Comparing fusion techniques for the ImageCLEF 2013 medical case retrieval task

Müller, Henning (University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis)) ; Seco de Herrera, Alba (University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis)) ; Schaer, Roger (University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis)) ; Markonis, Dimitrios (University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis))

Retrieval systems can supply similar cases with a proven diagnosis to a new example case under observation to help clinicians during their work. The ImageCLEFmed evaluation campaign proposes a framework where research groups can compare case-based retrieval approaches. This paper focuses on the case-based task and adds results of the compound figure separation and modality classification tasks. Several fusion approaches are compared to identify the approaches best adapted to the heterogeneous data of the task. Fusion of visual and textual features is analyzed, demonstrating that the selection of the fusion strategy can improve the best performance on the case-based retrieval task.


Mots-clés:
Type d'article:
scientifique
Faculté:
Economie et Services
Ecole:
HEG VS HES-SO Valais-Wallis - Haute Ecole de Gestion & Tourisme
Institut:
Institut Informatique de gestion
Classification:
Informatique
Date:
2015
Pagination:
pp. 46-54
Titre du document hôte:
Computerized Medical Imaging and Graphics : special issue
Numérotation (vol. no.):
2015, vol. 39, special issue, pp. 46-54
DOI:
ISSN:
0895-6111
Le document apparaît dans:

Note  Le statut de ce document est: non diffusé

Note: The status of this file is: restricted


 Notice créée le 2015-11-23, modifiée le 2018-02-15

Fichiers:
Télécharger le document
PDF

Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)