = 1, . . . , N − 1:

ρλ

∥∥∥∥∥en+1
u − enu

∆t

∥∥∥∥∥
2

L2(Ω)3

+ 2(ηsα+ ηp)
∥∥∥εεε(en+1

u )
∥∥∥2

L2(Ω)3×3

+ ∆t

ρα ∥∥∥∥∥en+1
u − enu

∆t

∥∥∥∥∥
2

L2(Ω)3

+ 4ηs

∥∥∥∥∥εεε
(
en+1
u − enu

∆t

)∥∥∥∥∥
2

L2(Ω)3×3


≤ ρλ

∥∥∥∥∥enu − en−1
u

∆t

∥∥∥∥∥
2

L2(Ω)3

+ 2(ηsα+ ηp) ‖εεε(enu)‖2L2(Ω)3×3 + αρ∆t2
∫ tn

tn−1

∥∥∥∥∥∂2u

∂t2
(t)
∥∥∥∥∥

2

L2(Ω)3

dt

+
√

2

ρλ ∥∥∥∥∥en+1
u − enu

∆t

∥∥∥∥∥
2

L2(Ω)3

+ 2(ηsα+ ηp)
∥∥∥εεε(en+1

u )
∥∥∥2

L2(Ω)3×3

 1
2

(∆t
3
2

2 + ∆t2

6

)∫ tn+1

tn−1

∥∥∥∥∥∂3u

∂t3
(t)
∥∥∥∥∥

2

L2(Ω)3

dt

 1
2

+ ∆t
3
2

∫ tn+1

tn

∥∥∥∥∥ ∂2

∂t2
(∇ · σσσ)(s)

∥∥∥∥∥
2

L2(Ω)3×3

ds

 1
2
 .

Define for n = 0, . . . , N − 1:

• an =

ρλ ∥∥∥∥∥en+1
u − enu

∆t

∥∥∥∥∥
2

L2(Ω)3

+ 2(ηsα+ ηp)
∥∥∥εεε(en+1

u )
∥∥∥2

L2(Ω)3×3

 1
2

,

• bn = ∆t

ρα ∥∥∥∥∥enu − en−1
u

∆t

∥∥∥∥∥
2

L2(Ω)3

+ 4ηs

∥∥∥∥∥εεε
(
enu − en−1

u

∆t

)∥∥∥∥∥
2

L2(Ω)3×3

,

• µn = ∆t
3
2


∫ tn+1

tn−1

∥∥∥∥∥∂3u

∂t3
(t)
∥∥∥∥∥

2

L2(Ω)3

dt

 1
2

+

∫ tn+1

tn

∥∥∥∥∥ ∂2

∂t2
(∇ · σσσ)(s)

∥∥∥∥∥
2

L2(Ω)3×3

ds

 1
2
+

O(∆t2),

• cn = αρ∆t2
∫ tn

tn−1

∥∥∥∥∥∂2u

∂t2
(t)
∥∥∥∥∥

2

L2(Ω)3

dt.
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Applying Lemma A.0.3, it yields for N + 1 ≤ 2
∆t :

ρλ

∥∥∥∥∥eNu − eN−1
u

∆t

∥∥∥∥∥
2

L2(Ω)3

+ 2(ηsα+ ηp)
∥∥∥εεε(eNu )

∥∥∥2

L2(Ω)3×3

+ ∆t
N∑
n=1

ρα ∥∥∥∥∥enu − en−1
u

∆t

∥∥∥∥∥
2

L2(Ω)3

+ 4ηs

∥∥∥∥∥εεε
(
enu − en−1

u

∆t

)∥∥∥∥∥
2

L2(Ω)3×3


≤ ρλ

∥∥∥∥∥e1
u − e0

u

∆t

∥∥∥∥∥
2

L2(Ω)3

+ 2(ηsα+ ηp)
∥∥∥εεε(e1

u)
∥∥∥2

L2(Ω)3×3

+ C∆t2
[
αρ

∫ T

0

∥∥∥∥∥∂2u

∂t2
(t)
∥∥∥∥∥

2

L2(Ω)3

dt+
∫ T

0

∥∥∥∥∥∂3u

∂t3
(t)
∥∥∥∥∥

2

L2(Ω)3

dt

+
∫ T

0

∥∥∥∥∥ ∂2

∂t2
(∇ · σσσ)(t)

∥∥∥∥∥
2

L2(Ω)3×3

dt
]

+O(∆t3),

for C ∈ R+, which concludes the proof. �

C.3 Proof of Proposition 1.7.2

Proof. From EVSS definition and L2-projection property we have∫
Ω
Dn−1
H : εεε(vH) dx =

∫
Ω
Dn−1
H : πH(εεε(vH)) dx =

∫
Ω
εεε(un−1

H ) : πH(εεε(vH)) dx.

Using vH = unH + un−1
H in in (1.63b) and τττH = σσσnH + σσσn−1

H in (1.63d) we find:∫
Ω

ρ

∆t(|u
n
H |2 − |un−1

H |2) dx+
∫

Ω
2(ηs + ηp)|εεε(unH)|2 dx+

∫
Ω

2(ηs + ηp)εεε(unH) : εεε(un−1
H ) dx

−
∫

Ω
pnH∇ · (unH + un−1

H ) dx+
∫

Ω
σσσn−1
H : εεε(un−1

H ) dx

−
∫

Ω
2ηpεεε(un−1

H ) : (πH(εεε(unH)) + πH(εεε(un−1
H ))) dx+

∫
Ω
σσσn−1
H : εεε(unH) dx = 0,

∫
Ω

α

2ηp
(|σσσnH |2 + σσσnH : σσσn−1

H )dx+
∫

Ω

λ

2ηp∆t
(|σσσnH |2 − |σσσn−1

H |2) dx =
∫

Ω
(σσσnH + σσσn−1

H ) : εεε(unH) dx.
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Since the L2-projection implies that for τ ∈ L2(Ω)3×3, we have ‖πH(τ )‖L2(Ω)3×3 ≤
‖τ‖L2(Ω)3×3 and

2ηp∆t
∫

Ω
|εεε(unH)|2 + εεε(un−1

H ) : εεε(unH)− εεε(un−1
H ) : (πH(εεε(unH)) + πH(εεε(un−1

H ))) dx

= ηp∆t
∫

Ω
|εεε(unH)|2 − |εεε(un−1

H )|2 + |εεε(un−1
H )− εεε(unH)|2 − |πH(εεε(un−1

H ))|2 + |πH(εεε(unH))|2|

− |πH(εεε(un−1
H )− εεε(unH))|2 dx

≥ ηp∆t
∫

Ω
|εεε(unH)|2 − |εεε(un−1

H )|2 − |πH(εεε(un−1
H ))|2 + |πH(εεε(unH))|2| dx.

Thus, summing the two equations and using the latter, we find

∫
Ω
ρ|unH |2 + λ

2ηp
|σσσnH |2 dx+ ∆t

[ ∫
Ω

(ηs + ηp)|εεε(unH)|2 + α

4ηp
|σσσnH |2 + ηp|πH(εεε(unH))|2 dx

]

+ ∆t
∑
K∈TH

αK
2

∫
K
|∇pnH |2 dx−∆t

∫
Ω
σσσnH : εεε(unH) dx

≤
∫

Ω
ρ|un−1

H |2 + λ

2ηp
|σσσn−1
H |2 dx+ ∆t

[ ∫
Ω

(ηs + ηp)|εεε(un−1
H )|2 + α

4ηp
|σσσn−1
H |2

+ ηp|πH(εεε(un−1
H ))|2 dx

]
+ ∆t

∑
K∈TH

αK
2

∫
K
|∇pn−1

H |2 dx−∆t
∫

Ω
σσσn−1
H : εεε(un−1

H ) dx

≤ · · · ≤
∫

Ω
ρ|u0

H |2 + λ

2ηp
|σσσ0
H |2 dx+ ∆t

[ ∫
Ω

(ηs + ηp)|εεε(unH)|2 + α

4ηp
|σσσ0
H |2

+ ηp|πH(εεε(u0
H))|2 dx

]
+ ∆t

∑
K∈TH

αK
2

∫
K
|∇p0

H |2 dx−∆t
∫

Ω
σσσnH : εεε(u0

H) dx.

Finally, we find by applying

∆t
∫

Ω
σσσnH : εεε(unH) dx ≤ ∆t

∫
Ω
ηp|εεε(unH)|2 dx+ ∆t

4ηp

∫
Ω
|σσσnH |2 dx

that∫
Ω
ρ|uNH |2 + 2λ−∆t

4ηp
|σσσNH |2 dx+ ∆t

[ ∫
Ω
ηs|εεε(uNH)|2 + α

4ηp
|σσσNH |2 + ηp|πH(εεε(uNH))|2 dx

]

+ ∆t
∑
K∈TH

αK
2

∫
K
|∇pnH |2 dx ≤

∫
Ω
ρ|u0

H |2 + λ

2ηp
|σσσ0
H |2 dx

+ ∆t
[ ∫

Ω
(ηs + ηp)|εεε(unH)|2 + α

4ηp
|σσσ0
H |2 dx

]

+ ∆t
∑
K∈TH

αK
2

∫
K
|∇p0

H |2 dx−∆t
[ ∫

Ω
σσσnH : εεε(u0

H) dx
]
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and we obtain the first result.

Next, by applying λ/∆t the difference between two steps of (1.63b) and adding up α
times (1.63b), we find:

∫
Ω
ρλ

(
un+1
H − 2unH + un−1

H

∆t2

)
· vH dx+

∫
Ω

2(ηs + ηp)λεεε
(
un+1
H − unH

∆t

)
: εεε(vH) dx

+
∫

Ω
2ηp(1− α)εεε(unH) : πH(εεε(vH)) dx

+
∫

Ω
ρα

(
un+1
H − unH

∆t

)
· vH dx+

∫
Ω

2α(ηp + ηs)εεε(un+1
H ) : εεε(vH) dx

−
∫

Ω

(
αpn+1

H + λ

(
pn+1
H − pnH

∆t

))
(∇ · vH) dx

−
∫

Ω
2ηpλεεε

(
unH − un−1

n

∆t

)
: πH (εεε(vH)) dx = 0.

For α = 1 we set vH = un+1
H − unH and it yields

∫
Ω

ρλ

2

∣∣∣∣∣un+1
H − unH

∆t

∣∣∣∣∣
2

+ ρλ

2

∣∣∣∣∣un+1
H − 2unH + un−1

H

∆t

∣∣∣∣∣
2

+ (ηp + ηs)(|εεε(un+1
H )|2 + |εεε(un+1

H )− εεε(unH)|2) dx

+ ∆t
∫

Ω
ρ

∣∣∣∣∣un+1
H − unH

∆t

∣∣∣∣∣
2

+ 2ηsλ
∣∣∣∣∣εεε
(
un+1
H − unH

∆t

)∣∣∣∣∣
2

dx

+
∑
K∈TH

αK

∫
K

1
2 |∇p

n+1
H |2 +

(
λ

∆t + 1
2

)
|∇pn+1

H − pnH |2 dx

+ ∆t
∫

Ω
2ηpλ

∣∣∣∣∣εεε
(
un+1
H − unn

∆t

)∣∣∣∣∣
2

dx−∆t
∫

Ω
2ηpλεεε

(
unH − un−1

n
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)
: πH

(
εεε

(
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H − unn
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dx

≤
∫

Ω

ρλ

2

∣∣∣∣∣unH − un−1
H

∆t

∣∣∣∣∣
2

dx+
∫

Ω
(ηp + ηs)|εεεunH)|2 dx+

∑
K∈TH

αK
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K

1
2 |∇p

n
H |2 dx.
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From

∫
Ω

∣∣∣∣∣εεε
(
un+1
H − unn

∆t

)∣∣∣∣∣
2

− εεε
(
unH − un−1

n
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)
: πH

(
εεε

(
un+1
H − unn
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))
dx

≥
∫

Ω
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(
εεε

(
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))∣∣∣∣∣
2

− πH

(
εεε

(
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n
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))
: πH

(
εεε

(
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dx

=
∫

Ω

∣∣∣∣∣πH
(
εεε

(
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2

−
∣∣∣∣∣πH

(
εεε

(
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n−1
H
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))∣∣∣∣∣
2

+
∣∣∣∣∣πH

(
εεε

(
un+1
H − 2unH + un−1

H

∆t

))∣∣∣∣∣
2

dx,

summing from n = 1 to n = N − 1 we obtain the result. Now for α = 0, setting
vH = un+1

H − un−1
H it yields

∫
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ρλ

2
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H − unH
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2
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2
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The last but one term can be dealt with by applying

−∆t
∫

Ω
2ηpλεεε

(
unH − u

n−1
H

∆t

)
: πH

(
εεε

(
un+1
H − un−1

H

∆t

))
dx

= −∆t
∫

Ω
2ηpλπH

(
εεε

(
unH − u

n−1
H

∆t

))
: πH

(
εεε

(
un+1
H − un−1

H

∆t

))
dx

= ∆t
∫

Ω
ηpλ

( ∣∣∣∣∣πH
(
εεε

(
un+1
H − unH

∆t

))∣∣∣∣∣
2

−
∣∣∣∣∣πH

(
εεε

(
unH − u

n−1
H

∆t

))∣∣∣∣∣
2

−
∣∣∣∣∣πH

(
εεε

(
un+1
H − un−1

H

∆t

))∣∣∣∣∣
2)

dx.
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Also we have

−
∫

Ω
λ

(
pn+1
H − pnH

∆t

)
(∇ · (un+1

H − un−1
H )) dx

= ∆t
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Finally it yields
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For ∆t ≤ λ, we can sum for n = 1 to N − 1 and we obtain the result. �
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